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MODULE 3 
 

3.1 Intervening Opportunities Model: 
 

The gravity model is by far the most commonly used aggregate trip distribution 

model. But the gravity model does not exhaust all the theoretical possibilities. Intervening 

opportunities model which although much less used; offer real alternatives to the gravity 

model. 

The basic idea behind the intervening-opportunities model is that trip making is 

not explicitly related to distance but to the relative accessibility of opportunities for 

satisfying the objective of the trip. The original proponent of this approach was Stouffer 

(1940), who also applied his ideas to migration and the location of services and 

residences. But it was Schneider (1959) who developed the theory in the way it is 

presented today. 

Consider first a zone of origin i and rank all possible destinations in order of 

increasing distance from i. Then look at one origin-destination pair (i, j), where j is the 

mth destination in order of distance from i. There are m-1 alternative destinations actually 

closer (more accessible) from i. A trip maker would certainly consider those destinations 

as possible locations to satisfy the need giving rise to the journey: those are the 

intervening opportunities influencing a destination choice.  

The basic hypothesis of this model given by Stouffer (1940) is that the number of 

trips from an origin zone to a destination zone is directly proportional to the number of 

opportunities at the destination zone and inversely proportional to the number of 

intervening opportunities. This hypothesis may be expressed as: 

 

                                  tij = (k.aj/vj) 
        
Where; 

aj  = the total number of destination opportunities in zone j 

vj = the number of intervening destination opportunities between zones i and j 

k =a proportionality constant to ensure that all trips with origins at zone i are 

distributed to destination opportunities. 
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Schneider (1959) has proposed the following modification of the Stouffer 

hypothesis. The Schneider hypothesis states that the probability that a trip will terminate 

in some volume of destination points is equal to the probability that this volume contains 

an acceptable destination times the probability that an acceptable destination closer to the 

origin of the trips has not been found. This hypothesis many be expressed as: 

                            

                           pr (dv) = [1 – pr (v)]. ldv 
 

Where; 

pr (dv) = the opportunity that a trip will terminate when dv destination 

opportunities are considered. 

pr (v) = the cumulative probability that a trip will terminate by time v possible 

destinations are considered = (1 – ki exp (-lv)) 

ki =  a constant for zone I to ensure that all the trips produced at zone i are 

distributed to zone i 

v = the cumulative total of the destinations already considered. 

l = a constant probability of a destination being accepted if it is considered. 

The trip interchange between an i-j pair is given by: 

                         tij =  pi (probability of trip terminating in zone j) 

                              

                               =  pi (pr(vj+1) – pr(vj)) 
 
Where; 

pr(vj) = the probability that a trip will have found a suitable destination in the 

opportunities already considered up to zone j 

pr(vj+1) = the probability that a trip will have found a suitable destination in the 

cumulative opportunities considered up to and including zone j. 

 

From figure it may be restated as: the probability of locating within the dv 

opportunities being considered is equal to the product of the probability of not having 

located within the v opportunities already considered, and the probability of finding an 
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acceptable location within dv opportunities, given that a location has not already been 

found.  

 

  
 
 

The intervening-opportunities model is interesting because it starts from different 

first principles in its derivation: it uses distance as an ordinal variable instead of a 

continuous cardinal one as in the gravity model. It explicitly considers the opportunities 

available to satisfy a trip purpose at increased distance from the origin. However, the 

model is not often used in practice, probably for the following reasons: 

 

 The theoretical basis is less well known and possibly more difficult to understand 

by practitioners; 

 The idea of matrices with destinations ranked by distance from the origin (the nth 

cell for origin i is not destination n but the nth destinations away from i) is more 

difficult to handle in practice; 

 The theoretical and practical advantages of this function over the gravity model 

are not overwhelming; 

 The lack of suitable software. 

 

Boundary of Total 
Destination Opportunities 

 v Destination 
Opportunities 

dv Destination Opportunities in Given 
Travel-Time Interval from i 
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This is based on the concept that a trip cannot always go to the nearest destination and 
stop, it must consider the nearest destination and if that is not acceptable consider the 
next nearest and so on. 
 

∑ −−−−=
max

min

)()(
L

L

VUU
iij

jjLILIPT  

 

Tij = Total number of trios generated from zone I with a particular L value . 

(I-L)U = Probability that a given trip will get to a given destination. 

jj VULI −− )( = Probability that a given trip will not find a satisfactory destination in j and 

go on to next zone. 

L= Probability of a particular trip origin stopping at any randomly chosen destination. 

V= Number of destination found closer to the point of origin I than zone j. 

Vj = Number of destinations in zone j. 

 

 
 
3.1.1 Example problem: 
 
Find the trip interchange for the given figure? 
 
P= Production 
A=attraction 
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Iteration 1: 
 

Zone Productions Attractions 

1 1250 800 

2 1850 1200 

3 450 3900 

4 500 1950 

 
Let l=0.00055 
 
T11 = 1250 (e0-e (-0.00055*800) ) = 445 

T12 = 1250 (e (-0.00055*800) –e (-0.00055*2000) ) = 389 

T13 = 1250 (e (-0.00055*2000) –e (-0.00055*5900)  ) = 367 

T14 = 1250 (e (-0.00055*5900) –e (-0.00055*7850) ) = 32 

Therefore   
 
             T1j= 445+389+367+32=1233 
 
T21 = 1850 (e (-1200*0.00055) – e (-0.00055*2000) ) = 894 

T22 = 1850 (e0-e (-0.00055*1200) ) = 340 

T23 = 1850 (e (-0.00055*2000) –e (-0.00055*5900) ) = 544 

       P=1250 
     A=800 

   P=500 
   A=1950 

P=450 
A=3900 

P=1850 
A=1200 

 
1

3 4

2 
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T24 = 1850(e (-0.00055*5900) –e (-0.00055*7850) ) = 47 

 
Therefore 
 
             T2j=340+894+544+47=1825 
 
T31 = 450 (e (-3900*0.00055) – e (-0.00055*5100) ) = 10 

T32 = 450 (e (-0.00055*5100) –e (-0.00055*5900) ) = 25 

T33= 450 ( e0- e (-0.00055*3900) )  = 380 

T34= 450 (e (-0.00055*5900) – e (-0.00055*7850) ) = 12 

 
Therefore 
 
             T3j=380+25+10+12=427 
 
T41 = 500 (e (-1925*0.00055) – e (-0.00055*3150) ) = 84 

T42 = 500 (e (-0.00055*3150) – e (-0.00055*3950) ) = 31 

T43 = 500 (e (-0.00055*3950) – e (-0.00055*7850) ) = 50  

T44 = 500 (e 0- e (-0.00055*1950) ) = 329 

 
Therefore 
 
           T4j=84+31+50+329=494 
 
 
Values of l1, l2, l3, l4 : 
 

ij
m
i

m
i

ij
i tp

p
ev

l
−

= log.
log
1         (I=j) 

Substituting the respective values 

l1=0.00059 

l2=0.00056 

l3=0.000565 

l4=0.00056 

Using the modified values of lij, the next iteration is done. 

 

Iteration 2: 
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L1=0.00059 
 
T11 = 1250 (e0-e (-0.00059*800) ) = 470 

T12 = 1250 (e (-0.00059*800) –e (-0.00059*2000) ) = 395 

T13 = 1250 (e (-0.00059*2000) –e (-0.00059*5900)  ) = 345 

T14 = 1250 (e (-0.00059*5900) –e (-0.00059*7850) ) = 26 

 

Therefore   
 
             T1j= 470+395+345+26=1236. 
 
T21 = 1850 (e (-1200*0.00056) – e (-0.00056*2000) ) = 376 

T22 = 1850 (e0-e (-0.00056*1200) ) = 905 

T23 = 1850 (e (-0.00056*2000) –e (-0.00056*5900) ) = 537 

T24 = 1850(e (-0.00056*5900) –e (-0.00056*7850) ) = 45 

 
Therefore 
 
             T2j=905+376+537+45=1863 
 
T31 = 450 (e (-3900*0.000565) – e (-0.000565*5100) ) = 24 

T32 = 450 (e (-0.000565*5100) –e (-0.000565*5900) ) = 9 

T33= 450 ( e0- e (-0.000565*3900) )  = 400 

T34= 450 (e (-0.000565*5900) – e (-0.000565*7850) ) = 10 

 
Therefore 
 
            T3j=24+9+400+10=443 
 
T41 = 500 (e (-1925*0.00056) – e (-0.00056*3150) ) = 84 

T42 = 500 (e (-0.00056*3150) – e (-0.00056*3950) ) = 30 

T43 = 500 (e (-0.00056*3950) – e (-0.00056*7850) ) = 48 

T44 = 500 (e 0- e (-0.00056*1950) ) = 332 

 
Therefore 
 
           T4j=84+30+48+332=496 
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Values of l1, l2, l3, l4 : 
 

ij
m
i

m
i

ij
i tp

p
ev

l
−

= log.
log
1         (I=j) 

 

Substituting the respective values 

l1=0.000597 

l2=0.000565 

l3=0.000591 

l4=0.000567 

 

Using the modified values of lij, the next iteration is done. 

 
 
Iteration 3: 
 
L1=0.000597 
 
T11 = 1250 (e0-e (-0.000597*800) ) = 474 

T12 = 1250 (e (-0.000597*800) –e (-0.000597*2000) ) = 396 

T13 = 1250 (e (-0.000597*2000) –e (-0.000597*5900)  ) = 341 

T14 = 1250 (e (-0.00059*5900) –e (-0.00059*7850) ) = 25 

 

Therefore   
 
             T1j= 474+396+341+25=1236 
 
 
L2=0.000565 
 
T21 = 1850 (e (-1200*0.000565) – e (-0.000565*2000) ) = 341 

T22 = 1850 (e0-e (-0.000565*1200) ) = 905 

T23 = 1850 (e (-0.000565*2000) –e (-0.000565*5900) ) = 531 

T24 = 1850(e (-0.000565*5900) –e (-0.000565*7850) ) = 44 

 
Therefore 
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             T2j=341+905+531+44=1821 
 
L3=0.000591 

T31 = 450 (e (-3900*0.000591) – e (-0.000591*5100) ) = 23 

T32 = 450 (e (-0.000591*5100) –e (-0.000591*5900) ) = 8 

T33= 450 ( e0- e (-0.000591*3900) )  = 405 

T34= 450 (e (-0.000591*5900) – e (-0.000591*7850) ) = 9 

 
Therefore 
 
             T3j=23+8+405+9=445 
 
L4=0.000567 
 
T41 = 500 (e (-1925*0.000567) – e (-0.000567*3150) ) = 84 

T42 = 500 (e (-0.000567*3150) – e (-0.000567*3950) ) = 31 

T43 = 500 (e (-0.000567*3950) – e (-0.000567*7850) ) = 48 

T44 = 500 (e 0- e (-0.000567*1950) ) = 334 

 
Therefore 
 
           T4j=84+31+48+334=497 
 
 
Values of l1, l2, l3, l4 : 
 

ij
m
i

m
i

ij
i tp

p
ev

l
−

= log.
log
1         (I=j) 

 

Substituting the respective values 

l1=0.000604 

l2=0.00057 

l3=0.000597 

l4=0.000567 
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Using the modified values of lij again, further iterations are carried out until 

consecutive li values are same. 

