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CHAPTER 1 
 

   INTRODUCTION 

 
1.1 Introduction 

The knowledge of magnitude and behavior of ocean waves at site is an essential 

prerequisite for almost all activities in the ocean including planning, design, construction and 

operation related to harbor, coastal and structures. 

 
The waves of major concern to a harbor engineer are generated by the action of wind.  

The wind creates a disturbance in the sea which is restored to its calm equilibrium position by 

the action of gravity and hence resulting waves are called wind generated gravity waves.  The 

height of a wave is the vertical distance between its crest and trough, the period of a wave is the 

time required to complete one cycle of its oscillation, while the horizontal spread of one wave 

(distance between any two points with the same phase) is called wave length.  See Fig. 1.1.  The 

height of waves (H), in practice varies from a few cm to over 30 m while the variation in 

corresponding wave period (T), is from 3 seconds to about 25 seconds.  The length of a wave (L) 

may range from a few meters to over a kilometer.   

 
1.2 Generation 

Continuous changes in the temperature over the rotating earth produce corresponding 

changes in the atmospheric pressure all over it.  The wind produced by these pressure gradients 

blows with different energies at different places and at different times.  The relatively higher 

energies associated with the wind are transferred to calm water by the pressure acting normal to 

the sea surface as well as by the shear exerted tangential to it. 

 
Many investigators (like Helmholtz, Jeffery, Phillips, Miles, Hasselmann) in the past 

have attempted to explain the process of wind energy transfer through factors like pressure 

gradient across the wake (Fig 1.2), resonance of turbulent eddies in the atmosphere (Fig 1.3), 

shear forces based logarithmic wind profile (Fig 1.4) and resonant interactions between different 

wave components.  However the exact nature of the process of wave generation still eludes the 
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scientists owing to its complexity.  The formation and growth of waves is influenced by wind 

pressure, its speed, fetch (the distance over which the wind, blowing over the sea surface, 

remains the same) and wind duration (the time over which the storm prevails) together with 

depth of water at the site.  

 

In the initial stages of wave generation, high frequency and short length waves are 

formed (Stage 1 of Fig 1.5). These, being unstable, break and supply energies thereby to the 

lower frequency waves which in turn get developed (Stage 2 of Fig 1.5).  The process continues 

till a 'fully developed sea' is formed (Stage 3 of Fig 1.5) where all wave component reach a 

saturation stage (Brebbia and Walker, 1979).  

 
As the wave height and period increases from Stage 1, (Fig 1.5) waves start moving 

faster and faster, and when the increasing wave speed matches the speed of the generating wind 

the transfer of wind energy ceases and so also the growth of the waves.  This process requires 

availability of certain time duration as well as that of fetch distance.  If either time or fetch is 

less, a 'partially developed sea' is formed. The fully developed sea on the other hand (Stage 3, 

Fig. 1.5) is associated with unlimited fetch and duration. 

 
1.3 Decay 

After generation, waves travel along different directions and their energies get spent due 

to factors, like, the air or water turbulence, bottom friction, besides spreading over wider areas 

due to angular dispersion.  This gives rise to the decay in the height of waves as they travel out 

of their area of generation. 

 
Opposition to wave movement lowers its length and increases its height making it steep 

and unstable.  Higher steepness (wave height to wave length ratio) is associated with higher 

water particle velocities.  When such velocities exceed the speed of the wave motion, the water 

particles come out and the wave breaks.  This happens when the steepness becomes as high as 

1/7 or when the angle at the crest lowers to 1200 (Fig 1.6).  This is the case in the deep water.  In 

shallow water the waves break when they arrive in a region where the depth is anywhere in 

between about 0.8 to 1.4 times their height.  The exact value of the water depth at breaking 
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depends on the sea bed slope and wave steepness.  Section 4.7 gives more details on wave 

breaking. 

 
1.4 Classification 

Depending on the repetition of wave form, the waves can be regular, if the same wave 

form repeats in time as well as space or irregular or random, if it does not repeat. (Fig 1.7).  

Actual waves found in nature are basically random; but for the sake of analytical simplicity they 

are many times assumed to be regular. 

 
With the wave period (or frequency – number of oscillations per second) as basis the 

waves can be long period, gravity or short period waves where the normal gravity waves 

correspond to periods ranging from 1 to 30 seconds.  They are generated by wind and restored by 

gravity. Fig 1.8 shows energy content in waves of different periods.  

 
The waves can be generated by wind, tectonic activities, sun and moon's attraction or 

ship movements while they are restored to their equilibrium position by surface tension, gravity 

or Coriolis force.  

 
As per the shape of their profile the waves can be Sinusoidal, Trochoidal, Cnoidal, 

Solitary and Random (Fig 1.7).  

 
If the whole profile moves in the forward direction the wave is a Progressive Wave; 

otherwise, simple up and down oscillations of the water particles at fixed position constitute a 

Standing or a Clapotis wave (Fig 1.7).  

 
If the water particles show back and forth movement with open or close orbits wave is an 

Oscillatory wave otherwise it is a Translatory wave (Fig 1.7) in which there is no backward 

motion of particles.  

 
If wave steepness is small (say less than 0.02) the wave is called Small Amplitude wave 

otherwise it is a Finite Amplitude Wave. 
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1.5 Measurement 

Wave measurements can be made with different types of recorders kept either at the sea 

surface or over and below it.  The airborne devices include the satellite based sensing of the 

surface using a radar altimeter.  The floating recorders could be either of electrical resistance 

gauges, ship borne pressure sensors or wave rider buoys.  The submerged category involves the 

pressure gauges and the echo sounders.  Out of all above types the wave rider buoy (Fig. 1.9) is 

most commonly employed in routine wave data collection.  It is in the form of a spherical buoy 

that is kept floating on the sea surface. It undergoes accelerations in accordance with the wave 

motion. The vertical accelerations are continuously recorded by an accelerometer located inside 

the buoy.  These are further integrated twice electronically to obtain records of the sea surface 

elevations which in turn are sent to a shore based receiving station.  Commonly, a 20-minute 

record collected once in every 3 hours, as a true statistical sample during the period, is practiced 

to optimize the data collection. 

 
Fig 1.1 Definition Sketch Of a Propagating Wave 
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Fig 1.2 Flow Separation at Crest           Fig 1.3 Turbulent Eddies 

                
Fig 1.4 Logarithmic Wind Profile Fig 1.5 Wave Growths 

 

 
 Fig 1.6 Wave Breaking 

 
 

Fig 1.7 Wave Types 

 

Legend: 1. Capillary waves   A. Wind 
  2. Ultra-gravity waves   B. Wind + Ordinary grav. waves 
  3. Ordinary grav. waves  C. Storm & earthquakes 
  4. Infra-grav. waves   D. Sun & Moon 
  5. Long period waves   E. Storm + Sun & Moon 
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  6. Ordinary tide waves 
  7. Trans-tidal waves 
 
 

 

Fig. 1.8 Wave Energy versus Period (Gaythwaite, 1981) 
 

 

Fig 1.9 Wave Rider Buoy (www.niot.res.in) 

1.6 Wave Forecasting 

1.6.1 The Significant Wave 
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Forecasting of waves for operational or design purpose needs to be made by measuring 

and analyzing the actual wave observations at a given location.  But considering the difficulties 

and costs involved in getting large scale wave data, many times, the readily available wind 

information is gathered and then converted into corresponding wave information although this 

procedure is less accurate than the actual wave analysis.  

 
The wind information required to forecast the waves can be obtained by making direct 

observations at the specific ocean site or at a nearby land site.  The latter observations require 

projection to the actual location by applying some overland observation corrections.  Wind speed 

and its direction can be observed at regular intervals and hourly wind vectors can be recorded.  

Alternatively use of synoptic surface weather maps can also be made to extract the wind 

information.  These maps may give Geostrophic or free air speed, which is defined as the one 

undisturbed by effects of the boundary layer prevalent at the interface of air and sea. Instead of 

this speed, which may exist at a very large height from the sea surface, the wind prediction 

formulae incorporate the wind speed value at a standard height of 10 m above the mean sea level 

(U10) which can be obtained by multiplying the geostrophic speed by a varying correction factor.  

This value of U10 so deduced needs further corrections as below before it can be used as input in 

the wave prediction formulae. 

 
(i) Correction for overland observations: This is necessary when wind is observed overland 

and not over water in which case the roughness of the sea surface is different.  If wind speed 

overland (UL) is greater than 1.85 m/sec, i.e., 41.5 mph, the correction factor RL = U10/UL may be 

taken as 0.9.  If UL ~ 15 m/sec, RL =1.0.  If UL<15 m/sec, RL=1.25. 

(ii) Correction for the difference in air and sea temperature: This difference affects the 

boundary layer. The correction factor can be substantial - varying from 1.21 for a temperature 

difference of -20 degrees to about 0.78 for the temperature difference of +20 degrees. 

(iii) Correction for shortness of observations duration: Since the wind is observed for a very 

short duration of say 2 minutes at a time, its stable value over duration of an hour or so is 

required to be calculated.  Empirical curves are available to obtain the corrections (i), (ii) and 

(iii) above. (SPM, 1984). 

(iv) Correction to account for the non-linear relation between the measured wind speed 

and its stress on the seawater: This correction is given by, 
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Ucorrected = (0.71) U10 
1.23      1.6.1 

 
If the wind speed in a given region does not change by about  2.5 m/sec with 

corresponding direction changes of about  15 degrees then such a region can be regarded as 

fetch region.  Its horizontal dimension expressed in distance scale, called Fetch, is required as 

another input in the wave prediction formulae.  For coastal sites the upwind distance along the 

wind direction would give the required fetch value.  Alignment (curvature or spreading) of the 

isobars in weather maps also yields the wind fetch.  

 
Constant wind duration forms an additional input in the formulae of wave prediction. 

This is obtained by counting the time after allowing deviations of 5 percent in speed and 15 

degrees in the directions. 

 
The problem of wave forecasting aims at arriving at the values of the significant wave 

height (Hs) and the significant wave period (Ts ) from given wind speed, duration and fetch 

distances over which the speed remains constant.  

 
If we have a collection of pairs of individual wave heights and wave periods (or zero 

cross periods, meaning thereby that the crests should necessarily cross the mean zeroth line. (Fig 

1.10), then an average height of the highest one third of all the waves (like H1, H2, H3...of Fig 

1.10) would give the significant height. (Hs) while an average of all wave periods (like T1, T2, 

T3...of Fig 1.10) would yield significant wave periods (Ts).  These definitions are empirical in 

origin. 

 
         Fig 1.10 Individual Waves 
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1.6.2 Empirical versus numerical techniques 

The wave forecasting techniques can be classified into two broad types viz., (i) empirical, 

simplified or parametric and (ii) numerical or elaborate.  The former methods explicitly give 

wave height and period from the knowledge of wind-speed, fetch and duration while the later 

ones require numerical solution of the equation of wave growth.  The numerical methods are far 

more accurate than the parametric and give information over a number of locations 

simultaneously.  They however require a number of oceanographic and meteorological 

parameters.  They are more justified when the wind speed varies considerably along with its 

direction in a given time duration and area.  

When the wind field can be assumed to be fairly stationary and when accurate and 

elaborate wind data are not available, simplified parametric wind-wave relationships, involving 

an empirical treatment, could be a workable alternative to the elaborate techniques.  Common 

methods under this category are Darbyshire, Pierson-Neumann-James, Sverdrup-Munk-

Bretschneider and Hasselmann, methods of prediction of wave characteristics.  The latter two 

techniques are more common and are described below: 

 

1.6.3 Empirical Methods 

SMB Method 

The Sverdrup-Munk and Bretschneider (SMB) equations are based on dimensional 

analysis considerations.  These equations are suggested for deep water (where depth may exceed 

about 90 m) are given below (SPM 1984).  The wind of speed (u) blowing over fetch (F) will 

produce the Hs and Ts values according to following equation: 




















42.0

22 0125.0tanh283.0
u
gF

u
gH s      1.6.2 




















25.0

2077.0tanh4.2
u
gF

u
gTs       1.6.3 

The above Hs, Ts values would occur only if the wind blows for a duration tmin given in 

terms of fetch 'F' as follows:  
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67.0

2
min 8.68 








u
gF

u
gt

       1.6.4 

If actual duration t<tmin, then find F from equation (1.6.4) for the given t and then 

substitute the new F value in equation (1.6.2) and (1.6.3). This is duration limited sea (with fetch 

controlled by duration). If t  tmin, the wave heights and periods are controlled by the given fetch.  

A graphical representation of the above equation is known as SMB curves (SPM, 1984).  In 

shallower water of depth (d) the three equations equivalent to equation (1.6.2), (1.6.3) and (1.6.4) 

are, respectively 
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          1.6.7 

The curves for the shallow water, these equations (each drawn for a separate water 

depth), are available in the graphical forms.  Fig 1.12 shows an example corresponding to water 

of depth 10.5m. 

 
Hasselmann Method 

A group of investigators led by Hasselmann developed a simplified parametric model of 

wave growth to obtain the Hs and Ts values for given quantities of u and Fathers equations along 

with the one that gives the minimum duration necessary to produce these values of Hs and Ts are 

given below: 

For Deep Water: 
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For Shallow water:  
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The graphical forms of these equations are also available.  