 

 

 

 

 

 

 

 

 

 

3.2 Competing opportunities Model: 

 
Tomazinis proposed the competing opportunities model as follows: 
 
                     tij=pibij=pi(praj)(prsj) 
where  
 
praj= the probability of  attraction to zone j 
 
= The destination opportunities in zone j divided by the sum of the destination 
opportunities available in time bands up to and including m 
 

                                  =
∑
=

n

x
x

j

a

a

1

 

 
prsj=Probability of trip end allocation satisfaction in zone j 
 
=1- the sum of the destination opportunities available in time bands up to n including 
band m divided by the sum of total destinations in the study area j 
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                            =1- 
∑

∑

=

=
n

x
x

x

m

x

a

a

1

1  

 
 
x=any time band. 
m=Time band into which zone j falls 
ax=The destination opportunities available in time band x 
n= The last time band as measured from an origin zone i  

 

 

 

 

 

 

3.3 Linear Programming Approach: 
the objective is to minimize the total amount of travel time of trip makers in moving 

between origin and destination pairs . Blunden , Colston Blunden have formulated the 

trip distribution  

The objective function is to minimize the total vehicle travel time: 

 

 ∑∑∑
i j k

kjVkjiail ),().,,().(min  

Where 

 )(il =Travel time of link i  

 ),( kjV =Volume of link i  

 ),,( kjia =1 if link i  lies on the path ktoj  

     =0, if not 

Step 1: -Determining the basic feasible solution by Least Square Method. 
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Step 2: -There will be 3+2-1=4 basic variables. Checking for optimality, 

1. Only simplex method is used to determine the entry variable. If the optimality 

condition is satisfied, stop if not go to step 2. 

2. Determine leaving variable using the simplex feasibility condition. 

By the method of multipliers, for each basic variable: 

  

 ijji cvu =+  Letting 03 =u , I can solve for the remaining as shown in table below 
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3.3.1 Example problem: 

 
Assign the traffic to the various links for the network shown below. 

 E1=4000 E2=5000 

Table. Travel Time Matrix 

 

 
                                                                  R5=3000 

 
 

 R2=3000 

                                                                              R3=3000 

 

The objective function is to minimize the total vehicle travel time: 

∑∑∑
i j k

kjVkjiail ),().,,().(min  

Where 

 )(il =Travel time of link i  

 ),( kjV =Volume of link i  

 ),,( kjia =1 if link i  lies on the path ktoj  

    =0, if not 

subject to constraints 

 

000,5
000,4

000,3
000,3
000,3

524232

514131

5251

4241

3231

=++
=++

=+
=+
=+

TTT
TTT

TT
TT
TT

 

As this is a balanced transportation problem, we can solve in using transportation label 

model. The travel times are in the N-E corner of the each table. 

 

Step 1: -Determining the basic feasible solution by Least Square Method. 

 

D 

O 

1 2 

3 11 22 

4 16 18 

5 21 10 3

2 1

4
5
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 1 2  

  11  22  

3 3000    3000 

      

  16  18  

4 1000  2000  3000 

      

  21  10  

5   3000  3000 

      

 4000 5000  

 

1. Cell (3,1) has the least travel time. Assign 3000 to this cell. Row I1 is satisfied, 

satisfy column 1. 

2. Next the cell with the least travel time is (5,2). Assign 3000 to this cell and 

adj8ust the total of column 2 to 5000-3000=2000 

3. Next cell with least travel time is (4,1) and allocate to it 1000 

4. Allocate 2,000 to cell (4,2) 

 

Step 2: -There will be 3+2-1=4 basic variables. Checking for optimality, 

3. Only simplex method is used to determine the entry variable. If the optimality 

condition is satisfied, stop if not go to step 2. 

4. Determine leaving variable using the simplex feasibility condition. 

By the method of multipliers, for each basic variable: 

  

 ijji cvu =+  Letting 03 =u , I can solve for the remaining as shown in table below 
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Basic Variable ( ),vu  Solution 

(3,1) 1113 =+ vu  111 =v  

(4,1) 1614 =+ vu  54 =u  

(4,2) 1824 =+ vu  132 =v  

5,2) 1025 =+ vu  35 −=u  

 

I can use the tabulated solutions to get the values of the non-basic variables. 

 

Non-basic Variable ijji cvu −+   Comment 

(3,2) 9221303223 −=−+=−+ cvu  

(5,1) 13211135115 −=−+−=−+ cvu

The starting solution is 

optimal 

 

As the problem is minimization, the starting points are the solution as the non-basic 

variables has non-positive values. 

 

The solutions are: 

 31T  41T  42T  52T  

Solution 3000 1000 2000 3000 

 

The assigned trips can shown as:    E1=4000 E2=5000 

 

 3000 

                             1000 
        3000                                      2000       
R1=3000      
 
 

 R2=3000 

                                                                              R3=3000 

D 

O 

1 2 

3 11 22 

4 16 18 

5 21 10 3

2 1

4
5
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3.4 Wilson Modified  Entropy Model: 
 
The urban and regional scientist faces a number of theoretical problems. His activity is 

often a multi disciplinary one in the sense that he uses to concepts from several 

disciplines- economics, geography, and sociology and so on. The concept of entropy has, 

until recently, been used primarily in the non social science. It has hoped that ‘entropy’ 

enables the social scientist to take some of his basic problems in a fruitful way, and thus 

to make progress which might not be possible so easily which more orthodox tools. 

 

Applications of Entropy: 
1. It is used for theory building hypothesis (model) development. 

2. Used in expressing the laws about system dynamics. 

3. For interpretation procedures for the theories. 

 

The main views of entropy is  

1. The relationship of entropy to probability and uncertainty. 

2. The entropy of probability distribution. 

3. Entropy and Bayesian statistics. 

Gravity Model 
- Based on land use and transportation network  

- Calibrated for many urban areas 

- Simple 

- Accurate 

- Supported by the USDOT 

 

 
 

"The number of trips between 2 zones is directly proportional to the number of trip 

attractions at the destination zone and inversely proportional a function of the travel time" 
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Tij = Trips produced in zone i and attracted to zone j 

Pi = Trips produced in zone i 

Aj = Trips attracted in zone j 

Fij = Friction factor for impedance (usually travel time) between zones i and j 

Kij = Socioeconomic adjustment factor for trips produced in i and attracted to j 

How do we determine values for the variables? 

- Recall Ps and As come from trip generation 
- The sum of productions has to equal the sum of attractions  

 

-  

 

- Ks are used to force estimates to agree with observed trip interchanges 

(careful! do not use too many of these! Have a good reason for using them!) 

- Fs are determined by a calibration process (by purpose), and depend upon 

the willingness of folks to make trips of certain lengths for certain purposes 

 recall... trip purposes 

HBW - home based work  

HBO - home based other  

NHB - non-home based  

HBS - home based school  

Derivation of Gravity model: 

Fij= γ 2
12

21

d
mm  

 

T12= 2
12

21

d
DOk  

 
Double the values of  γ, Oi, Dj 
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T12= 2
12

21

d
DOk  

 
Trip end balance is required 

Balancing factors are Ai & Bj 

Take the impedance in the form of generalized function 

£=ln  W(Tij) + λi(1)( Oi – ∑
j

Tij) + λj(2)( Di – ∑
i

Tij) + β(C ‐ ∑∑
i j

TijCij) 

  Tij= exp (‐λi(1) ‐λj(2) ‐β(Cij)) 

∑
j

Tij=Oi  or exp (‐λi(1))∑
j

exp  (‐λj(2) ‐β(Cij)) 

exp (‐λi(1))= Oi/Ai ∑
j

exp (‐λj(2) ‐β(Cij))‐1 

exp (‐λi(2))= Dj/Bj ∑
j

exp (‐λj(1) ‐β(Cij))‐1 

Tij=AiOjBjDJexp(‐βCij) 

Ai=
iO

i )( 1

exp γ−

 

Bj=
jD

ji )( 2

exp γ−

 

Ai= [∑
j j

D  exp (‐λj(2) ‐β(Cij))‐1] 

Bj=[∑
i i

O  Ai exp( ‐β(Cij))‐1] 

 

Ai=
)exp(

1

∑ −
j

ijj CDB β
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3.5 Trip Assignment: 
 
3.5.1 All Or Nothing Assignment Model: 
 
All or nothing assignment is basically an extension of finding the minimum paths through 
a network. It is called all or nothing because every path from origin zone traffic to a 
destination zone has either all the traffic (if it is assumed as minimum paths) or none of 
the traffic. 
 

The steps followed are: 

1. Find the minimum path tree from each of the zone centroid nodes to all other 

nodes. 

2. Assign the flow from each origin to each destination node obtained from the trip 

table to the arcs comprising the minimum path for that movement. 

3. Sum the volume on each arc to obtain the total arc volume. If (undirected) link 

volume is desired, sum the flows on the two arcs that represent bi-directional link. 

 
 
The All or Nothing Traffic Assignment is illustrated using the following example. 
 

10 
 

11 
 
 
 
 7 8 7 5 
                                                                  
 
 

6 
 
 

10 
 
 
 
Home Node                                                                                     Minimum Path tree 
 0 11 
     1 
    7 

1 2 

3 4 
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         17 
 
  
   2   10 0 
 
 
 
 13 7 
 
 14 5 
   3 
 
 0 
 6 
 
  4                                                                                                 8 15 
    
 
 10 
 0 
 
Inter node volume, veh/hr is given belo 
 
 1 2 3 4 

 

4
3
2
1

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

20503501250
9501870650
4751050275
350750500

 

 
275 

 
500 

 
 
 
 1100 1900 1525 2220 
                                                                  
 
 

2075 
 

315 
 

LINK  4-3 IS CONGESTED LINK 
 

1 2 

3 4 
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3.5.2 Capacity Restrained Method: 
 

This model involves two-travel time versus volume relationships used iteratively to arrive 

at predictions of volumes on up to four separate routes between any two zones. The first 

equation utilizes route volume as the dependent variable.  

The symbolical representation of the graphical portrayal is: 

 

 
rc

rrcr
rcr V

LVVd
tt

)( −
+= ------------------------------------------------------------------(1) 

 where rt =travel time on route r (minutes) 

  rV = Volume of traffic on route r  (veh/hr/lane) 

  rcV = Critical volume for the route r (veh/hr/lane) 

  rct = unit travel time at the critical volume (min/mile) 

  rL = length of the route r (miles) 

  d = delay parameter (min/mile) 

     =0.50 for rV < rcV  

    =10.0 for rV ≥ rcV  

 

The second relationship used for predicting the volume on the route r given travel time: 

 

 V
t

tV m

r
r

r
r

∑
=

=

1
/1

/1   ---------------------------------------------------------------------------(2) 

 where V =the total volume of trips from zone I to j on all routes  

  rt =travel time on route r (minutes) 

  rV = Volume of traffic on route r  (veh/hr/lane) 

 

Equation (2) divides up the volume of trips from zone I to j among the various routes in 

accordance with the reciprocal of the travel times. 
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The steps which are followed will be: 

i. Find rt  from equation (1) 

ii. Find rV  by inserting rt  in equation (2) 

iii. Enter the value of rV  in equation (1) 

iv. Repeat the same procedure until the changes in volumes or travel times 

become negligible 

 

Example of the TRC Trip Assignment model 

The interplay between two TRC Trip Assignment equations can be demonstrated through 

a n example in which a pair of zones is connected by the two routes whose characteristics 

are shown in table 1 below. 

 

Table 1 Example Route Characteristics 

Route 

No. 

No. of 

lanes 

Speed limit 

(mph) 

Signals/

mile 

Length 

(mile) 

Critical 

volume 

Critical 

travel time 

Travel time 

with no volume 

1 1 30 1 3 600 3 2.5 

2 1 50 1 4 1100 2 1.5 

 

Iteration 1: - starts with the ideal travel times for the entire length of each route. Thus, if 

no traffic were: 

 On route 1, the travel time would equal: 2.5min/mileX3miles = 7.5min 

 On route 2, the travel time would equal: 1.5min/mileX4miles = 6.0min 

This leads to: 

 

 lanevphV /532)1200(
0.6/15.7/1

5.7/1
1 =

+
=  and  

 

 lanevphV /668)1200(
0.6/15.7/1

0.6/1
2 =

+
=  

From equation (1) taking 5.0=d  since both the routes have volumes less than their 

respective critical volumes, we get: 
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 =1t 3
600

)600532(50.00.3 ⎥⎦
⎤

⎢⎣
⎡ −

+  = 8.82 min and  

 

 =2t 4
100,1

)100,1668(50.00.2 ⎥
⎦

⎤
⎢
⎣

⎡ −
+  = 7.20 min  

Iteration 2: - 

lanevphV /536)1200(
72.7/182.8/1

82.8/1
1 =

+
=  and  

 

 lanevphV /664)1200(
72.7/182.8/1

20.7/1
2 =

+
=  

Then the travel times will be: 

 =1t 3
600

)600536(50.00.3 ⎥⎦
⎤

⎢⎣
⎡ −

+  = 8.85 min and  

 

 =2t 4
100,1

)100,1664(50.00.2 ⎥
⎦

⎤
⎢
⎣

⎡ −
+  = 7.18 min  

 

where 5.0=d  again since both the routes have volumes less than their respective critical 

volumes. 

Since the last set of travel times do not differ significantly from the previous, the 

procedure can be terminated and hence the final results are: 

 lanevphV /5361 =  and lanevphV /6642 =  

 min85.81 =t  and 2t =7.18 lanevph /  

The number of iterations is less in this particular case. If the inter zonal volume falls 

within a range of lanevph /300± of the sum of the critical volumes which in example is 

600 + 1,100 = 1,700 lanevph / . The reason for this is that d  parameter will jump from 

0.5 to 10.0 and back, causing corresponding fluctuations in the related travel times.  
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3.5.3 Multipath Assignment Model  : 
 

McLaughlin developed one of the first multi-path traffic assignment techniques.  

A driver route selection criteria is used by McLaughlin which is a function of: 

• Travel time 

• Travel cost 

• Accident potential 

The minimum resistance paths between each origin and destination pair are calculated 

with all the link resistances set to values that correspond to a zero traffic volume. The 

minimum resistance value between an origin and destination pair is increased by 30%. 

All the paths between the origin and the destination pair with the resistance values less 

than this maximum value are identified. 

 

McLaughlin used certain principles of linear graph theory to accomplish the multi-path 

assignment. Using an electrical analogy it is possible to identify a through variable y that 

corresponds to current, or traffic flow. A cross variable x may be identified that 

corresponds to the potential difference, or traffic pressure. 

 

Two postulates from linear graph theory may be introduced that are known as the vertex 

and circuit postulates.  

At any vertex 

 Σ
=

e

i 1
0=aiyi  

where   e = the number of oriented terminal graphs, or elements 

 yi = the through variable of the ith element 

 ai = 0 if the ith element is not connected to v 

    =1 if the ith is oriented away from V 

   =-1 if the ith element is oriented toward  

For any circuit, 

                            0
1

=Σ
=

bixi
e

i
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where   e = the number of oriented terminal graphs, or elements 

 xi = the cross variable of the ith element 

 bi = 0 if the ith element is not in the jth circuit 

    =1 if the ith element orientation is the same as the jth circuit  

   =-1 if the ith element orientation is opposite to the jth circuit 

 

A sub-graph is then established for each origin and destination pair with these 

representing two vertices. The connecting elements are the acceptable paths between the 

vertices plus one flow driver element that corresponds to the car travel demand between 

the origin and destination pair. The travel demand is assigned among the potential paths 

building phase. The traffic assigned to each alternative path must be such that the 

alternative paths have an equal across variable value. 

 

The cross variable X , the resistance value )(yR  and the through variable y  for each 

path are assumed to be related as follows: 

 

yyRX )(=  

The above equation is analogous to Ohm’s Law in that the potential is equal to the 

resistance times the flow. In this case the resistance along a path is assumed to be a 

function of the flow along that path 

 

The figure 1 below represents the way McLaughlin illustrated the assignment method. A 

schematic two-way street system is shown along with the link descriptions and then trip 

table. The minimum path trees were determined for all origin-destination pairs using the 

resistance function for the zero flow, and these are given in table 1 below.  Multiplied the 

minimum path resistance values and the paths whose resistance values were less than this 

higher value were determined and these paths are also given in table 2 below. 

 

The trip table inputs were assigned directly for the origin-destination pairs with only one 

path. Sub-graphs were formed for the remaining trip table inputs and solved by the chord 
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formulation of linear graph theory. Figure 2 shows the sub-graph for the origin1 and 

destination 3. 

 

The circuit equations may be represented in the general form as: 

  

 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

uBB

uBB

0

0

2221

1211

    

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

−

2

2

1

c

ic

b

b

X
X
X
X

      

where 11B …   =coefficient matrices corresponding to the  branches 

 u  =a unit matrix corresponding to the chords 

 1−bX …=the column matrices of the branches 

 1−cX ..= the column matrices of the chords 

  

 

 

 

 1 2 3 

 

 

 

 

                                                                              4 
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Link Characteristics 

No. Link Length (miles) Maximum Capacity 

(veh/hr) 

Free speed 

(mph) 

1 1-2 1.0 1200 40 

2 1-4 2.0 4000 50 

3 2-1 1.0 1200 40 

4 2-3 0.5 1000 30 

5 3-2 0.5 1000 30 

6 3-4 0.5 1000 30 

7 4-1 2.0 4000 50 

8 4-3 0.5 1000 30 

 

Trip Table 

Destination Origin 

1 2 3 4 

1  100 100 2500 

2 300*  100 800 

 

Fig 1. Multi-path assignment example problem 

 

Table 1 Paths for multi-path example 

Origin Destination Minimum 

path* 

Diversion 

path* 

Minimum τ 

Path 

Diversion τ 

Path 

2 1,2 - 1,2 - 

3 1,2,3 1,4,3 1,2,3 - 

 

1 

4 1,4 - 1,4 1,2,3,4 

1 2,1 - 2,1 - 

3 2,3 - 2,3 - 

 

2 

4 2,3,4 - 2,3,4 - 
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* Based on the resistance function = )()( ptps  

τ based on the resistance function = )( pS  

Where )( ps  = travel cost (operating, accident, and comfort) as a function of the 

volume -to-capacity ratio p 

 =)( pt Travel time as a function of the volume-to-capacity ratio p 

=)( pS  Travel cost (operating, accident, comfort, and time) as a function of the 

volume -to-capacity ratio p 

 

 3 

  

 

1 1                             3 

 

 

 

 2 

 

Branch      Element 1- path 1,2,3 

Chords                     2- path 1,4,3 

                                            3-trip table input 

Fig 2.Subgraph of the origin 1 and destination 2 

 

The first term is non-existent in this system and the circuit equations are:  

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

uB

uB

0

0

22

12

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

−

2

1

2

c

c

b

X
X
X

=0 

 

The terminal equations of the street components may be represented by: 
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⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

1

2

c

b

X

X
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

1

2

0

0

c

b

R

R

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

1

2

c

b

Y

Y
 

 

Where 2−bR = the sum of the link resistances corresponding to branch paths 

 1−cR =The sum of the link resistances corresponding to chord paths 

 2−bY =The flow on the branch path 

 1−cY =Flow on the chord paths 

 

For the demand assignment: 

 

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

2

1

X

X
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

17.120

051.9

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

2

1

Y

Y
 

 

The sub-graph fundamental circuit equations are then substituted into the chord set of 

equations 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

u

0

2−cX  + 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

022

12

B

uB

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

1

2

0

0

c

b

R

R

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

0

2212

u

BB TT

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

2

1

c

c

Y

Y
=0 

 

Where 12B =a column matrix with coefficients equal to -1; the number of rows in this 

matrix correspond to the number of non driver chords in the sub-graph; or it corresponds 

to the number of paths less 1 between an origin-destination pair 

22B =+1, corresponding to the driver or trip table input 

1−cY =The unknown flows for the non driver chord elements 

2−cY =The through driver, or trip table input 
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The specific formulation for this example is: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1

0

3X  + 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡−

11

11

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

17.120

051.9

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡−

01

11

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

100

2Y
=0 

 

Taking the first set of the above equations, the solution is 2Y =44 vehicles per hour, and 

the flow on element 1 is solved by subtraction; 1Y =100-44=56veh/hr. The results of the 

demand assignment are presented in table 2 

 

Table 2 Link volumes for multi-path example 

No. Link 0R  1Y  1R  2y  3y  4y  

1 12 4.90 156 4.98 138 1,290 625 

2 14 7.56 2,544 8.42 2,562 1,410 2,075 

3 21 4.90 300 5.00 300 300 300 

4 23 4.61 956 16.40 938 2,090 1,425 

5 32 4.61 0 4.61 0 0 0 

6 34 4.61 800 5.80 1,890 1,890 1,225 

7 41 7.56 0 7.56 0 0 0 

8 43 4.61 44 4.61 62 0 0 

 

In McLaughlin’s assignment procedure, new link and path resistance values are 

calculated for the capacity restraint assignment that corresponds to the flows obtained 

from the demand assignment. The procedure described above is employed again to 

calculate the restrained volumes. If these volumes are within tolerable limits of the 

demand volume then the restraint assignment is complete, otherwise an iterative is 

required.  

 

An iterative solution is achieved by averaging the link volumes according to the 

following expression: 

 Y =
n
yi

n

i 1=
Σ ] 
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Where Y = the average assigned volumes 

iY =The trips assigned to the links during the ith  iteration of the linear 

graph procedure including iterations 

  n= the number of linear graph iterations 

 

Burrell has proposed a technique for generating multiple paths through a traffic network. 

This method assumes that the user does not know the actual travel times on the links but 

associates a supposed travel time on each link that is drawn at random from a distribution 

of times. It assumes that the user finds and uses a route that minimizes the sum of the 

supposed link times. 