 

Darbyshire and Draper's Technique: 

Another widely used alternative wave prediction technique is that developed to 

Darbyshire and Draper (1963). This can be conveniently given in terms of the curves. (Brebbia 

and Walker, 1978). 

 
1.6.4 Forecasting in Hurricanes: 

Above referred simple parametric forecasting models fail when wind conditions like, its 

speed, direction and profile rapidly change with time as in case of the cyclones. It becomes 
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difficult to forecast waves using simple equations in such situations. However, tropical cyclones, 

called hurricanes in U.S.A., exhibit relatively stable wind profile and hence they can be tackled 

by parametric modeling. For slowly moving hurricanes, waves in deep water can be predicted by 

knowing (i) forward speed of the hurricane, UF, (ii) radial distance from the hurricane center to 

the point of maximum wind on isobar map & (iii) air pressure at the hurricane center. At the 

point of maximum wind, the Hs and Ts values are given by, (SPM 1984): 

 

    2/1)/(29.014700/exp03.5 RFs UUPRH                1.6.15 

  2/1)/(145.01)9400/exp(60.8 RFs UUPRT                1.6.16 

 

where   R = radius of maximum wind (km) 

  P = normal pressure (= 760 mm of mercury) at hurricane center (mm) 

  UF = wind speed along hurricane forward direction 

UR = wind speed at radius R corresponding to maximum wind (at 10 m above 

MSL – sustained) 

       = 0.865 Umax (if hurricane is stationary) 

      = 0.865 Umax + 0.5 UF (if hurricane is moving)  

where 

  Umax = maximum gradient wind speed at 10 m above MSL 

          = 0.447[14.5( P)1/2 – R (0.31 f)] where 

  f = Coriolis parameter = 2  sin   where 

   = angular speed of earth’s rotation = (2  )/ 24 

   = 1 (if hurricane is slowly moving) or 

     =  f (UF, fetch) otherwise. 

 
Above equations give the values of Hs and Ts at the point of maximum wind. To find the 

significant wave height value at any other point, say Hs
’, same Hs is required to be reduced by a 

reduction factor shown in Fig 1.17 while corresponding Ts’ value is to be obtained by using, 

Ts
’ = (Hs

’ / g) 1/2                  1.6.17 
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1.6.5 Numerical Wave modeling 

The numerical wave models deal with a spectrum of waves rather than unique wave 

height and period values of the above simplified schemes. They involve a detailed modeling of 

wave generation, propagation and dissipation mechanisms. They basically solve a differential 

wave energy balance equation given below in terms of a directional spectrum G : 

StxfGfCtxfG
t g 

 ),,,().,(),,,(                 1.6.18 

where 

),,,( txfG  = Directional wave spectrum at wave frequency f and direction  at given 

position x  and time 't'.  (Note: directional wave energy spectrum gives energy of a wave 

component of certain frequency along a certain direction) 

),( fC g  = Group velocity vector for wave frequency (f) and direction ( ). 

  = Operator; 
z

k
y

j
x

i











  

S = Source function = Sin + Sds +Snl 

Sin = Wind energy input 

Sds = Wave energy dissipation in bottom friction and wave breaking 

Snl = Wave energy input being transferred from one wave frequency component to the 

other in a non-linear way. 

 
Many numerical models employ a net source function (S) rather than its separation into 

three parts as above. The source functions are based on some theoretical understanding and may 

require modifications based on measurements. The above governing differential equation, 

(1.6.18), is generally solved using finite difference schemes so as to obtain wave directional 

spectrum over a number of locations and over a series of time instants. This requires 

specification of initial temporal conditions and spatial boundary conditions. The directional 

spectrum may typically be resolved into finite number of frequencies and directions. Equation 

(1.6.18) is applicable for deep water and can be modified to account for shallow water effects life 

refraction and diffraction.  
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Resolution of the directional spectrum into discrete frequencies and directions is 

laborious and can be substituted by parametering it into assumed forms of wave spectrum and 

energy spreading function.  

 
Actual waves at site may result from a combination of wind waves and swells arriving 

from a distant storm. In that case separate governing equations are required to be written.  

 
There is a variety of numerical wave models used worldwide to obtain spatial wave 

forecasts with lead time of 1 to typically 72 hours. They can be classified as First Generation, 

Second Generation and Third Generation models- each indicating significant improvement in the 

wave modeling technique. The First Generation models, evolved in 1960s and 1970s,are the 

simplest. They assume growth of each wave spectral component independently. They are useful 

mainly in constant wind field. In the Second Generation model, the concept of a non-linear 

interaction between different wave components was introduced with simplified terms. These 

simplified terms are substituted by their exact solution in the Third Generation models. These 

can be usefully employed when the wind field is rapidly changing.  
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CHAPTER 2 
 

WAVE THEORIES 
 

2.1 Basic Hydrodynamic Equations 

 

Continuity Equation 

 
Consider an element of fluid with its mass centre at (x, y, z).  Let (u, v, w) be the fluid 

velocity components at (x, y, z) respectively along the x, y, z axes.  According to the 

‘conservation of mass’ principle, within time ∆t, net mass of the fluid flowing into the element 

from the x, y, z directions must be the same as the increase in the mass of the element.  Starting 

with this consideration and using taylor’s series to denote small increments involved the 

following equation of continuity can be obtained: (streeter and wylie, 1986): 

   0











z
w

y
v

x
u     2.1 

 

(Note: for any function f(x) of variable ‘x’, Taylor’s series indicates:

..............)(.)()()( 2
2

2










 x
x

xfx
x
xfxfxxf ) 

 

 

Rotational Flow: 

 

 

 

 

 

With the passage of time an element of fluid may undergo a rotation due to the moment 

produced by shear forces at its mass centre as shown above (Fig. 2.1) for a simple 2-D case.  

Such rotations about the x, y,  z axes respectively are given by,  
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










x
v

y
u

z 2
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         2.4 

Note:  The rotation is often measured in terms of vorticity, which is a vector whose 

components along the coordinate axes are (-2ωx, -2ωy and -2ωz) respectively. 

 

Irrotational Flow: 

Many complex fluid problems become tractable if we assume that the net rotation of the 

fluid element about any of the x, y and z axes is zero, i.e. 

0 zyx          2.5 

Such a flow is called Irrotational Flow.  Here the vorticity is zero. 

Since rotation can be produced by the moment of shear forces acting tangential on the 

fluid element, inviscid or frictionless fluid (implying absence of shear forces) would make the 

flow irrotational. Wave motion is normally assumed to involve negligible viscosity and internal 

friction. 

 

Velocity potential 

In accordance with preceding Equation (2.5), for an irrotational flow,  

0 zyx   

Typically then, 

 















z
u

x
w

y 2
1

  = 0 (from equation (2.3)) 


z
u

x
w






          2.6 

If we define a scalar function ‘ ’ of position x, y, z and time 't' having continuous derivative, i.e 

xzzx 





  22

         2.7 

or, 
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

























xzzx
 ,        2.8 

then comparing with equation (2.6) we get 

x
u

z
w









 ;         2.9 

Similarly it can be shown, from other rotation equations, that 

y
v





                    2.10 

The assumption of flow irrotationality thus leads to the establishment of the velocity 

potential ‘ ’. Putting u, v and w by equations (2.9) and (2.10), into the continuity equation (2.1), 

we get 

02

2

2

2

2

2













zyx
                   2.11 

 i.e. 02    

This is called the Laplace form of continuity equation. 

 

Stream Function 

For any 2-D flow a function ),( yx can be defined such that its partial derivative along 

any direction would give the flow velocity along the clockwise normal orientation, i.e. 

u
y

v
x







  ;                   2.12 

This function   is called the stream function. 

 

Equations of Motion 

 

 The forces acting on a fluid element can be classified as (i) body forces, which act per 

unit fluid mass, e. g., gravity, magnetic forces, and, (ii) surface forces, which act per unit surface 

area, e. g. pressure.  As shown below the surface force can act in any direction, but can be 

resolved into tangential and normal forces: 
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The normally acting force is typically a pressure distribution while the tangential force may 

represent shear (or frictional, viscous) force. 

 

 Euler assumed the shear forces to be zero and taking the lead from the earlier specified (~ 

1700) Newton’s equation of motion (force = mass x acceleration), that was aimed at rigid bodies, 

applied now to fluids.  The resulting equations are called Euler’s equations of motion and are 

given as below along the x, y and z axes: (While doing so, the changes in forces across the fluid 

element were denoted by Taylor’s series mentioned earlier): 

 

    
x
pX

Dt
Du






1  

    
y
pY

Dt
Dv






1  

    
z
pZ

Dt
Dw






1  

(2.13) 

Where, ‘D’ indicates a total derivative consisting of a time-dependent local component as well as 

a space-dependent convective part, typically,  

                                        t
u

z
uw

y
uv

x
uu

Dt
Du
















  

 = mass density of fluid; p = pressure force per unit area, X, Y, Z = abstract body forces per 

unit mass along the x, y, z directions, respectively. 

 

Navier and Stokes around the year 1840 stated that when the shear forces are not negligible 

(viscous fluid) the above Euler’s equations should be replaced (for Newtonian and 

incompressible fluid) by the following equations, now known as the Navier-Stokes equations of 

motion: 
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u
x
pX

Dt
Du 21





 


 

v
y
pY

Dt
Dv 2)1





 


 

w
z
pZ

Dt
Dw 21





 


 

Where,  = kinematic viscocity = absolute viscocity,  / fluid mass density  ,  and, 

 

2

2

2

2

2

2
2

yyx 










  

Consider the Euler’s equation of motion along the ‘x’ direction: 

    x
pX

Dt
Du






1

 

This gives:     

                                       t
u

z
uw

y
uv

x
uu

x
pX






















1

 
 (Note: ‘D’ stands for total derivative having a convective (x, y, z dependent) component as well 

as a local (time dependent) component).   

Now,     )
2

(
2u

xx
uu






  

From the irrotationality equation (2.4):  
x
v

y
u






  

        )
2

(
2v

xx
vv

y
uv












  

From the irrotationality equation (2.3):  
x
w

z
u






  

         )
2

(
2w

xx
ww

z
uw












  

             Also,  





























txxtt
u 
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The Euler’s equation along the x direction thus is: 

X
p

Xtx
w

x
v

x
u

x 

















































 11

222

222

  























 p
t

wvu
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X
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222

 

 























 p
t

wvu
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Y
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





















 p
t

wvu
z

Z
2

222

 

If gravity is considered as the only body force acting on the unit mass of the fluid then 

X=0, Y=0 and Z= -g.1= )( gz
z



   

Hence from the preceding equation:  

  0
2

222








t
gzpwvu 


                2.14 

Where, g is the acceleration due to gravity and z is the elevation of the point.  This is the 

Bernoulli’s equation. 

 

2.2 Wave Theories 

 

Wave theories yield the information on the wave motion such as the water particles 

kinematics and wave speed, using the input of wave height, its period and depth of water at the 

site. There are more than a dozen different theories available in this regard. However, only a few 

of them are common in use and these are described below: All wave theories involve some 

common assumptions, viz, 

1. The waves have regular profiles. 

2. The flow is two-dimensional (in vertical x, z plane). 

3. The wave propagation is unidirectional (or long crested). 

4. The fluid is ideal i.e. inviscid, incompressible and irrotational. 

5. The sea bed is impermeable and horizontal. 
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The wave theories can be categorized into two types: 

(i) Linear or Airy's (or sinusoidal or small amplitude) wave theory 

(ii) Non-linear (or finite amplitude) wave theories. 

The former is distinguished from the latter in that it assumes that the waves are flatter 

with a small steepness ratio (typically < 2%). 

 

Linear Wave Theory 

Summary of derivation for velocity potential:   

Figure 2.2 shows the definition sketch for the linear wave theory. It is assumed that the 

velocity potential ( ) depends on position (x, y) and time t and this is given by, 

),,( zyx  X(x) Z(z) T(t)                  

     = XZT say 

where X, Z, T are initially unknown functions of x, z and t respectively, assumed to be 

independent of each other. 

These unknown functions can be determined by making   to satisfy 

(i) Laplace Equation (2.11). 

(ii) Linearised form of Bernoulli's dynamic Equation (2.13) at the free surface (z = ), 

which is, 

0






 gp
t

                  2.15 

[In deriving above Equation (2.15) we assume that the partial differential terms (like 
x

 , 

etc.) are small so that the product of any two such terms negligible] 

(iii) Dynamic Free Surface Boundary Condition (DFSBC)  

This states that the pressure at the free surface p is zero (atmospheric). 

(iv) Kinematic Free Surface Boundary Condition (KFSBC) 

It ensures that the free surface is continuous. 

(v) Bottom Boundary Condition (BBC) 

This means that the velocity normal to the sea bottom is zero. 

 

The expression for   determined in this way (Ippen 1965) is 
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)sin(
)cosh(2

))(cosh( tkx
kd

zdkgH



 


                 2.16 

Where, H = wave height;   =  Circular wave frequency = 
T
2 ; T = Wave period; 

k = Wave number = 
L
2 ; L = Wave length; z = Vertical co-ordinate of the point at which 

  is being considered (from the SWL); d = Water depth; x = Horizontal co-ordinate of  

the point (w.r.t any arbitrary origin at SWL); t = Time instant. 