 

Burrell assumes that a group of trips originating from a particular zone have the same set 

of supposed link times and consequently there is only one tree for each zone of 

production. A rectangular distribution that could assume eight separate magnitudes was 

assumed and the ranges of distributions for each of the links were selected so that the 

ratio of the mean absolute deviation to actual link time was the same for all links. The 

demand or capacity restrained assignments are then made to the paths selected in the 

above manner. 

 

Another multi-path assignment technique has been proposed by Dial. With this technique 

each potential path between a particular origin and destination pair is assigned a 

probability of use that then allows the path flows to be estimated. 
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3.6 GRAPH THEORY APPROACH 
Graph theory is basically a branch of topology. Geometric structure of a transport 

network, which is the topological pattern formed by nodes and routes is studied by graph 

theory. The use of graph theoretic approach in road network analysis is to compare and 

evaluate one network analysis with the other which may be in the same region or in 

different regions. It can be also used to check connectivity and accessibility level of 

different nodes.  

Connectivity: 

Its concept involves following terms: 

1. Degree of vertex: Number of edges meeting at the vertex. 

2. Path: Collection of vertices and a subset of their incident edges so that degree 

of each internal vertex is two or more and the degree of each terminal vertex 

is one.  

3. Circuits: Closed path where all vertices are of degree two or more. 

4. Connected and Unconnected Graph: Connected if there exist at least one 

path between any pair of vertices in graph. In unconnected, there are pairs of 

points or vertices which cannot be joined by a path. 

 

Structural and geometrical properties of alternative transport networks can be measured 

in terms of following graph theoretic measures: 

1. Beta Index: Ratio of total number of links to the total number of nodes in 

network. 

Mathematically: β = (e/v) 

Where: e and v are, respectively, number of edges and vertices in network. 

2. Cyclomatic Number: A count of the number of fundamental circuits existing 

in the graph. It is an measure of redundancy in the system. 

Mathematically: μ = e – (v – p) 

Where: p is number of maximal connected sub graph. 

3. Gamma Index: Ratio of the observed number of edges in network to 

maximum number of edges which may exist between specified number of 

vertices. 
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Mathematically: γ = e x 100/ (3(v – 2)  

4. Alpha Index: Ratio of the observed number of fundamental circuits to the 

maximum possible number of complete circuits. 

Mathematically: α  =  μ x 100/(2v – 5)  

5. Associate Number: The number of links needed to connect a node to the 

most distant node from it. The node which has low associate number is most 

accessible. 

6. Shimbel Index: Measure of accessibility which indicates the number of links 

needed to connect any node with all other nodes in the network by the shortest 

path. The node having lower shimbel index is the most accessible. 

7. Dispersion Index: It is the measure of connectivity of transport network and 

obtained by sum of the shimbel index. 

    Mathematically, ∑∑
==

=
v

i
ij

v

j
dDI

11
 

8. Degree of Connectivity: Ratio of maximum possible number of routes to 

have   

Complete connectivity to observed number of routes in network. 

Degree of Connectivity = ((v(v – 1)/2)/e 

Example 1: 
 

 

 

 

The solution for the problem can be done in tabular form as follows: 

 

 

 

 

 

 

 

A

B

CD
E 

F 

G 
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Table giving Solution for above figure 

 A B C D E F G A.N. S.I 

 

A - 1 2 2 2 1 2 2 10 

B 1 - 1 2 2 1 2 2 9 

C 2 1 - 1 2 1 2 2 9 

D 2 2 1 - 1 1 2 2 9 

E 2 2 2 1 - 1 1 2 9 

F 1 1 1 1 1 - 1 1 6 

G 2 2 2 2 1 1 - 2 10 

       Total 13 62 

 Mean Associate Number/Vertex = 13/7 = 1.8571 

 

 Mean Dispersion Index/Vertex = 62/7 = 8.85 

  

 As mean associate number and mean dispersion index for this network is 

less. So from accessibility point of view, this network is better.  

 

Node link incidence matrix: 
It is an n x l matrix E whose element in the row corresponding to node i and the column 

corresponding to the link (j, k) is defined to be: 

  +1 if  i = j, 

  -1 if  i = k, and 

  0  otherwise. 

By multiplying node link incidence matrix (E) with chain flow vector (f), we get O – D 

flow vector. So mathematically, 

E x f = g 

Where: 

E is the n x l node link incidence matrix, 

f is the l x 1 link flow vector, and 

g is the n x 1 O – D flow vector. 
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3.7 Flows and Conservation Law (Kirchhoff’s Law) 
 
Fundamental to the theory of flow of electric currents in electrical networks, water in 

pipe networks, or traffic in transportation networks , is kirchhoff’s law , which is a 

conservation law stating that, for steady state conditions imply for traffic applications that 

we are not concerned with the microscopic and stochastic characteristics of a traffic 

stream of individual vehicles traveling at random or in platoon on a city street  network, 

but rather with the gross macroscopic behavior of traffic as, for example, on a main road 

network. We ignore fluctuations over time. 

 
Kirchhoff’s law states that” the sum of all flows leaving an intermediate node equals the 

sum of all flows entering the node”. 

 Kirchhoff’s law then states that “the sum of all flows leaving the centroid equals the flow 

produced at the centroid, and the sum of all flows entering the centroid equals the flow 

attracted to the centroid.”  

 
We shall adopt for general transportation network the terminology of centroids and 

intermediate nodes to distinguish between nodes where traffic may be, and may not be, 

produced or attracted. In many other applications, the centroids are called source and 

sinks. We shall adopt the following notation .The link flow on the directed link (i, j) will 

be denoted by fij, the flow produced at a centroid i by ai, and the flow attracted i by bi. 

The quantities fij , ai, bj  are assumed to be nonnegative. It is convenient to define A (i) 

and B (i), the set of nodes “after” and “before” node i by  

 
A(i) = {j/j ЄN,(i, j)ЄL},                                             (1) 

B(i)= {j/j ЄN, (j, i)ЄL}.                                             (2) 

 
Kirchhoff’s law for a directed transportation network [ N,L]  can then be written in the 

form of conservation equations as follows:  

If i  is a centroid then the following formulae should be satisfied          

i
iA

ij af =∑
)(

                                                                                                  (3) 
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i
iB

ji bf =∑
)(

                                                                (4) 

                           

if I is an  intermediate node then the following formulae should be satisfied 

−∑
)(iA

ijf   ∑
)(iB

jif =0,                                                   (5)   

 

For these equations to have solutions, the total production, ∑a i= r say, must be equal to 

the total attraction ∑bi. Since the number of links is generally at least twice the number of 

node in a network, the number of unknowns in Eqs. (3)- (5) greatly exceeds the number 

of equations and the equations are rich in solutions. 

 
Figure 1 illustrates a transportation network with two centroids and two intermediate 

nodes. For the intermediate node 2, Kirchhoff’s law can be easily verified: 

 

 i=2,    A(2) = {3,4},    B(2) = {1,3}, 

  0331532122423
)2(

2
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3.8 Min Cut Max Flow Theorm: 
 

In max flow min cut theory, a cut may be defined as any set of directed arcs containing at 

least one arc from every directed path from source to sink. There normally are many 

ways to slice through a network to form a cut to help analyze the network. For any 

particular cut, the cut value is the sum of the arc capacities of the arcs (in the specified 

direction) of the cut. The max-flow min-cut theorem states that, for any network with 

single source and sink, the maximum feasible flow from the source to the sink equals the 

minimum cut value for all cuts of the network.  

 

 

 

 

  

 

 

` 

 

 

 

 

 

 

 

 
Considering above network, one interesting cut through this network is shown by dotted 

line. Notice that the value of the cut is 3 + 4 + 1 + 6 = 14, which was found to be the 

maximum flow value. So this cut is a minimum cut.  
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3.9 Dynamic Stochastic Assignment Model with Many Routes 

between a Single O-D Pair 
Let D be the demand for travel from the origin zone h to the destination zone d and 

assume that the period between the earliest and latest possible times departure from h is 

considered ax a series of equal spaced epochs, representing intervals of length w . 

 

Suppose the available routes are numbered 1,2, ……r , ….I and that Dr(k,j) is the number 

of vehicles for unit time departing from h , on route r at epoch k on day z. 

 

Let Xa(k,z) and la denote the number of vehicles on any link, a, at epoch k on day z and 

the link length respectively.  

 

The number of vehicles leaving link a per unit time at epoch k on day z is 

a
aaa lzkSzkXzkV ),(*),(),( =  

The flow conservation equations for link a may be written as  

)},(),({),(),1(
1

zkVzkDwzkXzkX aar

z

raa −+=+ ∑ δ  For a Є Ih 

Where δar=   1   if link a is on route r 

                     0 otherwise 

),(),(),({(),(),1( zkVzkVzkPwzkXzkX a
m

mamaa −+=+ ∑  if a  isn’t  on the route h 

 

where Ma is the set of links having as final node the initial node of link a, and Pam(k,z) is 

the proportion of the vehicles leaving link m at epoch k on day z which enter link a. 

In a test  with a small network Vythoulkas  was not able to contain a stable situation ; the 

departure pattern tended to oscillate about a possible equilibrium distribution . 
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 3.10 Dial’s Model: 

 
Dial’s model is based on the hypothesis that there should be a non-zero probability of use 

of all ‘efficient’ paths. He proposed two definitions of efficient path, namely: 

1. a path in which every link has its initial node closer than its final node to the 

origin and has its final node closer than its initial node to the destination; and 

2. a path in which every link has its initial node closer than its final node to the 

origin. 

 

Conceptually the first of these definitions is more attractive but it has the drawback that 

in any single run trees can be built from origin zone to one destination zone only because, 

for each node in the network, the minimum cost to each destination zone must be known 

as well as that from the origin zone under consideration. The second definition lends 

itself to the usual ‘once through’ approach. 

 

Basically, trips are allocated to any efficient route R so that, 

 

 )exp())(exp( ***
RRR VccVV Δ−=−−= θθ --------------------------------------------(1) 

Where *ccRR −=Δ  is the excess cost in using route R  rather than the minimum cost 

route, the cost on which is *c , and RV  and *V  are the flows on route R  and the 

minimum cost route respectively. 

 

The value of θ  determines the proportions of the trips allocated to the efficient paths; if 

0=θ , then the trips are shared equally between them but a high value of θ  produces a 

heavy bias towards the cheapest routes. 

 

Dial’s route (vine) building and link loading algorithm 

The following algorithm may be used to simultaneously assign trips from the origin node 

to all destination nodes in accordance with Dial’s second definition of the efficient paths:  
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Step 1: 

Determine the minimum path costs from the origin node h to all nodes in the network. 

Let *
jc  denote the minimum path cost from h to node j and let dm be the destination node 

with greatest minimum path cost from h. 