 

Derivation of ߶ 

Refer to Fig. 2.2.  Writing eq. (2.13) in 2-dimensions (vertical plane) at any point affected by the 

wave motion: 

 

                                                    0
2
1 2 





t

gzqp 


                                         (2.16) 

Where, p = pressure at the concerned point in the wave motion,  = mass density of the sea 

water, q = velocity = k
y

i
x 





  ; i, j = unit vectors along the x and z directions; z = vertical 

coordinate of the concerned point; t = time instant. 

 

In linear theory we assume that the partial derivatives are small and hence their product is 

negligible compared to the other terms.  Hence, 

 

0)()( 222 








yx

q   

Hence the above equation (2.16) becomes 

: 

0




t

gzp 


 

Consider a point on the free surface.  For this point, z =  ; Let us apply the dynamic free surface 

boundary condition (DFSBC): at the surface, p = 0. 
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Hence, 0




t

g   


 


 ztg
)(1                                                       

Assuming that the wave height, H, is very small compared to wave length, L, the above equation 

can be approximated as: 

    0)(1



 ztg

                                                        (2.17) 

Let us apply the kinematic free surface boundary condition (KFSBC) indicating that the particle 

on the free surface must always remain on the free surface (and not come out): 

   ddtw .    ;     
dt
dw 

 ;            i. e.,  
t
x

xtz 











   

The last term involves a product of two differentials and hence can be neglected as per our 

assumption.  Hence approximately (assuming that the evaluation at z=0 is same as the one at 

z=η): 

 

     









0)( zzt
                                            (2.18) 

(2.1.2) and (2.1.3) give: 

 

ztg 









2

21
 

          02

2









z
g

t
                                                 (2.19) 

 

This has solution: 

߶ (x, y, z, t) = X(x).Z(z).T(t) 

                 = XZT                    say 

Putting this in Laplace’s continuity equation 

02    
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i. e., 02

2

2

2









zx
  

0)()( 2

2

2

2







 XT

z
ZZT

x
X  

Dividing by (X Z T):  0)1()1( 2

2

2

2









Zz
Z

Xx
X  

Because the first term is a pure function of x, the second one is a pure function of z, each has to 

be a constant (unchanging with x and z) if their sum is to be constant (or zero). 

 

Hence let 2
2

2

)1( k
Xx

X



  and  

                  2
2

2

)1( k
Zz

Z



  

We have two equations: 

02
2

2



 Xk

x
X     and 

02
2

2



 Zk

z
Z  

Having standard solutions:   X = c1 cos kx + c2 sin kx,    and 

              Z = c3 ekz + c4 e-kz 

 ߶ = (c1 cos kx + c2 sin kx).(c3 ekz + c4 e-kz) T 

As ߶ has to be harmonic (repetitious) in time period T, we should write  

T(t) = cos (2π/T) = cos ɷt   or  = sin (2π/t) = sin ɷt 

The above ߶ can have two alternative general solutions (valid for all x, z, t): 

            tkxckxc  cos)ec + ec)(sincos( -kz
4

kz
321   

and,     tkxckxc  sin)ec + ec)(sincos( -kz
4

kz
321   

According to the property of the Laplace equation: if we can express ߶general = ߶a + ߶b, then each 

of these ߶a and ߶b, are particular solutions, also satisfying the Laplace equation.  From the above 

two equations thus we can form four particular solutions, namely, 
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)e c + ec(coscos -kz
4

kz
311 tkxc    

)e c + ec(coscos -kz
4

kz
312 tkxc    

)ec + ec(cossin -kz
4

kz
323 tkxc    

)ec + ec(sinsin -kz
4

kz
324 tkxc    

Let us work with the particular solution ߶1.  Let us apply the bottom boundary conditiona that 

states that 

                                                       01 



z


                    at the sea bed (z = -d)  

Hence, ߶1 above gives,            0)(coscos 431  kzkz keckectkxc   

                                
kzkz ecec  43     at z=-d 

           
kdecc 2

43         for all x and t 

     }{coscos 4
2

411
kzkzkd eceectkxc    

          = tkxeeeeeecc kzkdkdkzkdkd coscos}{41
               

         =  tkxeeeeecc
kzkdkzkd

kd coscos}
2

{2 41


 

        =   tkxeeecc
zkdzdk

kd coscos}
2

{2
)(

41

 
 

        =  tkxzdkecc kd coscos)(cosh2 41   

      From eq. (2.1.2),    0)(1



 ztg


 

       Hence,  
)}(sin)(cos)(cosh2{1

41  tkxzdkecc
g

kd 
 

                       = 
tkszdke

g
cc kd 


sincos)(cosh
2 41 

 

       Maximum η (=amplitude A) will occur at z=0 when cos kx sin ɷt = 1 

      In that case kde
g

ccA kd cosh2 41


        at z=0 

      Hence       kdecc
kd

Ag
412

cosh



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       This gives    tkx
kd

zdkAg 


 coscos
cosh

)(cosh
1


  

                           tkx
kd

zdkAg 


 sincos
cosh

)(cosh
2


  

                           

                            tkx
kd

zdkAg 


 cossin
cosh

)(cosh
3


  

                         tkx
kd

zdkAg 


 sinsin
cosh

)(cosh
4


  

Each of them is a solution of the Laplace equation, separately as well as in linear combination.  

For getting a general solution however we linearly combine two particular solutions.  Thus 

߶1 – ߶4 is one solution.  This equals  )cos(
cosh

)(cosh tkx
kd

zdkAg 


 


  

Similarly ߶3 + ߶2  is another solution.  This equals  )sin(
cosh

)(cosh tkx
kd

zdkAg 


 



 

 

In linear theory the amplitude A = H/2, where H = wave height.  Hence  

                                      
)sin(

cosh
)(cosh

2
tkx

kd
zdkgH 


 




 
eq. (2.16) referred to earlier 

Noting that when we write ɷ = 2π/T we ensure that ߶ is harmonic (repeating) in time, it is clear 

that if we write k = 2π/L then we will make ߶ harmonic in space as well.  The value of k so 

defined is called wave number. 

 

 

Expression for wave profile: 

  

 

From (2.17),     0)(1



 ztg


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                             = ))}(cos(
cosh

)(cosh
2

{1 





 tkx
kd

zdkgH
g

       at z=0 

Hence 

 )cos(
2

tkxH                     2.20 

 

 

 

 

 

Expression for wave Celerity: 

If we move with the same speed as that of the wave, the wave form ( ) will appear 

stationary, i.e., from equation (2.20) 

kx- t = constant 

  wave speed or celerity  

 C = 
T
L

kdt
dx


                   2.21 

We therefore interpret eq. (2.16) as the velocity potential of a progressive wave travelling in +x 

direction.  If the wave travels in –x direction then C becomes –C and working backwards,  

      kx+ t = constant 

and thus velocity potential of a negative left running wave is: 

)sin(
cosh

)(cosh
2

tkx
kd

zdkgH 


 



 

From eq. (2.19) 

02

2









z
g

t


     at z = 0 

Let us derive the two partial differential terms as follows from (2.16). 

)cos(
cosh

)(cosh
2
2)( tkx

kd
zdkH

t












 

            )sin(
cosh

)(cosh
2

)(2

2

tkx
kd

zdkgH
t










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)sin(

cosh
)(sinh

2
tkx

kd
zdkkgH

z












 
Substituting in (2.19) for z = 0, 

 2 = gk tanh (kd)                   2.22 

which is called the linear dispersion relationship and is useful to obtain 'k' (or L) from the 

wave frequency    (or T).  Substituting C =  /k in this equation, we get 

)tanh(2 kd
k
gC 

 

)tanh(
2

2 kdT
T
LgC




 

 
)tanh(

2
kdgTC


                      2.23 

Further, we can write ߶ alternatively as follows: 

  2 = gk tanh (kd)  

       2coshkd = gk sinhkd 

Thus  from )sin(
cosh

)(cosh
2

tkx
kd

zdkgH 


 


  

We get, )sin()(cosh
sinh2

tkxzdk
kdgk

gH



 




 

)sin(
sinh

)(cosh tkx
kd

zdk
kT
H  




 
 

Simplification in shallow and deep water: 

 

 

 

 

 

In typically shallow water (d < L/20 or kd < π/10) and deep water (d > L/2 or kd > π) 

cosh, sinh and tanh terms involved in the above equations take limiting values and thus we may 

use the approximation as follows to simplify the equations: 

for small 'kd': sinh (kd)kd; cosh (kd) 1;tanh (kd)kd              2.21 
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for large 'kd': sinh (kd)  cosh (kd)
2

kde
 : tanh (kd)1              2.22 

Hence the above equations (2.16) to (2.20) can be simplified. In deep water from 

equations (2.20) and (2.22), the deep water wave celerity,C0 is 

20
gTC                     2.23 

If L0 is the wavelength in deep water, C0 = L0/T gives, 

 
2

2

0
gTL                     2.24 

Similarly in shallow water, Equation (2.20) after a little modification becomes 

gdC s                     2.25 

where Cs = wave speed in shallow water 

Substituting 
T
LC  in equation (2.20) 

)tanh(
2

2

kdgTL


  

   = L0 tanh (kd) 

)tanh(
0

kd
L
d

L
d

                   2.26 

Solution of this equation in graphical/tabular form is used to obtain wave length (L) in 

any given depth ‘d’ from the wave period ‘T’ [since 
2

2

0
gTL  ]. 

 

Expression for particle kinematics 

From equation (2.16) and using equation (2.19) an alternative expression for   is: 

)sin(
)sinh(

))(cosh( tkx
kdkT

zdkH



 


                 2.27 

The horizontal and vertical components of water particle velocity (u and w) as well as 

those of accelerations,( u  and w ) are then given by: 

)cos(
)sinh(

))(cosh( tkx
kdT

zdkH
x

u 









                2.28 
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)sin(
)sinh(

))(sinh( tkx
kdT

zdkH
z

w 









                2.29 

)sin(
)sinh(

))(cosh(2
2

2

tkx
kdT

zdkH
t
uu 










               2.30 

)cos(
)sinh(

))(sinh(2
2

2

tkx
kdT

zdkH
t
ww 










               2.31 

Note that the four preceding equations represent the particle velocities that are different than the 

wave velocity or wave speed which indicates the speed with which the entire wave motion 

advances and is a single value for given H, T and d; while the particle kinematics vary from 

point to point and from time to time (at a point). 

 

Expression for water particle displacement: 

Referring to Figure 2.3 if the displacement vector of any particle of water, r , is: 

kir ˆˆ                     2.32 

)sin(
)sinh(2

))(cosh(

0

tkx
kd

zdkHudt
t

 


                2.33 

)cos(
)sinh(2

))(sinh(

0

tkx
kd

zdkHwdt
t

 


   

From equations (2.28) and (2.29) respectively, 

If a1 = 
)sinh(2

))(cosh(
kd

zdkH 
 and b1 = 

)sinh(2
))(sinh(

kd
zdkH 

 

)sin(1 tkxa    

)cos(1 tkxb    

squaring and adding, 

12
1

2

2
1

2


ba
                   2.34 

This shows that the locus of wave particles is an ellipse in any general water depth as 

shown in Figure 2.3. 

In deep water, using equation (2.22) 
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kzeHba
211   

This indicates that the water particles trace out a circle. Further, at free surface, z=0. 

Hence, 

211
Hba   

at z = - 
2
L , HeHba

L
L 02.0

2
2

2

11 






 





 

 which is a negligible quantity. 

In shallow water, using equation (2.21) 

kd
Ha

21    (independent of z) 

d
zdHb

2
)(

1


  

    = 
2
H   at z = 0 

   = 0   at z = - d 

The paths followed by water particles in different depths are therefore as shown in Figure 

2.3. 

 

Expression for the pressure below the sea surface: 

From the linearised from of the dynamic equation (equation (2.15)).  

t
gzp





  

Using equation (2.17) and (2.27), 

)cosh(
))(cosh(

kd
zdkggzp 

                  2.35 

The ratio 
)cosh(

))(cosh(
kd

zdk 
 is called the pressure response factor. 

 

Expression for wave energy: 
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Since the wave particles are disturbed from their equilibrium positions and since they 

move with some velocity they possess potential as well as kinetic energy. The total energy (E), 

per unit plan (also called specific energy or energy density) is: 

    



  


0 0 0

22

2

L

d

L

dxdzwugzdxdzE               2.36 

Substituting the values of u, w,   and simplifying, we get, 

8

2HE 
                    2.37 

or 

 
2

2aE 
                    2.38 

Where, 

a = Wave amplitude = H/2 

 = Specific Weight of Sea Water 

 

Expression for group velocity: 

The velocity with which a group of waves moves, Cg is different than that of an isolated 

individual wave. 

dk
d

k
C

kg







 0

lim                  2.39 

Using the linear dispersion equation (2.19), above equation reduces to 

Cg = nC                   2.40 

where, 

 n = f(kd) = 









)2sinh(
21

2
1

kd
kd                 2.41 

With the help of shallow and deep water approximations, Equations (2.21) and (2.22) 

respectively, it is easy to see that in deep water and in shallow water 

2
0

0

C
C g                     2.42 

 and in shallow water 
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Cg = Cs = gd                   2.43 

 

Expression for wave power or energy flux: 

This is defined as the average rate of transmission of wave energy per unit lateral width 

along the direction of the wave propagation.  

  






 

 


d

T

dzdtuwugzp
T

P
0

22

2
1

              2.44 

Substituting the value of  , p, u and w from the previous expressions, 

ECnCE
T
LHgnP g

8

2

                 2.45 

Finite Amplitude Wave Theories 

General Method of Solution: 

In preceding small amplitude wave theory the wave steepness (H/L) was assumed to be 

small (so that its higher powers became negligible) and the expressions for   and   turned out 

to be 

)0sin(1C                    2.46 

and  

)cos( a                    2.47 

where, 

C1 = f (H, T, d) (see equation (2.27)) 

 tkx   , phase angle 

a = H/2 

When wave steepness value is high, or finite, above assumption becomes no longer valid 

and a different solution for   results. As per different alternative methods to formulate ‘ ’ we 

have different theories like Stokes, Cnoidal, Solitary, Dean’s, etc.under the Finite Amplitude 

category. A general common procedure to obtain the wave properties, in these theories, is as 

discussed below: 

 

First, the   (or  ) is formulated as some unknown function of given H, T, d values 

containing unknown coefficients. This   (or  ) is then made to satisfy the continuity equation, 
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dynamic equation, irrotationality equation and various boundary conditions discussed in the 

previous section. By solving all such equations simultaneously the unknown coefficients are 

established and   (or  ) in turn is obtained. Once   (or  ) is known its derivatives like 

,,,, wwuu   etc. automatically follow. 

 

Stokes Wave Theory: 

The   and   are modelled in Stokes theory using perturbation parameters b and a 

respectively as below: 

)sin(),,(
1

 ndTHb n

M

n

n


                 2.48 

)cos(),,(
1

 ndTHfa n

M

n

n


                 2.49 

where bn and an are initially unknown functions of H, T, d and so also  n and fn. 

The above represented series can be explained to any order (considering powers of (H/L) 

only upto that order) to obtain the Stokes theory of the corresponding order. e.g. in the Stokes 

second order theory, 

)2sin()sin( 21  bb   

)2cos()cos( 21  aa   

where, (b1,b2,a1,a2 are functions of H, T and d) 

The fifth order theory is popular owing to its better prediction of the actual water particle 

kinematics. 

The procedure followed in the fifth order theory to arrive at the values of particle 

kinematics is as below: 

1. From the given values of H, T, d obtain the unknowns   and kd by the two expressions 

given below that result from the application of KFSBC and FSBCs. 

 
d

HBBB
kd 2

)(1 5
5535

2
33                  2.50 

kd tanh (kd)  
2

24
2

2
1 41

gT
dCC                  2.51 
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where Bij,Ci (for various values of i and j) are initially unknown functions of kd as listed 

in Appendix 2.1, which also explains additional symbol Aij used below: 

2. Obtain   using, 

 



5

1
)sin())(cosh(

n
n nzdnk

k
C

                2.52 

 where, 

  15
5

13
3

111 AAA    

 24
4

22
2

2 AA    

 35
5

33
3

3 AA    

 44
4

4 A   

 55
5

5 A   

  4
2

2
11)tanh(  CCkd

k
gc   

3. 



5

1

)cos())(cosh(
n

n nzdnkncu                 2.53 





5

1

)sin())(sinh(
n

n nzdnkncw                  2.54 





5

1

2 )sin())(cosh(
n

n nzdnkncu                  2.55 





5

1

2 )cos())(sinh(
n

n nzdnkncw                 2.56 

4. 



5

1

)cos(1
n

n n
k

                  2.57 

  where, 

    1  

   24
4

22
2

2 BB    

   35
5

33
3

3 BB    

   44
4

4 B   
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   55
5

5 B   

A computer program carrying out all above steps can be easily developed [Chaudhari 

(1985), Kankarej (1992)]. 

 

Cnoidal Theory: 

The general definitions of Cnoidal theory are given in the Figure 2.4.This theory involves 

formulating   in terms of the elliptic cosine or Cnoidal function: 

  )(cos xfSD
gdL







                 2.58 

   = )(...............
!4!2

1
4

42
2

2 xfDSDS 







               2.59 

where, 

1
'''',

,











z

directionxhorizontalthelongaLlengthtypicalchosena
dWaterDepth

  (very small) 

d
zdS 

  [z = vertical co-ordinate from the sea bed; positive upwards.(Figure 2.4)] 

dx
dD   ; 

L
CtxX



  

Solution   of involves elliptic functions, typically the complete Elliptic integral of first 

kind, K (k), where k is the argument depending upon H, T, d and ranging from 0 to 1.The 

application of them to obtain water particle kinematics involves elaborate computer 

programming.  However, for certain application, like determination of wave profile and wave 

length, graphical solutions are available (Wiegel (1965). 

 

Solitary Wave Theory: 

When the value of the argument k of K (k) tends to its upper limit 1,K (k) approaches 

sech (k) and a great simplification in the resulting values emerges. The resulting theory is called 

the solitary wave theory.(See Figure 2.5 for the definition sketch).Solitary theory of second order 

is found to be simple and satisfactory for steep waves in shallow water.(See Sarpkaya and 

Issacson,(1981)). 
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Dean Stream Function Theory: 

Herein, in contrast to previous theories a solution for stream function   is sought for as 

expressed below: 

A reference frame advancing with the same speed is taken so that the flow becomes 

steady and the steady state Bernoulli's equation becomes applicable. (See Figure 2.6)  
































 

M

n
n L

xnzd
L

nXCz
1

2cos)(2sinh 
              2.60 

with M representing the desired order of expression.  

 

Xn are the coefficients that are obtained by following a numerical procedure. The 

resulting computer program is complicated. But tabular aids are available (SPM (1984)). 

 

Trochoidal Wave Theory: 

In this wave theory, the wave profile is idealized to that of a trochoid which is a curve 

generated by the locus of any point on a circle as the circle is imagined to be translating along a 

horizontal line.  

If (x0,z0) are the co-ordinates of the mean position of a water particle then its trajectories 

at any time are given by,  

)sin()exp()2/( 000 tkxkzHxx   

)cos()exp()2/( 000 tkxkzHzz   

These quantities can be further differentiated to yield the velocity components as 

txu   and tzw  . 

 

Method of Complex variables: 

Another technique of getting the wave parameters involves transforming the physical 

region of the fluid bounded by the ocean bottom and the free surface wave profile into an 

annulus region bounded by an outer circle of unit radius representing the free surface and an 

inner circle corresponding to the ocean bottom. The flow in this annulus complex plane is 

potential clockwise vortex whose properties are known and can therefore be mapped on the 
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complex plane of  and  plane. The mapping of the physical plane and the  -  plane can as 

well be done using a perturbation parameter technique. 

 

Non-linear versus Linear Theory 

The profile of a linear wave is symmetrical with respect to the undisturbed or the still 

water level (SWL) whereas in case of a typical non-linear wave height of the crest is greater than 

the depth of the through as shown in Figure 2.7. 

 

As the order of a non-linear theory increases, the crests become more and more steep and 

the troughs become more and more flat. 

 

For design purpose it is assumed that due to wave nonlinearity, the SWL is below the 

level of symmetry (drawn midway, horizontally, between crest and trough) by an amount h0 

given by, 

h0  =    )/2coth()4/(2 LdLH   + higher order terms             2.61 

The higher order terms in the above equation are many times neglected as an 

approximation. 

1. In general the non-linear theories produce larger values of the wavelength, speed as well 

as the particle kinematics. 

2. The paths followed by the water particles is closed, in linear waves while it is open, 

producing a 'drift’, or 'mass transport’ (as shown in Figure 2.8) in case of a non-linear wave. This 

gives rise to a 'mass transport velocity' and the wave celerity needs to be redefined with respect 

to it. 

 

Choice of Wave Theory 

Uniformly acceptable criteria for choosing a particular wave theory are not available 

owing to the fact that no simple theory predicts all wave properties (like, ,,,,, pwwuu  ) 

satisfactorily. Further, steep waves near breaking are not amenable to any wave theory. 

In general the simple Air's linear theory is preferable if the wave has a small steepness, 

the sea is multi-directional, the wave spectrum is broad banded or the structural dimensions are 

such that the inertial forces are dominant than the drag forces. Experiments in the laboratory and 
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those in the sea have shown the adequacy of the linear theory in general and that of the Stokes 

fifth order theory in deep water to predict the particle kinematics. The steeper waves, however, 

fit better into the Dean's higher order analysis. Considering the convergence of the series terms, 

the Stokes theory is useful when water is deeper than 10% of the wave length while the Solitary 

theory is good if it is shallower than 20% of the wave length. In between, the Cnoidal theory 

would give converging results. Experimentally based guidelines are given in Sarpkaya and 

Issacson (1981). Figure 2.9 shows the corresponding chart to select an appropriate wave theory 

among the Linear, Stokes, Cnoidal and Dean's theories. Starting from the given values of wave 

height (H), period (T) and water depth (d), determine the non-dimensional quantities, viz., 

(H/gT2) and d/(gT2). From the former quantity proceed horizontally till you get the point of 

intersection with the vertical line corresponding to the known d/(gT2) value. The location of this 

intersection point indicates the appropriate theory to be chosen. 

 

 

 
Fig  2.1  Fluid Rotation    Fig 2.2  Linear Theory 
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Fig 2.3 Water Particle Displacements 

 

 
 

Fig 2.4 Cnoidal Theory                      Fig 2.5 Solitary Theory        Fig 2.6  Dean’s Theory 

        Definitions 

 

 

 
    

          Linear     Non Linear     Solitary 

 

Fig 2.7 Comparison of Wave Profiles 

 
Fig 2.8 Closed and Open Orbits 
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Fig 2.9 Choice of a Wave Theory (Sarpakaya and Issacson, 1981) 
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Appendix  2.1 

COEFFICIENTS OF STOKE FIFTH ORDER THEORY 

 

s = sinh (kd) 

c = cosh (kd) 
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CHAPTER 3 

RANDOM WAVES 

For the purpose of simplification in the analysis we assume that the waves are regular in nature. 
However, in actual they are random or irregular in their occurrence as well as behavior. 
Successive waves observed at any given location have varying heights, periods and lengths. 
Analysis of such irregular waves measured at a particular site is necessary both from the point of 
knowing more about them over a single sea state as well as for the purpose of deriving the largest 
wave height expected in the lifetime of say a coastal or a harbor facility. The former analysis is 
called short term analysis while the latter is termed as long term analysis. 
 
Before we look into the analysis of random waves we may recapitulate definitions of certain 
basic statistical parameters as under: 
 
3.0.   Basic definitions in random data analysis 
 
Prob (A) = Probability of occurrence of an event ‘A’ 
              = number of times ‘A’ occurred / total number of all events 
 
Ensemble = Collection of all events of a random process 
 
Sample    =  Part of the ensemble selected for analysis 
 
Statistics = various statistical parameters (apart from the branch of mathematics) 
 
Probability distribution function (/Cumulative distribution function/Probability of non-
exceedence) of a random variable: P(x) = Prob. (the variable ≤ a numerical value) 
 

P (x = xn) = P (x ≤ xn) 
 
Probability Density Function (pdf) of a random variable 

P(x) = )(xP
dx
d  

ʃ p(x) = P (x) 

n

n
x

x

xPdxxp 


 )]([)(  

               = P (x = xn) 
               = P (xn) 

Generalizing for all x = xn;    P(x) = 


x

dxxp )(  

n

n
x

x

xPdxxp 


 )]([)(  
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               = P(xn) – (-∞) 
               = P(xn) 

P (x) = 


x

dxxp )(            for all x = xn 

Note: 




dxxp )(   =  P (∞) – P (-∞)   = 1 – 0     = 1 

A common pdf is Gaussian normal given by: 

2

2

2
)(

2
1)( 





 x

exp  

Where σ = standard deviation of x; µ = average of x 
 
Expectations 
 
If f (x) = any function of x;  p (x) = pdf of x,  

E{ f(x)} = 




dxxpxf )()(   = mean of x  =  )(xf  

 
Moment of x :  
 
These are useful in getting shapes of pdf’s and they reprewent the moment of the curve p (x) 
around any vertical axis. 
 