 

Step 2: 

i. Initialize all nodal weights: 

Set all node weights jw =0; set origin node weight .1=hw  

ii. Consider each node j in the network, in order of increasing minimum path cost, *
jc , 

until dm is reached, as indicated below. 

a. For each link (i,j) with final node j: 

Calculate the ‘effectiveness’ 

 ije  = **

0

)exp(

ji

ij

cc
otherwise

if
<

⎪
⎪
⎩

⎪⎪
⎨

⎧ Δ−θ
 -----------------------------------------------------------(2) 

                        

where ijc  is the cost on link (i, j), and *** )( jijiij ccc −+=Δ  is the excess cost involved in 

going from origin node h to node j via link (I, j) rather than by the minimum cost path; 

and 

 Calculate its link weight ijiij eww =  ----------------------------------------------------(3) 

  

b. Determine the node weight ∑=
i

ijj ww -------------------------------------------(4) 

(the ratio 
wj
w

w
w ij

i
ij

ij =
∑

 is effectively the probability of a trip from origin h 

arriving at node j via the predecessor link (i, j), rather than via the other links with 

final node j) 
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Step 3: (Backward pass) 

a. Initialize all nodal volumes 

Set 0=jv  for all nodes j; and 

Set dhd Tv −= , the trips from h to d, for all destination nodes d. 

b. Starting with destination node md , consider each node j in the network in the order 

of decreasing *
jc  as indicated below. 

For each link (i, j) with final node j: 

i. Derive the link volume 
j

ij
iij w
wvv = ; and  

ii. Set ijii vvv +=  

Terminate when j = the origin node, h. 

 

Note: - if P is any path from the origin node h to destination node d, via nodes i, j, k, l, ---

, y, z, say, and pΔ  is the excess cost on the path, then: 

 

 *)...( dzdyzkljkijhip ccccccc −++++++=Δ  

       = - *
hc  + ((

))((...

))(()))(())
**

******

dzdz

kjkjjijiihih

ccc

ccccccccc

−+++

−++−++−+
 

       = ,... zdjkijhi Δ++Δ+Δ+Δ Since 0* =hc  

Following step 2 above, the probability of choosing path P from h to d is: 

  

 
i

hi

j

ij

y

xy

z

yz

d

zd
r W

W
W
W

W
W

W
W

W
W

pP .......)( =  

           =
i

hi

j

iji

y

xyx

z

yzy

d

zdz

W
eW

W
eW

W
eW

W
eW

W
eW h

.
.

.
....

.
.

.
.

.
 

          = ))...(exp(1
hiijxyyzzd

dW
Δ+Δ++Δ+Δ+Δ−θ  Since .1=hW  
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          = ))(exp(1
p

dW
Δ−θ  

         =
d

p

W
E

 where  ))(exp( ppE Δ−= θ  is the “effectiveness” of path p------------(5) 

If S is the set of all “efficient” paths from h to d, then 1)( =∑
∈

pP
SP

r  

Therefore, 1=∑
∈SP d

p

W
E

 and ∑
∈

=
SP

pd EW  

 

Since, for the minimum cost path, *p , say, dp wE ,1* =  may be regarded as the effective 

number of ‘efficient’ paths from h to d. 

 

Example 1:  
In the network shown in figure 1 below, in which all the links are on one way, using 

Dial’s method assign 4,000, 2,000 and 1, 000 trips from node 1 to nodes 6, 8 and 9 

respectively. Assume .1=θ  

 

 

 (4) (4) 

 1 2 3 

 

 (3) (5) (3) (2) 

 

 4          (2)             5 (2) 6 

 

 (2) (2) (5) (4) 

 (4)                   (3) 

 7 8 9 

                             Figure.1.1 Simple network for the Example 
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Table: Network Table 

 

Link No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Initial Node 1 1 1 2 2 3 4 4 5 5 5 6 7 8 

Final Node 2 4 5 3 5 6 5 7 6 8 9 9 8 9 

Cost 4 3 5 4 3 2 2 2 2 2 5 4 4 3 

 

Step 1: The minimum path costs from origin 1 to all other nodes can be determined by 

inspection. In a normal-sized network they could be determined by any of the tree 

building algorithms. 

 

Table: Nodal Weights 

 

jW  Node j 

Initial Final* 

1 1.0  

2 0 1.0000 

3 0 1.0000 

4 0 1.0000 

5 0 2.1353 

6 0 2.1353 

7 0 1.0000 

8 0 2.2706 

9 0 5.1915 

* Final ∑=
i

ijj WW  
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Table: Link Weights 

 

Node j *
jc  Links in 

)(aFj  

Initial Node 

of link in ijF ,  
ije  ijw  

1 0     

4 3 2 1 1.0000 1.0000 

2 4 1 1 1.0000 1.0000 

5 5 3 1 1.0000 1.0000 

  5 2 0.1353 0.1353 

  7 4 1.0000 1.0000 

7 5 8 4 1.0000 1.0000 

6 7 6 3 0 0(b ) 

  9 5 1.0000 2.1353 

8 7 10 5 1.0000 2.1353 

  13 7 0.1353 0.1353 

3 8 4 2 1.0000 1.0000 

9 10 11 5 1.0000 2.1353 

  12 6 0.3679 0.7856 

  14 8 1.0000 2.2706 

 

Note: a. Fj is the set of all links with final node j 

b. Link no.6 is not ‘efficient’ since *
6

*
3 cc . It may be ignored hereafter 
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Table: Nodal Volumes 

 

Node j  jV  

     

1    7000.2τ  

2  434.3   

3     

4  145.2   

5    6854.8 

6  151.3   

7  145.2   

8  2437.4   

9 1000    

     

 

τ Differs from 7000 due to rounding 

 

Table: Link Volumes 

 

Node j jc  Links in 

Fj 

Initial Node 

link in ijF ,  
jw  ijw  τijv  

       

9 10 11 5 5 2.1353 411.3 

  12 6 1915 0.7856 151.3 

  14 8  2.2706 437.4 

3 8 4 2 1.0000 1.0000 0 

8 7 10 5 2.2706 2.1353 2292.2 

  13 7  0.1353 145.2 
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6 7 9 5 2.1353 2.1353 4151.3 

7 5 8 4 1.0000 1.0000 145.2 

5 5 3 1 2.1353 1.0000 3210.2 

  5 2  0.1353 434.3 

  7 4  1.0000 3210.2 

2 4 1 1 1.0000 1.0000 434.3 

4 3 2 1 1.0000 1.0000 3355.7 

1 0   1.0000   

 

τ  The link loads in the final column relate to the links indicated in the third column  

 

Selected link analysis for Dial’s assignment procedure (second definition of 

‘efficient’ path) 

 

Although the ‘efficient’ paths between individual origin-destination node pairs, h-d, are 

not explicitly defined when Dial’s assignment procedure is used, it is possible to 

determine the volume on any link (i, j) arising from the trips h to d using an algorithm 

proposed by Van Vliet (1981) 

 

If *
ic > *

jc , where *
ic  and *

jc  are the minimum path costs from the origin node h to nodes I 

and j respectively, then the link (i, j) is excluded from the efficient paths from h and 

hence there are no trips from the origin node h on link (i, j). 

 

Assuming **
ji cc < , we can proceed as follows: 

 

Let iX  denote the set of all ‘efficient’ paths, p, from origin node h to node i and let jY  

denote the set of all ‘efficient’ paths, Q, from node j to the destination node d. 
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Let ∑
∈

− =
iXp

pih EW  and ∑
∈

− =
jYQ

Qdj EW , where pE  and QE  are already defined, but in 

relation to paths from h to i and from j to d respectively. 

 

Van Vliet has shown that if trips have been assigned from origin node h to destination 

node d in accordance with Dial’s algorithm, then the probability of a trip from h to d 

passing along link (i, j) is given by: 

 

 ddjihijr WWWedhjiP /))/(),(( −−=− ----------------------------------------------------(6) 

 

If there are dhT −  trips to be assigned from origin node h to destination node d, then the 

number of these trips passing along link (i, j) is )./(),(( dhjiPT rdh −−  

 

On the basis of this relationship, the loading on link (i, j) arising from the assignment of 

the trips dhT −  may be determined as follows: - 

 

Step1: (A standard forward pass) 

a. Carry out steps 1 and 2 as for the standard Dial algorithm. 

In course of step 2: ije  is determined; ihW −  is determined as iW ; and the dW  are 

determined. 

b. Set dd WW ='  for all destination nodes d. 

 

Step 2: (Modified forward pass to determine djW − ) 

a. Repeat step 2(a) of the standard Dial algorithm but with ,1=jW  not .1=hW  

b. Calculate link weights ijW  and node weights jW  as steps 2(b)(i) and (ii) of the 

standard Dial algorithm but when considering each node in the network in order 

of increasing cost from the origin node h, consider only those nodes coming after 

node j. 
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(The values of dW  obtained from step 2 are the required values of djW − , i.e, set 

ddj WW =−  from the table of nodal weights at the end of step 2). 

 

 

Step 3: (Determination of link volumes) 

a. Substitute the values of ihij We −,  and '
dd WW =  from step 1 and djW −  from step in 

equation (?) to obtain, for each h-d pair, the value of  ))./(),(( dhjiPr −  

b. Calculate ))/(),(()( dhjiPTdhV rdhij −=− −  and output results. 

Note: Van Vliet (1981) actually considered the select link analysis for a set of links, i.e, 

link (i,j) in the above is replaced by a sub-route from i to j. 

 

Example 2: Determine the loading on link (4,5) in Example 1. 
 

We have: origin node, 1000;2000;4000;9,8,6;1 918161 ===== −−− TTTdh j  

 

Step 1: From the previous example of table 2, ;0000.1441 === −− WWW ih  for the 

destination nodes- ;2706.2;1353.2 ,
8

'
6 == WW and 1915.5'

9 =W . From table 3, 

0000.145 =e  

 

Step 2: (Modified forward pass) 

Table: Nodal Weights 

 

Node s τ )( 5 ss WW −=  

 Initial Final 

1 0  

2 0  

3 0  

4 0  
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5 1.0000  

6 0 1.0000 

7 0  

8 0 1.0000 

9 0 2.3679 

τ  Final ∑== −
r

rsss WWW )( 5  from table 1.6 below. 

Table: Link Weights 

 

Node s *
sc  Links in sF  Initial Node of 

link in rsF ,  
rse  rsW  

      

7 5 8 4 1.0000 0 

6 7 6 3 0 0 

  9 5 1.0000 1.0000 

8 7 10 5 1.0000 1.0000 

  13 7 0.1353 0 

3 8 4 2 1.0000 0 

9 10 11 5 1.0000 1.0000 

  12 6 0.3679 0.3679 

  14 8 1.0000 1.0000 

      

 

Table: Select Link Loading for Link (4,5) 

 

i j ije  iW −1  d djW −τ  '
dW  ))1/(),(( djiPr −  dT −1  )1( dVij −

4 5 1.0000 1.0000 6 1 2.1353 0.4683 4000 1873.3 

    8 1 2.2706 0.4404 2000 880.8 

    9 2.3679 5.1915 0.4561 1000 456.1 

 

τ  ddj WW =−  from the table 1.6 
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Table: Output 

 

Load on Link (4,5) Origin Node Destination Node 

   

1873.3 1 6 

880.8 1 8 

456.1 1 9 

   

Total         3210.2   
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3.11 Gunnarsson’s Model: 
Gunnarsson (1972) said of his model that it is ‘seemingly close in intent’ to Dial’s model 

‘but vastly different in both strategy and tactics’. In concept, the method differs from that 

of Dial in that whereas Dial considered the entire routes from origin to destination when 

making a choice, Gunnarsson assumed that a driver makes a choice of route at each node 

arrived at, independently of any previous decision. He considered a reasonable route from 

origin node to destination node d to be one such that every link in it has its final node 

nearer to d than its initial node and is such that the cost on the route is within chosen 

limits of the cost on the minimum cost path. 