Moments about the origin: 

mn = E { xn } = 




dxxpx n )(  

n = 0;             m0 = 




dxxp )(   = 1 

n = 1;            m1  = 




dxxxp )(  = x    =  E { x } 

n = 2;             m2 = 




dxxpx )(2     =   2x   = E { x2 } = mean of square of x 

Note:  root mean square of x = 2x  
 
Moments about mean (Central moments) 

µn = E{(x – x )n} = 




 dxxpxx n )()(  

n = 0;   µ0 = 




dxxp )(   = 1 
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n = 1;  µ1 = 




 dxxpxx )()(  

n = 2;  µ2 = 




 dxxpxx )()( 2  

               =  dxxpxxxx )()2
2

2




  

               = 
22 2 xxxx   

                = 
22 xx   

                = variance, σx
2 

2
x = x  standard deviation of x 

µ3 = 




 dxxpxx )()( 3  

µ4 = 




 dxxpxx )()( 4  

Joint Probabilities 
 
Let x and y be any two random variables and xn and yn be any numerical values of these 
variables.  Then: 
Joint probability density function of x and y is: 

yx
yyyyxxxxP

yasxyxp nnnn





)();({.(

],[lim),(  

Individual or Marginal pdf: 






 dyyxpxp ),()(  






 dxyxpyp ),()(  

Conditional pdf: 
 

)().(),( ypxpyxp       if x and y are independent 

            = )()( yp
consty
xp


   otherwise 

x
yy

xxxx
P

x
consty
xp n

nn









)
)(

(
)lim()(  

 
Expectation of a function: f(x, y) 
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 








 dxdyyxpyxfyxfE ),().,(),({  

 
Time Series Analysis of a Single Random Variable 
 
Time series indicates a series with chronologically arranged values.  In wave analysis we analyze 
such series by assuming that the wave process in the short term (typically over 3 hr) is both 
stationary (statistics like mean and variance are same over the short term) and ergodic (averaging 
along the ensemble (say means over time t1, over t2,…) same as the one over time axis of a given 
sample).  With this assumption we redefine the earlier statistics as follows: 
 
 
Let      x1 (t) = value of the random variable x1 at time instant t 
        x1 (t+τ) = value of the random variable x1 at time instant t + τ 
             T    = total duration of observations. 
For the variable x1 then: 

Mean  
T

dttx
T

x
0

1 )(1  

Let x (t) = x1 (t) - x  

Variance: σx
2 = 

T

dttx
T 0

2 )(1  

Standard deviation:  σx = 2
x  

Second Central Moment: μ2 = σx
2 

Third Central Moment   : μ3 = 
T

dttx
T 0

3 )(1  

Fourth Central Moment   : μ4 = 
T

dttx
T 0

4 )(1  

Auto-correlation function:  
 
 
It is the average lagged product of neighboring values.  For any time lag ‘τ’,  

R(τ) =  
T

dttxtx
T 0

11 )().(1
  

Auto-covariance Function:    R’(τ) =  
T

dttxtx
T 0

)().(1
  

Note: R (τ=0) = 
T

dttxtx
T 0

)().(1  = variance of x1 
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Power or Energy Spectral Density Function: This is the Fourier Transform of R(τ).  For any 

wave frequency ‘f’,  S(f) = 




   deR fi2)(  

 
 
 
A graph of S(f) versus f is called the wave spectrum.  Note by the property of the Fourier 

Transform:  R(τ) = 




dfefS fi 2)(
 

 
Physical Significance of wave surface spectral density function: S(f) 
 
Let η1 (t) = instantaneous sea surface elevation 
           T = total duration of the wave record (say 3 hr) 

            =  mean of all η values = 
T

T 0
1 (t)dt  1

  

Let us define η (t) = η1 (t) -    

Then Rη (τ) =  
T

dttt
T 0

)().(1
  

 Hence Rη (τ=0) = 
T

dtt
T 0

2 ).(1
  

                          = variance of the sea surface elevation, ση
2 

But since R (τ) and S (f) are Fourier transforms of each other, 

Rη (τ=0) = 




dffS )(  = area under the spectrum = ση
2                                          (3.1) 

Thus the area under a wave spectrum will represent the variance of the sea surface elevation. 
Note: for a deterministic wave (linear) : 
 
 Surface elevation: η(x, t) = a cos (kx - ɷt)                                                 (3.2) 
 
(where, x = horizontal coordinate, t = time instant, a = wave amplitude, k = wave number’ ɷ = 
circular wave frequency = 2πf’.) 
 
 Energy/plan area, E = (1/2) γ a2                                                                (3.3) 
 
For a random wave, we assume that the surface is formed by superposition of many linear waves, 
each having a different frequency, height and further that such a combination is formed by 
adding them randomly or by selecting their phases in a random manner within the interval (0, 
2π). 
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Hence   η(x, t) =  

allj
jjjj ka )cos(      where ߶j

  = random within (0, 2π). 

Comparing this equation with (3.1) it follows from (3.2) that for a random wave, the energy per 
unit plan area is: 

E = 
allj

ja 2

2
1
  

According to Parseval’s theorem in classical spectral analysis: 

 
allj

ja 2

2
1  =  ση

2 

Hence E = γ ση
2 

               = γ 




dffS )(  

Thus the area under the spectrum represents the total energy of the random wave in a given 
record per unit plan area.  Similarly the wave energy, ∆E, within the band of df = S(f)df. 
 
 
3.1 Wave Spectrum Analysis 
 
Introduction 
 

The short term wave analysis is restricted to a single wave record observed for a short 
interval of time (say twenty minutes or half an hour) for which the sea conditions are assumed to 
be stationary (not much change in mean, variance) and are such that the wave properties can be 
studied around mean values. As stated earlier the simplified method of spectral analysis consists 
of characterizing the sea state by superposing a large number of linear progressive waves each 
with different height, period, length and random phase difference (See Figure 3.1). 
Mathematically, this can be expressed as follows: 

                          



M

n
jjjj txkatx

1

)cos(),(      3.2 

Where 
 ),( tx = Sea surface elevation being considered at a point which is at a horizontal 
distance 'x' from any chosen origin and at time instant 't'. 

M = Number of linear waves being added together. 
aj = Amplitude of the jth wave. 
kj = Wave number of the jth wave =  (2 )/Length of the jth wave 

j = Angular wave frequency = (2 )/Period of the jth wave 
     = (2 )x frequency in cycles per second of the jth wave 

j  = Phase of the jth wave assumed to be uniformly distributed over the interval (0,2 ) 
As seen earlier the amplitude of the component wave is related to an important statistical 
function called the Spectral Density Function by the relationship. 

                                     
  )(2 jj Sa      3.3 

where 
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)( jS  = Spectral density function corresponding to the frequency j  for sea surface 
(). 

  = frequency step or interval used in calculating above mentioned function. 
(Note: since area under the spectrum has to be the same S(ɷ) dɷ = S(f) df). 
  
From Equations (3.2) and (3.3), it may be clear that a wave spectrum can be derived from a 
given time history of past observations of sea surface elevations.  The spectrum of waves so 
established is actually a simplified model of the generalized three dimensional representation of 
the sea surface. The wave spectrum has a number of practical applications. Once a wave 
spectrum is known, a variety of information can be deduced from it.    
 
The significant information obtained is that of the wave frequency composition (sea or swell 
components) in a given wave sample. 
 
Further the area under the wave spectrum gives the total energy of the irregular wave system per 
plan area and also the variance value of the water surface fluctuations.  
 
The wave spectra when multiplied by suitable transfer functions yield the response spectra that 
are useful in structural design.  
 
The wave spectrum is also used in generating the random sea in a laboratory.  
The integration of the wave spectrum involving different powers of wave frequencies yields 
important design statistics like significant wave height and average zero cross period. 

Let 



0

)( dffSfm n
n   

   Hence 2

0
0 )(   



dffSm  

                



0

2
2 )( dffSfm   

According to Cartwright and Longuett Higgins, the significant wave height or the average height 
of the highest one third is given by: 
 Hs = H1/3 = 4 0m  
While the average zero-cross wave period is: 

2

0

m
m

Tz    

For the sake of economy as well as convenience in data collection and handling the wave records 
of instantaneous sea surface elevations are collected for about 10 to 30 minutes only, within each 
3 hours’ duration.  The spectral density function for such a short-term record can be calculated 
by two different methods. (Note: Average zero cross period refers to an average of all periods 
defined by up-crosses of the zeroth level or Still Water Level as explained in Figure 3.5. 
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Sometimes a parameter called Spectral Width Parameter ( ) that shows whether a spectrum is 
narrow or broad banded is necessary to obtain, which is given by: 

40

2
01
mm

m
                    

The value of  < 0.75 usually means a narrow banded spectrum. 
 
 
Covariance Method 
 
The surface ( ) spectral density function )( fS  for wave frequency of f is obtained by taking 
the Fourier Transform of auto-correlation function )(R for all time lag values  , i.e. 





0

)()()( dtttR         3.4a 





0

)2cos()(4)(  dfRfS       3.4b 

where, the factor ‘4’ results from the changed limits of integration [(- , ) to (0,  )] for 
avoiding negative frequency considerations and the fact that the area under the spectrum must 
remain same before and after changing the limits, 

)(t  = Sea surface elevation at time t 
 )(  t  = Sea surface elevation at time t   
 

A part of an actual wave record is typically shown in Figure 3.3.  An example of 
variation of )(R  against various lag or  values is given in Figure 3.4 from which it is evident 
that the 'auto-correlogram' shows an oscillatory decay for random ocean waves. As can be seen 
from this figure there is less correlation among the surface elevation values separated by larger 
time lags. The examples of wave spectral plots showing )( fS  versus f are given in earlier 
referred Figure 3.6. 

 
Fast Fourier Transform 
 
This is a faster method (FFT) to arrive at )( fS  values and is very useful when large data are 
required to be handled. This technique however is relatively complex and reference could be 
made to Bendat and Piersol (1986) and Newland (1975). However the principle involved in it is 
given below: 
 
In the covariance method of obtaining )( fS  values, the same exponentials appear several times 
in the calculations. This can be avoided by taking total number of observations (N), say N = 2m, 
or, 3m or 5m,   where m is usually 10 or 11. 
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The actual formulae involved in the use of FFT are different than those used in the covariance 
method. In the FFT, the spectral density function for circular frequency ω (=2πf; f is frequency in 
Hertz) or Sη (ω) is calculated directly from the observed )(t  value, as follows: 















1

0

21 N

j

N
jki

jk e
N



        3.5 

 
where, 

k = Discrete Fourier Transform of N values 
N = Total number of observed j  values 

j  = jth value of the sea surface elevation 
j = 0,.........,N-1 
k = 0,.........,N-1 
I = (-1)1/2 

Then,  kkk T
S 





2)(       3.6 

 If kk f
T

k





2
      3.7 

where 
k = Circular wave frequency 

T = Total duration of observations 
 f = Frequency width = 2/T 


k = Complex conjugate of k  

 
f-w Conversions 

The wave spectrum can be plotted either as a graph of )( fS  versus f, (where f is wave 
frequency in Hz), or that of )(S  versus   (where   is circular frequency in radians/sec). 
In any case, the energy in interval    = Energy in interval df. Hence, 
 dffSdS )()(            3.8 

 
               

 
Theoretical Spectra 
 
When actual measurements of waves and their analysis as above are not intended, theoretical 
wave spectra would provide an approximate alternative. 
 
There are several forms of such wave spectra proposed by different authors. Some of the 
important ones are given below. 
 
Pierson-Muskowitz Spectrum 
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Kitaigorodskii had proposed a similarity hypothesis that the plots of the observed spectra have 
similar shapes if plotted in non-dimensional forms. Pierson-Muskowitz (1964) developed their 
spectrum based on this concept. They assumed that 
 ),,()( fgUS                     3.13 
where 

U = Wind speed 
f = Wave frequency, 

  f 2  
and further carried out dimensional analysis to arrive at a functional relationship for S(f).  This 
involved constants that were determined by analysis of the data of North Atlantic Sea using 
curve fitting techniques. The resulting spectrum is 

 






















4
0

5

2

)( 




 
 eagS                  3.14 

where 
  = Philip constant = 0.0081 (This is independent of U and wind fetch F) 

  = 0.74 

0  = Frequency corresponding to the peak value of the energy spectrum 
      = 2 0f  = g/Uw 

Characteristics wind speed Uw = 

2
1

2
1

2

























gH s

            3.15 

Equation (3.14) depends only on Uw and not on wind fetch, F (the distance over which the wind 
remains the same) or duration  , Hence it is valid for fully developed sea that is produced when 
wind of unlimited fetch and duration blows, in which case the resulting wave height are not 
restricted by F or   and all further input of energy from the wind is dissipated in breakers and 
not in wave growth. 
 
Several alternative forms of equation (3.14) are available. 
We have   wUgffSS /;2);(21)( 0     
Thus equation (3.14) becomes: 

 













4

'

54

2

)2(
)( fe

f
gfS



 


                 3.16 

where, 

 
4

'

2
74.0 










wU
g


  ; = 0.0081                         3.17 

 
Bretschneider Spectrum 
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Bretschneider (1963) had earlier developed a similar form of spectrum but he had given )( fS  
as a function of significant wave height Hs and Ts (which was empirically related to peak-energy 
frequency f0) that are obtained from the SMB curves. The spectrum is described as: 








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




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fff

H
fS                         3.18 

or, 











 



4

5)( fe
f

fS





                        3.19 

where 

16
5 4

0
2 fH s  and 

4
5 4

0f
                        3.20 

Bretschneider spectrum is useful for undeveloped or developing sea, which are more generally 
met with. 
 
JONSWAP Spectrum 
 
A group led by Hasselmann et al. (1973) conducted wave observations under the Joint North Sea 
Wave Project (JONSWAP). They analyzed data collected in the North Sea and found out that the 
PM spectra underestimate the spectral peaks, which could be due to the assumption of fully 
developed sea conditions. Hence Hasselmann et al. suggested a new form of spectrum shown 
below that incorporates a peak enhancement factor ( ). 
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 where in 
   = 1.25                 3.22(a) 

  
22.0

2066.0










U
gF                3.22(b) 

  07.0 if 0                  3.22(c)                            
      = 0.09 if 0                           3.22(d) 

  0 = peak-energy frequency = 2.84 
33.0

2











U
gF  

   = 3.3 average                 3.23 
 
Scott Spectrum 
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This is a modified form of the Darbyshire spectrum and it is based on data at  a different site 
(Scotts 1965). This could be expressed in terms of Hs. 

 
 

2
1

0

2
0

26.0065.02214.0)( 






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






 


 eHS s                 3.24 
for  0.26 < 0  < 1.65 
         = 0 otherwise 

0  is obtained by 0)( 


S
d
d  

This is found to be good for Indian Conditions (Dattatri (1978) and Narasimhan and Deo (1979)) 
along with the Scotts Wiegel Spectrum explained subsequently. See Figure 3.6 as an example. 

 
Scott-Wiegel Spectrum 
 
Wiegel (1980) replaced the two constants (0.214 and 0.065) involved in the Scott spectrum by 
variables A  and B . 

 
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
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


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 B
s eHAS                  3.25 

A  and B  are given in tabular form as a function of Hs.  
 

 
3.2 Wave Statistics 
 
The objective of the above mentioned spectral analysis was to derive wave spectrum for every 
short term record and obtain a variety of information out of it.  Complimentary to this we carry 
out statistical analysis of short term records to get various types of probability distributions of 
wave heights and wave periods and know design and operational values of the same from them. 

 

Short term Wave Statistics 
 
 
The Gaussian normal probability function describes the probability structures of naturally 
occurring processes well.  Thus if η represents the sea surface elevation at any time instant ‘t’ the 
its probability density function p (η) and distribution function P (η) can be respectively give as: 

            
2

2

2
)(

2
1)( 



 




ep ;     and      




  dpP )()(  

Where,  
T

dt
T 0

222 )(1
    and 

T

dtt
T 1

)(1   

Where, T = record duration 
 

Assuming that (i) probability distribution of instantaneous water surface fluctuations is 
Gaussian normal and (ii) the wave energy is confined to a narrow range of frequencies, the 
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probability density function of individual (or successively occurring) wave heights (H), which is 
two times the wave amplitude, is given by a typical 'Rayleigh distribution' 
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24

)( 
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eHHp


                  3.26 

where 2
  variance of the sea surface elevation. 
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81)()(   

Based on this assumption the height H of all waves exceeding a numerical value H’  can be 
derived and thus it can be shown that: 

03/1 44 mHsH     (average height of the highest 1/3 of all waves) 

08.510/1 H                   (average height of the highest 10% of all waves) 

67.6100/1 H                  (average height of the highest 1 % of all waves) 
 
The expected value of the maximum wave (or the most probable maximum wave) height  in a 
given duration can also be shown to be derived as: 
 

NHsHHE nlog705.0}{ maxmax   
Where N = total number of waves in the given duration of time. 
Based on the assumption of the Rayleigh distribution function Hs can be related to the root-mean 
square (rms) wave height as under: 
 H1/3  = 1.416 Hrm

;  H1/10 = 1.8 Hrms
;   Hmax = 2.172 Hrms                      3.30 

 
Knowing any one wave height, we can compute other wave heights by the preceding relations.  
An example of a typical short-term wave data analysis at an Indian location can be seen from 
Narasimhan and Deo (1979, 1980, 1981). Figure 3.7 shows how the observed data at Bombay 
High satisfactorily matches with the theoretical distribution of Rayleigh. 
 
 The statistical distribution of wave periods can also be described by theoretical 
distributions; though its use is very much restricted in practice. Typically if Tz is average zero 
cross period, the probability density function of individual wave period (Tz) is given by 
(Bretschneider, 1977). 
 
     4443 675.0exp7.2)( zz TTTTTp                 3.31 
 
There is generally a lack of strong perceptible correlation in the joint occurrence of wave height 
and wave period values. This can be seen from Figure 3.8 which shows that a given wave height 
can occur along with a range of values of wave periods and further that the largest waves are 
rarely associated with the longest periods. 

 
Tucker’s Method 
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Tucker’s  method is a quick and simple method for analyzing wave data and is based on 
observing only a few larger surface fluctuations of the sea state along with the total number of 
waves in that sea state. Tucker (1963) assumed the nature of wave spectra as narrow banded and 
gave the following expression to determine the root-mean-square wave height of the record. 

    1212
1

1
2

1
247.0289.01)2(2 

 HHrms             3.31a 

         =     1212
1

2
2

1
103.0289.01)2(2   H             3.31b 

H1 = A+C ; H2 = B+D ; zNlog  
where , 
A = Height of the highest crest in the given record above SWL 
B = Height of the second highest crest above SWL 
C = Depth of the lowest trough below SWL 
D = Depth of the second lowest trough below SWL 
Nz = Total number of zero up-crosses in the record. 
 
For typical wave records collected at Bombay High, Figure 3.9 shows the extent of agreement 
between the Hrms values calculated by using Tucker method and those obtained directly from the 
entire record. It may be seen that despite the fact that the Tucker's method relies only on few 
observations of the highest and the second highest waves instead of the entire record, it gives 
satisfactory estimation of Hrms value. 

 
Long-term Wave Height Statistics 
 
Most of the structures are designed to withstand the design significant wave height having a 
return period of 100 years or so. Such a design wave can be derived from the long-term statistical 
distribution of Hs values.  
 
The pre-requisite for the long term description of the wave heights is that of collection of short 
term (or 3 hourly) wave records over duration of at least one year and preferably more. From 
each short-term wave record, a pair of significant wave height (Hs) and average zero cross period 
(Tz) is derived. These data are often summarized in the form of a scatter diagram shown in 
Figure 3.10. 
 
The mean, variance and other higher distribution moments of Hs are then calculated. These are 
used to establish one of the few theoretical long-term distributions of Hs as given below: 

The data of significant wave height can be managed and used in three different ways for 
doing extreme value analysis (Goda, 2000).  

a) Total sample method/initial distribution method/Cumulative Distribution Function 
method: This method utilizes the entire observed data to fit to some distribution function 
to obtain the Cumulative Distribution Function (CDF). The best fitting CDF is identified 
and extrapolated to a given period of years.  According to Herbich (1990) the total 
sample method has drawbacks including lack of independence and deviation of observed 
distribution from the fitted one at the upper tail. However, according to U K Department 
of Energy (1987) the total distribution method is justified because when a large number 
of regularly measured wave height values are used, lack of independence between 
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neighbouring values is offset by the huge volume of data and further because of 
negligible difference between the N-year return period wave height values derived from 
both total population and annual maxima at higher values of N. 

b) Annual maxima method: In this method the highest wave in each year is considered for 
the analysis. 

c) Peak Over Threshold (POT) method: The wave heights above a certain arbitrarily 
introduced threshold value are considered for further analysis in this method based on 
selecting a population of stroms. A storm is defined as the time when the wave height 
exceeds this threshold. The threshold ensuring independece could theoretically be 
obtained by correlation analysis.  
  

Data used in the analysis should ideally be statistically independent, with least correlation 
between the data and homogeneous, with the sample having common parent distribution. Annual 
maxima method and POT method both satisfy the requisite of independency. However, the 
length of data in such cases many time is many times too less in this case. 

The mean rate of extreme event is denoted by λ. It is defined with the number of events NT 
during the period K years as 

 
 
 

 

The Probability Distributions 

Several probability distributions have been used or proposed to describe extreme wave statistics. 
These include the log-normal and Extremal Type I, II and III probability distributions.  
Gumbel and Weibull distributions have been the most commonly used distribution functions 
used for fitting wave data (Forristall, 1978; Longuet, 1980; Vikebø et al., 2003; Kumar and Deo 
2004; Panchang and Li, 2006; Muraleedharan et al., 2007; Neelamani et al, 2007a, 2007b; 
Persson and Rydén, 2010). These two methods are used in the current study. 

Gumbel Distribution 

Gumbel was the first to develop a statistical method for predicting the extreme values of natural 
random events. This method has been later adopted by ocean engineers to predict extreme wave 
events. The Cumulative Distribution Function (CDF) for the significant wave height, Hs in 
Gumbel distribution is given by Eq (3.2) 
 

 
 
 

Where 
γ  : location parameter and β : scale parameter  

 
 

 
 

 : mean of all Hs values  
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 : variance of all Hs values  

Weibull Distribution 

Weibull (1951) introduced a distribution function which got wide acceptance from ocean 
engineers for fitting wave data. The CDF for the significant wave height, Hs in Weibull 
distribution is given by Eq (3.5) 
 

 
 
 

where 
γ : location parameter, β : scale parameter and α : shape parameter 
There are two versions of this distribution: two parameters and three parameters Weibull 
distribution. In the two parameter Weibull distribution, the location parameter ( ) is taken as 
zero.  
 
Parameter Estimation 

Parameters of the distribution need to be estimated to find the CDF of the selected distribution. 
Methods commonly employed for this purpose include plotting on probability paper, method of 
moments, method of least square and method of maximum likelihood. Details of these 
techniques are given in Appendix 3.1. 
The parameters of the Gumbel distribution are straight forward to determine from Eq (3.3) and 
(3.4) using sample mean and variance. However, Weibull distribution parameters need to be 
estimated by adopting a specific method like plotting points in a probability paper, Method of 
Moments(MOM), Method of Least Squares (MLS) and Method of Maximum Likelihood 
(MML).  MML is a commonly used procedure in estimating distribution parameters (Al-Fawzan, 
2000). It has been reported to be used in parameter estimation for distribution fitted to waves 
(Panchang and Li, 2006). This method can be better than the other methods (such as the plotting 
position method) since it provides estimates that are consistent and asymptotically efficient and 
no other estimator has a smaller variance (Panchang and Li, 2006). 
 
Design Wave Height Estimation 

Once the distribution is selected and the parameters estimated, based on the return period 
required for the design, the design wave height can be estimated.  The return period, Tr, is 
defined as the average time interval between successive events of the design wave being equaled 
or exceeded. The return value is the threshold value which defines a given return period. 
Then return period and return value are given by Eq (3.6) and (3.7) 
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Various recommended practices for extreme wave analysis are discussed by Mathiesen et al., 
(1994). 
To summarise, the standard procedure in the analysis of extreme statistics of significant wave 
height data is: 
 
- Select data for analysis 
- Fit a candidate distribution to the observed data 
- Calculate the parameters 
- Check the goodness of fit of the selected distribution 
- Compute (extreme) return values from the fitted distribution 
 
Detailed explanation of the statistical distributions, fitting procedures and goodness of fits and 
other relevant procedures can be found in standard books and reports such as Sarpkaya and 
Issacson (1981), World Meteorological Organization (1988), Chakrabarti (1987), Goda (2000), 
Thompson (2002), Massel (2005), Kamphuis (2006). 
 
Appendix 3.1 

Extreme Wave Analysis 

The extreme wave height values are generally determined by two basic methods 
a) from grouped data from a complete long-term data set and  

b) from ordered data derived using a limited number of extreme values(Kamphuis, 2006) 

 

Statistical Analysis of grouped wave data 

In this method various probability distributions are fitted to the available. These include the log-
normal and Extremal Type I, II and III probability distributions.  
 
Log-normal Distribution 

If random variable Y = log(X) is normally distributed, then X is a random variable with a log 
normal distribution. The distribution has two parameters μ (mean, β) and σ (standard deviation, 
α). To estimate the parameter by regression, the equation can be rearranged as 
 

 
 

 
where  
 

 ; ;  ;   … 
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Plot of lnHs vs Z (reduced variate) gives a straight line if the data is log-normally distributed 
with the equation of the best fit line as Z=A (lnHs)+B. From this the parameters of the 
distribution can be estimated. 
 

Fisher-Tippett I distribution (Double exponential/FT-I/Gumbel) 

CDF for the significant wave height, Hs in Gumbel distribution is given by  
 

 
 
 

where 

 

 
 : mean of all Hs values 
 : variance of all Hs values 

 
 
This may be linearized by taking the logs of both sides 
 

 
 

 

The reduced variate Z can be plotted against Hs to obtain a straight line with equation of the best 
fit line as provided the data follows this distribution. 

 ; ; ;   
 
 

Fisher-Tippett II distribution (FT-II,  Frechet distribution) 

 
 
FT II type of distribution is widely used in ocean engineering for predicting extreme events 
associated with winds and waves. 
 
PDF of FT-II is given by 
 

 
 

 
 
It can be linearised by taking log on both sides to obtain 
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Taking log again 

 
 

 
 

; ;  ;   
 
In the linear expression  
Plotting  vs  will yield a straight line if the data set follows FT-II distribution, 
from which slope, A, and intercept, B, can be estimated to calculate the parameters. 
 
Fisher-Tippett III distribution (FT-III/ Weibull Distribution) 

The above distributions have two parameters. A more versatile extreme value distribution is the 
three-parameter Weibull distribution. The cumulative distribution function (CDF) for the 
significant wave height, Hs in Weibull distribution is given by  
 

  

 
For particular parameter values, this distribution reduces to Rayleight distribution (when α = 2, ε 
= 0) or to exponential distribution (when α =1). There are two versions of this distribution: two 
parameter and three parameter Weibull distribution. In the two parameter Weibull distribution, 
the location parameter ( ) is taken as zero. 
If  

  

 
By taking the logs of both sides: 

 
 

This can be rearranged as 

 
 

 
A plot of reduced variate Z with Hs will yield a straight line with best fit equation Z=A(Hs)+B 

; ; ;    

 
Weibull distribution has three parameters ( ,  and ). Linear regression provides only two 
constants (A and B). To use linear regression, trial and error is done to determination of third 
coefficient ( ). Assuming different values of  will change the curvature of the points. The 
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parameter  in the Weibull distribution is a lower limit of H (when H= , Q=1 or P=0). Thus  is 
theoretically equal to the threshold value in a POT data set.  
 