 

He assumed that at any node, i, the basis of the choice of the next link, (i, j) say, in the 

path to the destination node d, is the cost from i to d via link (i, j), which he referred to as 

the resistance of link (i, j), denoted by ijr . Letting *
jd  and ijc  denote the minimum cost to 

d from any node j and the cost on link (i, j) respectively. 

 

 *
jijij dcr += --------------------------------------------------------------------------------(7) 

The probability of use of link (i, j) is then given by: 

 

 ∑
∈

=
iIki

ikr rfjifjiP
),(

)(/),(),( --------------------------------------------------------------(8) 

where )( ijrf  is some function of ijr  and iI  is the set of all links with initial node i. 

 

Following traffic studies, he used 8)( −= ijij rrf . To prevent excessively costly routes being 

used, he introduced an acceptable ‘prolongation’ factor, w, for a route. To be a part of a 

reasonable route, a link (i, j) should satisfy the following conditions. 

 

 1. **
ij dd < ; and 

 2. *
iij wdr ≤  
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A vine building and link loading algorithm for Gunnarsson’s model 
The following is an algorithm, for simultaneously assigning trips from all origin nodes to 

destination node d, in accordance with his definition of a reasonable path: - 

(It is assumed that the value of the acceptable prolongation factor, w, and the form of the 

probability function )( ijrf  have been specified). 

 

Step1: (Determination of *
id ) 

Set jiij cc ='  for all links (j, i). 

Using the link cost matrix { }'
ijc  determine the minimum path costs, ,*

id  from d to all 

nodes, i. Let mh  be the origin node with greatest minimum path cost to d. 

 

Step 2: (Determination of link and nodal attractivities  ijA  and ia . 

Starting with mh , consider each node I in the network in order of decreasing *
id  until d  

is reached.  

For each node i: 

a. For each link (i,j) with initial node i, i.e, for all (i,j) iI∈ , 

i. determine its resistance )( ***
jjijijij dcdcr +=+= ,and 

ii. determine its attractivity (weight) ijA where 

)( ijij rfA =  if **
ij dd <  and ijr < *

iwd , otherwise ;0=ijA  

b. Determine the total attractivity of node i, using ∑
∈

=
iIki

iki Aa
),(

 

 

Step 3: (Determination of nodal volumes jV  and link volumes )ijV  

a. Initialize all nodal volumes: 

Set 0=iV  for all nodes i; and 

Set dhh TV −= , the trips from h to d, for all origin nodes h. 

b. Starting with origin node mh , for each node i in order of decreasing :*
id  
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i. for each link (i,j) in iI , derive the link volume ;/ iijiij aAVV = and 

ii. set jV = ijj VV +  

Stop when node d is the node considered. 

 

Gunnarsson’s model may be brought closer to Dial’s by specifying: 

 

 ),exp())(exp()( *
ijiijij drrf ∇−=−−= θθ  

where ** )( ijijij ddc −+=∇  is the excess cost involved in proceeding to destination node 

from node i via link (i,j) rather than by the minimum cost path from i. With this form for 

),( ijrf  the probability that, of all the links available at node i, link (i,j) is chosen for the 

continuation of the journey to d is given by: 

 

 
∑∑

∈∈

∇−

∇−
==

ii Iki
ik

ij

Iki
ij

ij
r rf

rf
jiP

),(),(
)exp(

)exp(
)(

)(
),(

θ
θ

=
i

ij

a
A

------------------------------------------(9) 

 

Example1: 

In the network in Example 1, reverse all a link directions and assign 4000, 2000 and 1000 

trips to node 1 from nodes 6, 8 and 9 respectively using Gunnarsson’s model with 1=W    

and ).exp()( ijijrf −∇=  

 

Step 1:  The minimum path costs to node 1 from all other nodes are the same as those 

from node 1 to the other nodes using the un-reversed link cost. 
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Step 2:  

 

Table: Link and Nodal Attractivities iij aA ,  

 

Node i *
id  Final Node of 

link in jiI ,  
ijc  jd  ijr  ij∇  ijA  ia  

         

9 10 5 5 5 10 0 1.0000 2.3679 

  6 4 7 11 1 0.3679  

  8 3 7 10 0 1.0000  

3 8 2 4 4 8 0 1.0000 1.0000 

8 7 5 2 5 7 0 1.0000 1.1353 

  7 4 5 9 2 0.1353  

6 7 3 2 8   0 1.0000 

  5 2 5 7 0 1.0000  

5 5 1 5 0 5 0 1.0000 2.1353 

  2 3 4 7 2 0.1353  

  4 2 3 5 0 1.0000  

7 5 4 2 3 5 0 1.0000 1.0000 

2 4 1 4 0 4 0 1.0000 1.0000 

4 3 1 3 0 3 0 1.0000 1.0000 

1        0 
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Table: Nodal Volumes 

Node j jV  

     

1    7000.0 

2  425.3   

3     

4   3431.7  

5    6711.3 

6  4155.4   

7  288.7   

8  2422.3   

9 1000    

     

Table : Link Volumes 

Node i *
id  Final Node of 

link in jiI ,  
ijA  ia  ijV  

      

9 10 5 1.0000 2.3679 422.3 

  6 0.3679  155.4 

  8 1.0000  422.3 

3 8 2 1.0000 1.0000 0 

8 7 5 1.0000 1.1353 2133.6 

  7 0.1353  288.7 

6 7 5 1.0000 1.0000 4155.4 

5 5 1 1.0000 2.1353 3143.0 

  2 0.1353  425.9 

  4 1.0000  3143.0 

7 5 4 1.0000 1.0000 288.7 

2 4 1 1.0000 1.0000 425.3 

4 3 1 1.0000 1.0000 3431.7 
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Selected Link Analysis for Gunnarsson’s Assignment Procedure 

The procedure proposed below for determining the trips from the various origin zones h 

which include link (i,j) in their paths to destination node d, is an adaptation of the method 

for carrying out a selected link analysis with GMTU assignment procedure. 

 

The procedure for determining the movements to destination node d which include link 

(i, j) in their paths is as follows: - 

 

Step 1: (Determination of the minimum path costs, *
id , from all nodes, i, to the 

destination node d). 

 

Step 2: (Determination of the link attractives) 

a. Repeat step 2 of the algorithm but terminate when node i has been 

processed. Results in the link attractives matrix (LA) are, for each node m 

for which **
im dd ≥  in decreasing order of magnitude of *

md : the node 

number m; a list of pairs of values of successor node n (the final node of a 

link with initial node m) and ;mnA  and ∑
∈

=
mInm

mnm Aa
),(

 

b. Check if j is a successor node of I; if it is not then no minimum paths to d 

pass along (i,j); if it is store iijr aAjiP /),( =   

 

Step 3: (Setting up the pointer array) 

Starting at the top of array LA, i.e., with node mh , and proceeding down the rows for 

each row: 

a. read node number, m, the list of pairs of successor nodes n and corresponding 

,mnA and .ma  

b. if for any successor node, n, **
in dd < , delete n and ;mnA  

c. replace all remaining values of mnA  by ;/),( mmnr aAnmP =  

d. for each successor node n remaining in the list, enter m and ),( nmPr  in row n of 

the pointer array. 
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Step 4: (Setting up an array N, consisting of nodes n which are such that at least one path 

from node n to d passes through node i) 

a. Set up array X  with elements 0=rx  for r=1 to .nodesN  

b. Enter I in array N and set 1=ix  

c. Read the next entry, n, in N (n=i initially); sto if there are no more nodes in N. 

d. Read the entries in row n of the pointer array. If there are no entries, go to c, 

otherwise, for each node m entered: 

If ,oxm =  set  1=mx  and enter m in array N; if 0≠mx  do nothing. 

e. Go to (c) 

 

Step 5: (Setting up an ‘ordered’ pointer array) 

Arrange the nodes, n in N in order of increasing *
nd  and enter nodes n together with the 

entries in row n of the pointer array in an  ‘ordered’ pointer array. 

 

Step 6: (Setting up a node weighing array, W, containing for each node n in N, the 

probability that a path from n to d passes along link (i,j)). 

a. Initialize array W  

       Set );,( jiPW ri =  set 0=nW  for all other nodes n in N. 

b. From each row of the ‘ordered’ pointer array in turn: 

i. read the node pointed to, n, (equal to i to start with), and the list of pairs of 

predecessor nodes m and probabilities  );,( nmPr  

ii. for each predecessor node m, calculate ),(. nmPWW rnm =  and set 

.mmm WwW +=  

 

Step 7: (For all origin nodes h, calculation of the trips to destination node d from h 

passing along (i,j) and output of the link loading information). 

a. From the trp matrix, read off the origin nodes, h, and ,dhT −  the trips from h to d. 
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b. Consider each origin node, h, in turn. If h is not in array N select the next origin 

node, if any, else if h is in N: - 

i. Calculate dhhij TWdhV −=− .)(  and, 

ii. Output a message indicating that there are )( dhVij −  trips on link (i,j) from 

origin node h to destination node d. 

Example 2: 

Determine the loading on link (4,1) in Example 3 above. 

Step 1: The minimum path costs to destination node d=1 from all other nodes are the 

same as those from node 1 to the other nodes in Example 1. 

Step2: The table link attractivities, LA, is the same as table 2.1 for the nodes down to and 

including node i=4. j=1 is a successor node of i=4; .0000.1/)1,4( 441 == aAPr  

Step3: 

Table 1.2.4 Pointer Array 

 

Node (row), n Predecessor nodes, m, and corresponding ),( nmPr  

    

1    

2 3(1.0000) 5(0.0634)  

3    

4 5(0.4683) 7(1.0000)  

5 9(0.4223) 8(0.8808) 6(1.0000) 

6 9(0.1554)   

7 8(0.1192)   

8 9(0.4223)   

9    
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Step 4: 

Table ,X Arrays 

 

          

r  1 2 3 4 5 6 7 8 9 

rX  0 0 0 1 1 1 1 1 1 

          

 

Table: N  Array 

 

n 4 5 9 8 6 

      

 

Step 5: 

 

Table: Rearranged Array N  

 

       
*
nd  3 5 5 7 7 10 

n  4 5 7 8 6 9 
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Table: Ordered Pointer Array 

 

Node, n Predecessor nodes, m, and corresponding ),( nmPr  

4 5(0.4683) 7(1.0000)  

5 9(0.4223) 8(0.8808) 6(1.0000) 

7 8(0.1192)   

8 9(0.4223)   

6 9(0.1554)   

9    

    

 

Steps 6 & 7: 

 

Table: Node Weighting Array and Calculation of )1(41 −hV  

 

hn /  4 5 7 8 6 9 

nW (initial) 1.0000 0 0 0 0 0 

Updated nW   0.4683 1.0000 0.4125 0.4683 0.1978 

(= )nW     0.5317  0.4223 

      0.4951 

dhT −     2000 4000 1000 

dhhij TWhV −=− )1(     1063.4 1873.2 495.1 
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Table: Output 

 

Load on Link (4,1) Origin Node Destination Node 

 

1063.4 8 1 

1873.2 6 1 

495.1 9 1 

Total: 3431.7   
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3. 12 The Greater Manchester Transportation Unit (GMTU) 
The GMTU model, Randle (1979), incorporates a deterministic method of producing 

multiple routing through a network. Calculations of exact probabilities of link usage are 

facilitated by restricting to two, the number of links via which paths from a particular 

origin may arrive at a network node. Consider the movements from origin node h to 

nodes  1d and 2d   in the network Figure 1.3.1 below. 