 
Estimation of distribution parameters 

Distribution properties depend upon the parameter values assigned to them. The parameter 
values should be determined to provide the best empirical fit between the distribution and the 
data. Simplest approach is to plot the individual data points on the selected probability paper and 
then draw a straight line through these by visual observation (Type III, α chosen in advance). 
The slope and intercept can be estimated and parameter calculated as explained in the previous 
section. Other techniques employed in determining the parameters are 
 
a) Method of Least Square (MLS) 
 The parameters obtained using this method corresponds to the minimum quadratic 
difference between the data points and a theoretical straight line. It is the most basic form-
directly applicable to log-normal, TypeI, Type II distributions. Method gives slope A and 
intercept B of best fit line Z=AX+B in terms of coordinates of all data points. 
 
b) Method of Moments (MOM) 
 In this method first two or three moments of the distribution are equated to those of the 
data, establishing a relationship between the parameters to be estimated and the sample mean, 
variance and skewness.  
 
c) Method of Maximum Likelihood (MML) 
 MML attempts to estimate parameter which would give the data sample the highest 
probability of being observed in its particular form. The method results in estimating parameter 
which are unbiased and have a relatively small variance. 
 
Let the random observations be x1, x2,…, xn and the unknown parameters be ϴ1, ϴ2,…, ϴm. 
Their joint probability probability distribution is px(x1, x2,…, xn; ϴ1, ϴ2,…, ϴm). Since for a 
random sample the xi’s are independent their joint distribution can be written px(x1; ϴ1, ϴ2,…, 
ϴm) px(x2; ϴ1, ϴ2,…, ϴm)… px(xn; ϴ1, ϴ2,…, ϴm). This is proportional to the probability that the 
particular random sample would be obtained from the population and is known as likelihood 
function. 

 
 

 
The values of these m unknown parameters that maximize the likelihood that the particular 
sample in hand is the one that would be obtained if n random observations were selected from 
px(x; ϴ1, ϴ2,…, ϴm) are known as the maximum likelihood estimators (Haan, 1977). The 
parameter estimation procedure becomes one of the finding the values of ϴ1, ϴ2,…, ϴm that. 
Maximization of the likelihood function can be done by taking the partial derivative of L(ϴ1, 
ϴ2,…, ϴm) with respect to each of the ϴi’s and setting the resulting expression equal to zero. 
These m equations in m unknowns are solved for the m unknown parameters. Since most of the 
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common density functions have an exponential form, the maximum likelihood estimator is 
obtained by maximizing the logarithm of L. 
The values of distribution parameters, resulting from these methods, will be different for the 
same sample of data. 
 
Goodness of fit 

Distribution which best fit to the observed data need to be selected as the most probable 
parent distribution. Goodness of fit test is done to reject or accept the distribution and to choose 
between various fitted distributions. Various available tests include Kolmogorov-Smirnov, Chi-
square and correlation coefficient. 

a) Correlation coefficient 

When the parameter estimation is done by the least square method, the degree of goodness of fit 
is simply represented with the value of correlation coefficient between the ordered data  and 
its reduced variate ; nearer the coefficient towards 1, better is the fit. 

b) Chi-Square Test 

In this test a comparison between the actual number of observations and the expected number of 
observations (according to the distribution under test) that fall in the class intervals is done. The 
test statistics is calculated from the relationship 

 
 

Where k is the number of class intervals,  is the observed and  the expected number of 
observations in the ith class interval. The distribution  is a chi-square distribution with k-p-1 
degree of freedom where p is the number of parameters estimated from the data (eg., p=3 for 
Weibull distribution) and α, the significance level. The hypothesis that the data are from the 
specified distribution is rejected if 

  

c) Kolmogorov-Smirnov Test 

In this test, a distance statistics, D, which gives the largest vertical distance between observed 
and theoretical CDF is evaluated. 

1. Let Px(x) be the completely specified theoretical CDF under null hypothesis 

2. Let Sn(x) be the sample CDF based on observed x 

3. Determine the maximum deviation, D  

  

4. If for the chosen significance level, the observed values of D are greater than or equal to 

the critical tabulated value of Kolmogorov-Smirnov statistics, the hypothesis is rejected 

(Haan, 1977). 
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Use of chi-square and Kolmogorov-Smirnov test is discouraged by hydrologists when testing 
hydrologic frequency distributions as the hydrologic frequency distributions are important at the 
tails, but these statistical tests are insensitive in the tails of the distributions. 

 
 d) Confidence Interval 

Once a distribution has been fitted to a set of data by one or more methods, it becomes desirable 
to appraise the closeness of fit of the data points to the fitted distribution. The scatter data may 
best be described in terms of confidence limits on either side of the fitted line. The curves on 
either side of best fit line provides a series of confidence bands which indicate the confidence 
attached to any particular data point. 
 
Design Wave Height Estimation 

The probability that the extreme variate Hs does not exceed a given value  in one year is 
, the CDF, by definition. If event of  occurred in one year - Hs did not exceed 

 during the other n-1 years and exceeded   in nth year. Probability of non exceedence for 
n-1 years is given by and that of exceedence in one year is 1-F(Hs u), the probability 
of the above event is 

     
 

The expected value of n is the return period by definition 

 
   

Return value 

 
 

In case of POT with mean rate λ, each year is divided into segments of 1/λ year by assuming that 
each time segment has the same probability of extreme events. Then return period, return value 
and exceedence probability are given by 

 
 

 
 

 
 

 
For Log-normal distribution Eq D.1 and D.2 yields 

 
 

Or 
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For Gumbel distribution Eq D.4 and D.5 gives 

 
 

For Weibul distribution Eq D.14 and D. 15 produces 

 
 

Using Eq D.28 and D.29, for a given return period, value of Hs can be calculated for Gumbel and 
Weibul distributions. 
Encounter probability, E, is another quantity used in selecting design wave. This is the 
probability that the design wave is equaled or exceeded during a prescribed period, L, say the 
design life of a structure. The relationship between these quantities along with return period,  , 
and recording interval r is 

 
 

When r is associated with the largest wave height during a year 

 
 

eg: Return Period (Tr) giving rise to an encounter probability (E) of 0.1 for a design lifetime 
L=100 years is 949 years. 

Statistical Analysis of ordered data 

Statistical analysis of ordered data is carried out in the following stages: 
 Data of wave height collected over a long time, or hindcasted is arranged in 

descending order with largest wave having rank m=1 and the smallest wave with 

rank m=N, where N is the number of observed data points. 

 The data is assumed to follow a randomly chosen distribution (based on prior 

knowledge/literature) 

 A plotting formula is used to reduce the data to a set of points describing the 

probability distribution of the wave heights. 

 These points are plotted on an extreme value probability paper corresponding to 

the chosen distribution 

 A straight line is fitted through the points to represent the trend and if the points 

are not fitting into a straight line a different distribution is selected and the process 

repeated 

 The line is then extrapolated to locate a design value corresponding to a chosen 

return period Tr, or a chosen encounter probability E. 



70 
 

 
Plotting Formula 

In order to plot data, a value of P(H) is assigned to each value in sample. Data ordered and 
assigned a rank, m=1 for largest wave till m=N for smallest wave. 
A simple estimate of the exceedence Q(H)=1-p(H) for each of the N heights is then given as 

 
 

 
This plotting formula has been demonstrated to introduce a bias peculiar to the distribution being 
estimated. A more general plotting formula may be 

 
 

3.1 gives the coefficients for so-called unbiased plotting position for each distribution. As α 
influence both the plotting position and the curvature of the weibull graph, some trial and error is 
necessary. The line of best fit for these points can be determined using the method of moments, 
the method of maximum likelihood or the least square analysis. 
 
Table 3.1: Coefficient for unbiased plotting position for various distributions (Source: Kamphius 
(2006) and Goda(2000)) 
 
Distribution   
Log-normal   
Gumbel   
FT-II    
Weibull   
 
Summary 
 
Examples of derivation of long term distribution of wave height, (Hs) and design wave height 
can be seen in Deo and Burrows (1986), Deo and Venugopal (1991), Goswami et al. (1991), 
Kirankumar et al. (1989), Pagrut and Deo (1992), Soni et al. (1989), Baba and Shahul Hameed 
(1989) and Baba and Kurian (1988). 
 
Derivation of the distribution parameters like  and u using Equations (3.32b) and (3.33) 
involves use of what is called the method of moments to fit the data where the underlying 
equations are worked out by equating the sample moments to the population moments. 
Alternatively, a least squares approach as well as the method of maximum likelihood functions 
can also be employed to obtain the distribution parameters like  ,u, A, B, C (Sarpkaya and 
Issacson, 1981). However, these techniques are more laborious and need not necessarily mean a 
better accuracy in the resulting estimates. 
 
For better accuracy in the estimation of design Hs values, some times, the derived distribution of 
observed Hs values (i.e. P(Hs) versus Hs) is fitted to all the four theoretical distributions as 
mentioned above. Then the theoretical goodness of fit criteria, like the Chi-square test, 
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Kolmogorov-Smirnov test or Confidence Bands are applied to choose one particular distribution 
that most closely fits the observed Hs distribution. The prediction of 100 years Hs value is 
thereafter made based on this 'best-fit' distribution. (See Soni et al. 1989 for more details). 
Following example will illustrate the simple method to get the design Hs having a return period 
of say 100 years. 
 
Example: Annual data of significant wave heights collected for a site along the East coast of 
India is given below: 
Hs (in m)      0  1 2 3 4 5 
No. of observations  1198 999    322      112      15          2 
Obtain the design Hs value corresponding to 100 years return using the Gumbel distribution. 
 
 
Solution: 
Gumbel distribution is 

 
   usHe

s eHP




)(  

where,   2
126 sH   and   /5772.0 sHu  

  NHH ss /  
     = [0.5(1198)+1.5(999)+2.5(322)+3.5(112)+4.5(15)+5.5(2)]/2648 
     = 1.27 m 

  NHH ssHs
/][ 22    

= [1198(0.5-1.27)2+999(1.5-1.27)2+322(2.5-1.27)2+112(3.5-1.27)2+15(4.5-1.27)2+ 
2(5.5-1.27)2]/2648 

         = 0.76 

   2
126 sH   

     =  /[6(0.76)]1/2 
     = 1.47 
   /5772.0 sHu  
    = 1.27-(0.5772/1.47) 
    = 0.877 
For 100 years, P(Hs) = 1-1(8*365*100) = 0.999 99 66 

Hence from 
   usHe

s eHP




)( ,  Hs = u + [-ln-ln(0.999 99 66)]/  
           = 0.877 + [-ln-ln(0.999 99 66)]/1.47 
           = 9.44 m 
 
Long Term Distribution of Individual Wave Heights: 

The long term distribution of individual wave heights was initially derived by Battjes and 
subsequently modified by Burrows as below: 

   





M

i
zizisiLT TWTHHHP

1

1122 /2exp0.1)(               where, 
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P (H)LT = Long term distribution of individual wave heights 
H = Individual wave heights 
M* = Corresponds to limiting value of Hs at the site say due to water depth 

Hsi = Midpoint Hs value corresponding to ith row of (Hs, Tz) scatter diagram  
(See Figure 3.11) 

  









allj allj
ijijzjzi WWTT  

where, 
Tzj = Tz value corresponding to the jth column of (Hs, Tz) scatter diagram 
Wij = Total number of occurrence of Hs values in the (i, j) interval 

Wi = )5.0()5.0( sissis HHPHHP  obtained from the underlying observed 
and fitted distribution of Hs. 

W = 
alli allj

ijW  

P() = Cumulative distribution function of () 
sH = Class width of Hs in the (Hs, Tz) scatter diagram 

 





M

i
iziz WTT

1
 

A design individual wave height having a return period of 100 years is derived by reading the 
value of H from such a distribution curve that corresponds to a cumulative probability, 











)100*365*24*3600/11)( zTHP  since 


zT  represents average number of waves per second 

in the long term. Figure 3.11 shows an example of long-term distribution of H values using the 
above equations. 
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TABLE 1 
A Part Of The Typical Computer Printout For Spectral Analysis (DATE 2.7.78) 
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Fig 3.1 Superposition of Linear Waves 

 

Fig.: 3.2 Examples of Wave Spectra 
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Fig 3.3 Typical Wave Record 

 

 

Fig 3.4 Correlogram 
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Fig 3.5 Individual Wave Periods    

 

Fig 3.6 Comparison of Wave Spectra 

 

Fig 3.7 Wave height Distribution 
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Fig 

3.8 Joint Distribution of Wave Height and Period 

 

 

Fig 3.9 Tucker Method 
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Fig 3.10 Scatter Diagram (Wave data off Machilipatnam-From 9.5.83 – 18.12.83) 

 

 

Fig. 3.11 Long Term Distribution of ‘H’ 
(Underlying Hs distribution – Weibull) 
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CHAPTER 4 

WAVE PROPAGATION 

When waves move from deep to shallow water their heights and angles of propagation 

change due to the change in water depth. This is caused by the effect of wave shoaling, refraction 

and breaking. Further, if waves meet a barrier, like breakwater, they get diffracted or reflected or 

both and this additionally causes change in wave heights and direction of their propagation.  

There is also a possibility of bottom induced diffraction and run up over a barrier structure. 