 

 

 

 (5) d1 

 q  (4) 

 (5) (5)n 

                                                    (6)          (9)  q 

 (25) X   (6) 

 

 0 (45) 

 (50) d2 

 

Figure 1.3.1: A simplified Network for illustration of GMTU Model 

Note: Figures in brackets are costs on sections. 

 

For both movements, there is a choice between two routes with costs of 45 and 50 units 

respectively. However, in travelling from h to 1d  the choice of route is actually made at 

node x and is based on costs of 15 and 20 units, which is likely to lead to a split between 

the two routes quite different from that arising from a choice between routes with costs of 

45 and 50 units. It is clearly desirable to that in any route choice model, the choice 

between routes should be based on mutually exclusive components, an aim which Dial’s 

nor Gunnarsson’s model attempt to achieve. To accommodate this and other requirements 

the GMTU model is based on two considerations: 
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1. travelers do not all perceive identical routes and hence there should be a 

wide range of sensible routes between every O-D pair wherever possible; 

and 

2. it should be possible to calculate the probability of usage of every link in 

the sensible paths and such calculations should consider only mutually 

exclusive sections of paths used. 

 

To satisfy the first consideration, it is assumed that on any link with actual cost c , the 

distribution of perceived costs is uniform with mean c  and range )(2 ck , where the 

spread factor, k, is chosen by the model user. 

 

If, in accordance with the second consideration, choices are to be based on mutually 

exclusive sections of route, then they should be between pairs of routes; choices between 

pairs of routes also facilitates direct calculation of route usage probabilities. 

 

In the GMTU model, this is accomplished by storing, for each node n having two or more 

predecessor nodes, both the minimum cost path predecessor node, p, herein referred to as 

the ‘best’ predecessor node, and the second-best predecessor node, q. The minimum 

paths from the origin node, h, to p and q are then retraced from p and q towards h until 

they meet, at node x say, as in figure 1.3.1. 

 

Apart from the fact that at most two predecessor nodes are stored for any node, the only 

other restriction on route usage is one which is necessary for the vine loading algorithm; 

if the minimum path cost to q is greater than the minimum path cost to n, then the 

probability of usage of link (q,n) is set to zero. This measure, which is effectively the 

same as Dial’s requirement that on all links used, the initial node must be nearer to the 

origin than the final node, also prevents U-turns loops. 
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GMTU Method of Assignment Using the Data from a Tree Table with Two 

Predecessor Nodes 

 

In the following, it is assumed that a Tree Table from origin h is available, containing, for 

each node n: 

i. The best predecessor node, p, and the minimum path cost from h to n via node 

p, denoted by *
)(Pnc ; 

ii. The second-best predecessor node q, *
qc  (the minimum path cost from h to q) 

and  *
)(qnc  (defined as for node p above), if there is no second-best predecessor 

node then q, *
qc  and *

)(qnc  are all zero; and 

iii. If required , R, the order of removal of node n from the loose ends table. 

 

Step 1: (Determination of the probability of usage of link (p,n)) 

For each node n in the Tree Table: - 

a. From the read values of  *
)(

*
)( ,,, qnpn cqcp  and *

qc ; 

b. If q=0 or *
qc > )( **

)( npn cc =  set ;0.1),( =npPr  otherwise: 

i. Using the minimum path predecessor nodes in the Tree table, retrace the 

minimum cost paths to p and q backwards, towards h, until they meet, at node 

x say, and read *
xc  from the table; 

ii. Calculate the ‘actual’ cost from x to n via p and q by 

 

 c ( )p = **
)( xpn cc −  and cqc =)( **

)( xqn c−  respectively; and, 

iii. if )),(/()())(/()( qckqcpckpc −<+ set ,0.1).( =npPr else set 

))}().(/(8/{))}](/())({/()()([0.1),( 22 qcpckqcpckqcpcnpPr ++−−=  

if 0≠q  and 1.0- <),( npPr  suitable small value, set q=0 in the tree table and set 

.0.1),( =npPr  

 

Step 2: (Initialization of the nodal volumes iV  and link volumes ijV  ) 
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a. i. set oVi =  for all nodes i; and 

ii. set dhd TV −= , the number of trips from h to destination node d, for all 

destination nodes d. 

b. For all links (i,j), set the assigned link load .0=ijV  

Step 3: (Assignment of the trips from origin h to the network). 

Starting with the node, n, having the greatest value for the order of removal, R, i.e. with 

the greatest value of *
nc , and proceeding in order of decreasing R until node h is reached, 

for each node n: - 

a. Read p and q from the Tree table; 

b. Set ),( npPVV rnpn =  and set pnpp VVV +=  

c. If ,0≠q  set pnnqn VVV −=  and set .qnqq VVV +=  

Note: - If the secondary analysis may be required at some future date, the values of 

),( npPr  should be added to the Tree Table. 

Example 3:  

Using the GMTU assignment model with k=1.2, assign 100, 300, 500 and 600 trips from 

origin node to destinations 3,4,5,and 7 respectively in the network shown in the figure 

1.3.2 below. Assume that the ‘actual’ costs, shown in () on the links are the same in both 

directions. 

 2 3 

 (20) (10) 

 

 (10) (8) (11) 4 

1 

 5 

 (12) (20) 

 

(9) 

 (17) 

 6 7 

Figure 1.3.2 A simple Network for the GMTU Assignment Example 5 
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Table 1.3.1 Network Table 

 

Link No 

a 

Initial 

Node 

Final 

Node 

Link 

cost, ac  

Link No 

a 

Initial 

Node 

Final 

Node 

Link 

cost, ac  

 

1 1 2 10 11 5 2 8 

2 1 6 9 12 5 3 11 

3 2 1 10 13 5 6 12 

4 2 3 20 14 5 7 7 

5 2 5 8 15 6 1 9 

6 3 2 20 16 6 5 12 

7 3 4 10 17 6 7 17 

8 3 5 11 18 7 4 20 

9 4 3 10 19 7 5 7 

10 4 7 20 20 7 6 17 

 

 

 

Table :Tree Table 

 

Node 

n 

 

Best 

Node, p 

Predecessor

)( **
)( npn cc =  

Second-

best 

Node, q 

Predecessor
*

)(qnc  

F Array Order of 

Removal, 

R 

1 0 0  0 1 1 

2 1 10 0 999 3 3 

3 5 29 2 30 6 6 

4 3 39 7 45 9 7 

5 2 18 6 21 11 4 

6 1 9 0 999 15 2 

7 5 25 6 26 18 5 
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Step 1: Calculation of ),( npPr  

 

Table :Calculation of ),( npPr  

 

Predecessor 

Nodes 

Intersection *
xc  )( pc  )(qc  ),( npPr  Node 

n 

p q Node, x     

1 0 0     0 

2 1 0     1.0 

3 5 2 2 10 19 20 0.5898 

4 3 7 5 18 21 27 0.8801 

5 2 6 1 0 18 21 0.7428 

6 1 0     1.0 

7 5 6 1 0 25 26 0.5791 

        

 

Step 3: Link Loading 

 

Table :Node Loading (a) 

 

Node No. n 

 

Node Load, V 

1   1500.1(b) 

2   953.8 

3  364  

4 300   

5   1083.0 

6  267.8 546.3 

7  636.0  
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Note: 

(a) Nodes in the order of decreasing R: 4, 3,7,2,6,1 

(b) Difference from 1500 due to rounding 

 

Table: Link Loading 

 

Initial 

Node, i 

Final Node, 

j 

Link Load, 

ijV  

Initial 

Node, i 

Final Node, 

j 

Link Load, 

ijV  

1 2 953.8 5 2 0 

1 6 546.3 5 3 214.7 

2 1 0 5 6 0 

2 3 149.3 5 7 368.3 

2 5 804.5 6 1 0 

3 2 0 6 5 278.5 

3 4 264.0 6 7 264.0 

3 5 0 7 4 36.0 

4 3 0 7 5 0 

4 7 0 7 6 0 

      

 

Selected Link Analysis for the GMTU model 

 

To check whether or not trip from origin node h contribute to the flow on any link (i,j), it 

is necessary to check whether i is a predecessor node to j in the Tree Table constructed 

when determining minimum paths from h. For this, Randle and Turner (1979) can be 

used. Basically, the Tree Table for the origin node h is transformed into a forward 

pointing list of sub-lists, the sub-list for each node, n, being either empty (when n has no 

successor nodes i.e. n is not a predecessor node) or consisting of its successor nodes (i.e. 

those nodes which do have n as one of their predecessor nodes). 

 

The procedure for determining the movements from the origin node h loading link (i,j) is: 
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Step 1: 

From the Tree table, check that i is a predecessor node to j; if it is, store ),( jiPr , 

otherwise, consider the next origin node or stop. 

 

Step 2: (Setting up the pointer array) 

c. Initialize the pointer array. In each row enter 0 for the first node and 0.0 

for the corresponding probability. 

d. For each node (row), n, in the Tree Table: - 

i. Read p, q and ),( npPr  and enter n and ),(),( npPpnS r=  in row of p 

of the pointer array, (if p = zero, i.e. n is the origin node, consider the 

next node in the tree table); 

ii. If 0≠q , enter in row q of the pointer array, node n and 

),(1),( npPqnS r−=  

 

Step 3: (Setting up array N consisting of nodes, n, which may be arrived at on paths from 

h passing through node j) 

 

Step 4: (Setting up an ‘ordered’ pointer array) 

Arrange the nodes n in N order of increasing *
nc and enter n together with the entries in 

row n of the pointer array in the ‘ordered’ pointer array. 

 

Step 5: (Setting up a node weighting array, w, containing for each node n in N, the 

probability that a path to n from h passes along link (i,j)). 

a. Initialize array W . 

Set );,( jiPW rj =  set 0=nW  for all other nodes in N . 

b. From each row in turn of the ‘ordered’ pointer array: - 

i. read the ‘pointing’ node n (n=j initially), and the list of pairs of successor 

nodes s  and probabilities ),( nsS ; and 
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ii. for each of the nodes ‘pointed’ to, calculate ),(. nsSWW ns =  and set 

sss WwW +=  

Step 6: (For all destination nodes, d, calculation of the trips to d from h passing along 

link (i,j) and out put of the link loading information). 

a. From the trip matrix, read off the destination nodes, d, and dhT − , the trips from h 

to d. 

b. Consider each destination node, d, in turn: - 

If d is not in array N , consider the next destination node, if any, else, if d is in N : 

i. calculate ;.)( dhdij TWdhV −=−  and 

ii. out put a message indicating that there are )( dhVij −  trips on link (i,j) from 

the origin node h to destination node d. 

Example 4: 

In Example 5, determine the movements from node 1 loading link (1-6) 

 

Step 1: From the Tree table 1.3.2, in the row for the node j=6, p=1=i. From table 1.3.3, 

row j=6, .0.1)6,1( =rP  (Note that ),( jiPr  values would normally be stored in the Tree 

table if any secondary analysis is anticipated). 

Step 2: 

Table: Pointer Array 

 

Node (row), n Successor nodes, s, and corresponding (s(s,n))τ  

 

1  2(1.0000) 6(1.0000) 

2  3(0.4102) 5(0.7428) 

3  4(0.8801)  

4 0.0   

5  3(0.5898) 7(0.5791) 

6  5(0.2572) 7(0.4209) 

7  4(0.1199)  

τ  Values of ),(),( snPnsS r=  are taken from table 3.3. 
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Step 3: 

 

Table 1.3.7: x Array 

 

r  1 2 3 4 5 6 7 

rx  0 0 1 1 1 1 1 

 

Table 1. 3.8: N Array 

 

      

n 6 5 7 3 4 

 

Step 4: 

 

Table: ‘Ordered’ N Array 

 
*
nc  9 18 25 29 39 

n 6 5 7 3 4 

 

Table: ‘Ordered’ Pointer Array 

 

Node, n Successor nodes, s & (S(s,n)) 

 

6 5 (0.2572) 7 (0.4209) 

5 3 (0.5898) 7 (0.5791) 

7 4 (0.1199)  

3 4 (0.8801)  

4 0 (0.0000)  
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Step 5: 

 

Table: Node weighting Array & Calculation of )1(16 dV −  

 

n/d 6 5 7 3 4 

 

Initial nW  1 0 0 0 0 

Updated nW   0.2572 0.4209 0.1517 0.0683 

(= )sW    0.5698  0.2018 

      

dhT −   500 600 100 300 

      

dhdTW −   128.6 341.9 15.2 60.5 

      

 

Table: Output 

 

Load on Link (1,6) Origin Node Destination Node 

 

128.6 1 5 

341.9 1 7 

15.2 1 3 

60.5 

 

1 4 
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 Comments on the Dial, Gunnarsson and GMTU Models 

• GMTU model is similar to Dial’s in that all links included in paths have their 

initial node ‘closer’ than their final node to the origin node h but, in that the 

probability of usage of any link is determined at the node at which the choice of 

including the link arises. 

• In GMTU model, the division of the trips from origin node h arriving at any node 

i between its predecessor links (i, j) etc is based on explicitly on the costs on 

mutually exclusive sections of the minimum cost paths from h to i via these 

predecessors; the probability of usage being zero for links other than those with 

initial node k as the best or second-best predecessor node to i. Gunnarsson splits 

the trips leaving any node i for destination node between the successor links (i,j) 

on the basis of the costs on the minimum paths from i to the destination node d 

via these links. 

• In using the multinomial logit model as the basis for the division of trips between 

routes, Dial’s model implicitly assumes constant variance in perceived costs on all 

route sections; the same is true of Gunnarsson’s model if the exponential form is 

used for ).( ijrf  

• Route choice probabilities in Dial’s method are based on numbers of routes 

available, ignoring completely the fact that many routes may be identical apart 

from minor diversions. Gunnarsson’s and GMTU make choices of links to be 

used at the nodes at which the choice arises and are also sensitive to the network 

structure. 
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3.13 SCATA, an Arithmetical Approximation Approach to 
Multiple Route Choice 

 
If there are relatively few route choices, all of which can be explicitly enumerated, 

arithmetical approximation methods of estimating route choice probabilities, and hence 

link flows, are more accurate than simulation methods. Such circumstances are extremely 

scarce in traffic assignment studies and hence the techniques are rarely used in practice; 

however, they can be used to provide an insight into the characteristics of solutions 

obtained by the simulation techniques that are not apparent from their application. 

 

SCATA assumes a uniform distribution. Robertson and Kennedy (1979) suggested that 

the assignment of traffic in a network by simulation methods is relatively insensitive to 

the shape of the probability distribution assumed. SCATA, first proposed by Robertson 

(1977) and then refined by Robertson and Kennedy (1979), has a composite cost structure 

 

Simple Choice Algorithm for Trip Assignment (SCATA) 

In the two route choice situation with uniform distributions of perceived link costs, the 

proportions of trips choosing the dearer route, ,2R  given in terms of the ‘actual’ route 

costs ,1c  2c  and spread factor, ,k may be written in terms of 1c  and 2c  and the ranges 

of the perceived cost distributions, 1r  and 2r , as: 

 

 )2/()2/)(()( 21
2

21212 rrrrccRPr ++−= ---------------------------------------------(11) 

Assuming that the perceived costs on competing routes are independent of one another, 

the variance in the perceived cost on 1R  relative to 2R , called the relative variance, is: 

 

 212,1 VarVarVar += ----------------------------------------------------------------------(12) 

where 1Var  and 2Var are variances of perceived costs on 1R  and 2R  respectively. 
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As approximation, it may be assumed that this relative variance is divided equally 

between the two routes, so that the variance of the perceived cost on each link is: 

 

 )(5.0 21 VarVarVar += ------------------------------------------------------------------(13) 

Assuming that the common range of the distribution is r then, since ,12/2rVar =  

 

 2,121
2 6)(6 VarVarVarr =+= -----------------------------------------------------------(14) 

Substituting r  from the above equation for ? 

 

 2
2,1122 ))6(/)(1(5.0)( VarccRPr −−≅ -----------------------------------------------(15) 

Note: 0)( 2 =RPr  if the term in parenthesis is negative. This facilitates the elimination of 

unused routes. 

 

Choice between three or more parallel routes 

The calculation can be simplified by converting the single problem in n dimensions to (n-

1) problems in two dimensions. This is achieved by a procedure which enables a pair of 

parallel links to be replaced by an equivalent single link. Values are calculated for the 

‘the reduced’ cost’ and ‘reduced variance’, the mean and variance respectively of the 

distribution of perceived costs on the equivalent link, so that the traffic assignment in the 

remainder of the network is unaffected by the substitution. 

 

Reduced Cost 

 Assuming ,5.05.05.05.0 22112211 rcrcrcrc +≤+≤−≤− the probability density function 

for the distribution of perceived costs, c , on links (routes) actually used is: 

 

 1/1)( rcf =  for 2211 5.05.0 rccrc −≤≤− --------------------------------------------(16) 

 

and )/()2)(5.0()( 212121 rrcrrcccf −+++=  for 1122 5.05.0 rccrc +≤≤−  
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The mean perceived ‘cost’ on the route actually chosen, i.e, the ‘reduced cost’, is given 

approximately by: 

 

 }3/))((4{ 2,1
3

2121 VarRPcc r−≅+ -----------------------------------------------------(17) 

 

This indicates the important fact that the mean perceived cost of travel on routes actually 

used through a network is less than the mean perceived cost of travel on the minimum 

cost path. 

 

Reduced Variance  

Robertson and Kennedy (1979) gave the following approximation on the ‘reduced 

variance’: 

 

 2221221 )2.0)()())(3.11( VarRPRPVarRPVar rrr ++−≅+ ----------------------------(18) 

From the above equation, if )(35.0,5.0)( 21212 VarVarVarRPr +== +  

 

In general, the variance of perceived costs on routes actually used is also less than the 

variance of perceived costs on the minimum path. 

 

Example 1 : 

1000 vehicles per hour travel from h to d between which the three possible routes 21 , RR  

and 3R , with no overlapping sections. The distributions of perceived costs on the routes 

are assumed to be uniform with means, ,c  of 1.0, 1.2, and 1.4 equiv. Mins on 21, RR  and 

3R  respectively, and ranges 2 )(ck  where 2.1=k  when c  is measured in tenths of 

equiv. Mins. Estimate the mean and variance of the ‘reduced’ costs on the routes actually 

used and the flow of vehicles on each route. 

In the following, costs are in units of tenths of equiv.mins. 

Since ,48.012/))(2(12/)()( 22 cckrangecVar ===  we have: 

.72.6;14;76.5;12;8.4;10 332211 ====== VarcVarcVarc  
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Consider the replacement of routes 1R  and 2R  by the equivalent route e , 

56.1076.58.42,1 =+=Var  

 2803.0))}56.10(6(/)1012(1{5.0)( 2
2 =−−=RPr  

 443.9}3/)56.10()2803.0(4{10 3
21 =−== +cce  

 826.3)76.5)(2.02803.0(2803.0)8.4))(2803.0(3.11(21 =++−== +VarVare  

Consider the replacement of e  and 3. 

 546.1072.6826.33, =+=eVar  

 0912.0))}546.10(6(/)443.914(1{5.0)( 2
3 =−−=RPr  

 c 3+e =(1-1.3(0.0912))(3.8260)+0.0912(0.0912+0.2) 6.72=3.551 

Thus the mean perceived cost on the routes actually used is 3+ec  =0.934 equiv.mins. 

The variance of the ‘reduced’ costs on the routes actually used is, 
22

3 )min.(10551.3 sequivXce
−

+ =  

The flow on 3R  is 1000x0.0912=91.2, 

The flow on 2R  is 10000(1-0.0912)(0.2803)=254.7, 

The flow on 1R  is 1000(1-0,0912)(1-0.2803)=654.1veh/h. 

 

Table: The Effect of the Order of Combing Routes when Traffic is Assigned to  

three routes in parallel (Example 7) 

 

Order of combing Routes Proportion of 

Traffic Routes 

21 , RR  and 3R  

(1+2)+3 (1+3)+2 (2+3)+1 

Max. 

Deviation from 

Average (%) 

)( 1RPr  0.6541 0.6429 0.6635 1.6 

)( 2RPr  0.2547 0.2571 0.2370 5.0 

)( 3RPr  0.0912 0.1000 0.0995 9.4 

     

Reduced Cost 9.340 9.330 9.312 0.2 
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In Langdon (1982), it is suggested that if it cannot be assumed that the introduction of an 

additional route (mode in fact) does not change the relative proportions of trips on the 

other routes, then it is necessary to carry out the calculations three times with each route 

in its turn becoming the last one introduced. 

 


	Let l=0.00055 
	Therefore 
	           T4j=84+31+50+329=494 
	L1=0.00059 
	Therefore 
	           T4j=84+30+48+332=496 

	L1=0.000597 
	Therefore 
	           T4j=84+31+48+334=497 
	Applications of Entropy: 