 
4.1 Wave Shoaling 

 
The change in water depth (d) produces corresponding change in the wave speed (C), 

which in turn modifies the wave group velocity (Cg). However, as the energy flux P (=E. Cg) 

always remains constant, the energy (E) also changes. This gives rise to change in wave height 

(H) as E   H2. Equating the flux in deep water to the one in intermediate water, we get from 

linear theory, 

H = KsH0         4.1 

where, 

H = Wave height at any given water depth 

H0 = Wave height in deep water 

Ks = Shoaling coefficient Ks = 
nC
C

2
0   

C0 = Deep water wave speed 

C = Wave speed in intermediate water 

N = f (kd) = 







)/4sinh(

/4
2
1

Ld
Ld


  

 

4.2 Wave Refraction 
 

Referring to Figure 4.1, when deep water wave crest line strikes the sea bed contours at 

some non-zero angle, it tends to change its direction and align its wave crest with the sea bed 

contours. This is called the wave refraction. It occurs due to the fact that since the wave speed is 
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proportional to the water depth, the part of the crest line on the landward side of contours moves 

slowly than the one in the seaward side. Wave refraction causes change in the wave height and 

direction (or pattern) of wave approach. Using the linear wave theory and assuming no lateral 

transfer of wave energy, it is possible to show by equating flux before and after refraction that: 

H = KsKrH0         4.2 

b
bK r

0  

b0 is a chosen distance between any two orthogonals (direction of wave travel) before 

refraction and b is that after refraction. (See Figure 4.2) 

 
If the contours are roughly straight and parallel, 

)cos(
)cos( 00





b
b

         4.3 

where, 

0 = Angle made by the incident crest line with the bottom contour over which it is 

passing 

  = Angle made by the refracted crest line with the next bottom contour. 

 
The value of b for given b0 can be determined by following a graphical procedure (SPM 

1984) which is called ray or orthogonal method. This method is briefly outlined in Appendix 4.1. 

By analogy with refraction of an optical ray the value of refracted angle   can be determined 

using: 

 
)sin(
)sin( 00





C
C

         4.4 

Where C0 and C are the wave speeds before and after refraction, respectively. 

 
Example: 

A wave has 3 m height and 7 seconds period in deep water. It travels towards shore over parallel 

bed contours. If its crest line makes and angle of 300 with the bed contour of 10 m before 

refraction, calculate the wave height after crossing this contour line. 
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Data:   d/L0   d/L0   n 

   0.1300   0.1655   0.7621 

   0.1310   0.1674   0.7606 

Solution: 

 
2

2

0
gTL  =1.56(7)2 = 76.5 m 

d/L0 = 10/76.5 = 0.1307. This gives d/L = 0.1671 and n = 0.7616 from data. 

Hence, L=59.84 m ; C= L/T = 59.84 / 7= 8.55 m/sec 

 C0 = L0/T = 76.5 / 7 =10.93 m/sec 

Now, 
)sin(
)sin( 00





C
C

 10.93/8.55 = sin 300/sin  and hence  =23.020 

 
b
bK r

0 = (cos 0 /cos  )1/2 = (cos 30 /cos 23.02)1/2 = 0.97 

 Hr = KsKrH0 = 
nC
C

2
0  KrH0 = )3)(97.0()]55.8)(7616.0(2[

93.10  = 2.76 m. 

 

4.3 Wave Diffraction 
 

In the harbour area, waves get diffracted or scattered when they strike a barrier like the 

tip of a breakwater (Figure 4.3). Unlike refraction, diffraction of waves involves energy transfer 

laterally along the crest line. Height of the incident wave as well as the pattern of its direction 

changes following diffraction. Based on analogy with optical diffraction, contours of equal 

diffraction coefficient (i.e. the ratio of diffracted to incident wave heights) have been presented 

(SPM 1984) for a single as well as a pair of breakwaters under regular wave attack. Figure 4.4 

and 4.5 indicates two such typical cases involving incident wave attacks at angles of 30 and 120 

with the length of a single breakwater, while Figure 4.6 and 4.7 show the isolines of diffraction 

coefficients in case of a pair of breakwaters spaced with two different gap lengths in between. If 

the gap length is more than two times the incident wavelength then each breakwater is assumed 

to diffract waves independent of each other. Before using these diffraction diagrams care has to 

be taken to reduce or enlarge them so that the linear scale of the diagram is same as the one of 

the given hydrographic chart showing the breakwater location. An irregular wave attack will 

involve a combination of many wave frequencies, each with an associated wave height (or 
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energy density function). Diffraction for each constituent wave can be obtained separately and 

combined as per the directional spreading of wave energy. This has given rise to diffraction 

diagrams to obtain significant wave height and period of diffraction of an irregular wave from a 

breakwater or through a gap of two breakwaters (SPM 1985). (See Figure 4.8 as an example). 

Generally irregular waves indicate higher diffracted heights than the regular ones and further, a 

larger energy spread of the irregular incident waves is found to produce still larger wave heights. 

 
Example: Confused sea waves are striking approximately normally against a semi-infinite 

breakwater in 6 m deep water with Hs = 2.5 m and Ts = 10 sec. 

What are the values of Hs and Ts at a location 400 m behind and 400 m on the lee of the 

breakwater? 

 

Solution: 

2

2

0
gTL  = 1.56(10)2 = 156 m 

d/L0 = 6/156 = 0.03846. This gives from the Tables given by SPM (1984), 

d/L = 0.0816. Hence L = 75.53 m 

x/L = 400/75.53 = 5.3 = y/L 

Smax = 10 

For the above values, height ratio = 0.31 and period ratio = 0.87 from Figure 4.8. 

Hence, Hs = (0.31) 2.5 = 0.78 m and Ts = 0.87 (10) = 8.7 sec. 

 

4.4 Wave Reflection 
 

After striking a barrier the waves may have their energies swept back. Such a reflection 

of waves is undesirable for coastal or harbour structures. The amount of reflection depends on 

the barrier characteristics as well as properties of the incident waves. Slope of the obstruction, its 

permeability and roughness together with steepness of the incident wave and its angle of 

approach determine the amount of reflection. Reflected wave heights will be higher if barrier 

slope is steep, its permeability is low and if its face is smooth. Steeper waves will undergo more 

dissipation and less reflection. Wave attack that is normal to barrier length will produce more 

reflection than the obliquely striking waves. 
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Based upon the work of Seeling and Aherens (1981), SPM (1984) recommends graphs to 

determine the coefficient of reflection (Kr), defined as the ratio of reflected to incident wave 

heights), for beaches, plane slopes and rubble mound breakwaters and other protected slopes as a 

function of the Surf Similarity parameter, which is defined as below: 

0

tan
LH i

           4.5 

where, 

 = Reflecting slope angle 

Hi = Incident wave height 

L0 = Deep water wave length 

 
SPM (1984) also presents further graphical relationships to obtain the amount of 

reflection due to a sudden change in water depth and because of wave movement over bed 

ripples. 

When an incident wave gets reflected from a smooth, vertical and an impermeable wall (Figure 

4.9) it undergoes a pure reflection. Let the profile of the incident linear wave be given by: 

 













 

T
t

L
XH i

r  2cos
2

       4.6 

where, 

i = Sea surface elevation above SWL 

Hi = Height of the incident wave 

X = x co-ordinate where i  is considered 

t = time instant 

L = Wave length 

T = Wave period 

The reflected wave will propagate in opposite direction and will have the profile: 

 













 
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2

       4.7 

The resultant profile then becomes 
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 














T
t

L
XH iri

 2cos2cos      4.8 

 
This indicates that the resultant wave will have an amplitude equal to height of the 

incident wave (Figure 4.9). The water particles at the nodes will undergo horizontal motion 

while those at the antinodes will follow a vertical one. 

 
4.5 Combined Effects Using Numerical Solutions 

 
When the sea bed contours are complex, rather than straight and parallel, the graphical 

ray orthogonal method fails as the neighbouring orthogonals cross each other forming what is 

called a caustic. In the vicinity of caustics bottom diffraction or scattering effects also become 

important and it becomes necessary to take into account combined effects of refraction and 

diffraction. Numerical solution of a differential equation describing the wave propagation is 

normally adopted in the situations (Kanetkar, 1996). Such a governing equation may be Laplace 

continuity Equation (2.11). However, the 3-D nature of this equation makes it difficult to solve. 

 
Assuming that the sea bed slope in mild (in practice upto 1:3) integration of equation 

(2.11) over a vertical yields the following 2-D mild slope equation: 

  0. 2  
C
C

CC g
g        4.9 

This equation can be solved numerically to get wave height and phase values over a 

space grid. It caters to both refraction and internal diffraction; but due to its elliptic nature 

requires solution formulation over the entire region. Hyperbolic and parabolic solutions are 

therefore better alternatives. Based on the time dependent form of the mild slope equation, 

Copland (1985) derived the following first order hyperbolic equation, 
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tieyx   ),(                   4.10 

 

x, y = Horizontal co-ordinate 

p, q = pseudo fluxes that are dependent on vertical integration of x and y particle velocities. 

 
The equations are solved in space and time using a Finite Difference scheme. They have 

the advantage of considering reflection effect also. But they involve more computational effort 

than the parabolic type due to time steeping in iterations. 

 
A set of non-linear equations of hyperbolic form, derived by depth averaging of the 

Euler’s equations forms an alternative to above equation (4.10). They are solved numerically to 

obtain the sea surface elevations at different times at various grid points. These can cover non-

linear wave profiles as well as range of wave frequencies. However, converged solutions are 

possible where water depths are less than around 12% of the wave length in deep water. 

 
When the boundary of wave propagation domain is a beach involving smaller reflection 

effects, the boundary value problem of the elliptic and hyperbolic equations can be converted 

into an initial value problem using a parabolic type of governing equation. 

 

Ebersole (1985), using the wave irrotationality condition, separated the mild slope 

equation into real and imaginary parts. Then neglecting the reflecting component, he solved the 

resulting three equations in space domain using the Finite Difference scheme. The wave 

irrotationality condition restricts use of this equation where wave orthogonals cross each other. 

 
Radder (1979) obtained the parabolic form by splitting the wave field into transmitted 

and reflected components and then neglecting the later. This equation is: 


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                4.11 

 = Complex velocity potential of transmitted wave 

K   = Modified wave number 
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One of the consequences of the parabolic approximations is that if the wave directions 

vary fro more than   300 from the principal one then large errors are experienced. Kirby (1986) 

and Dalrymple and Kirby (1988) provided a remedy to this. However, generally computation 

with parabolic equations demand a rectangular domain which may not be possible in all of the 

fields situations. 

 
4.6 Effect of Currents 

 
When waves traveling with certain speed and direction meet a current flow their heights 

and lengths change. Superposition of the current speed on the wave speed and determination of 

wave energy thereafter gives the expressions to obtain the changes in wave heights and lengths 

caused by the current. Figure 4.10 can be used as an aid to determine wave height and length 

after it meets either following or opposing current. It may be noted that the opposing current 

reduces wavelength and increases wave height while the opposite is true for the current flowing 

in the same direction as that of the wave. 

 
4.7 Wave Breaking 

 
As mentioned in Section 1.3,when the steepness of the wave, i.e. the ratio of its height to 

its length increases beyond the theoretical value of 1/7 (which occurs when the angle subtended 

at the wave crest exceeds 1200) the wave form becomes so unstable that it breaks. This is 

however true when the water depth is large enough not to interfere with wave particle motions. 

When this is not the case, the depth of water along with the seabed slope affects wave breaking. 

Empirical relationships in the form of a set of graphs are available to obtain the height of a wave 

at the time of breaking viz Hb (Figure 4.11) from its value in the deep water, viz., 
'0H . The 

period of the wave (T) along with the slope of the seabed (m) are other input parameters that are 

needed to obtain Hb. A wave having unrefracted deep water height (
'0H ) period (T) and 

propagating over shoaling bottom with bed slope (m) will break when it comes to depth (db). 

Figure 4.12 is then used to obtain this unknown value db once we find Hb from the previous 

Figure 4.11. 

 
Waves are found to break in four different ways, viz. Spilling, Plunging, Collapsing and 

Surging. As waves approach the beach from deeper water, these four forms can be seen one after 
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the other. The breaking involved in each case is schematically shown in Figure 4.13, which also 

gives the sequence of breaking in different cases. 

 
The spilling type of breaking occurs in deep water or over gentle bed slope (m = 1:50). 

This involves gradual release of energy and is characterized by appearance of foam on forward 

side of the crest. Plunging and collapsing breakers occur on moderately steep slopes. In 

plunging, the water mass plunges and falls on forward face of the crest while in collapsing type 

the breaking is sudden, the crest form is steep and the foam is seen on lower side of the forward 

face. The last type of breaking i.e. surging, takes place when the seabed slope is steep with m = 

1:10 or so. In this case the entire water mass gets piled up and the foam is seen on beach face. 

Two parameters, viz. Galvin’s and Irribarrens’s (or Surf Similarity) are often used to 

distinguish between different types of breaking. If H0 is the deep water height, L0 is 

corresponding wavelength and m is the seabed slope then, 

  2
00 / mLH  

   2
1

1
 N  

Figure 4.13 shows different values of  and NI exhibited in various breaking modes. 

 

 

 

4.8 Wave Set up and Set down 
 

Wave set up indicates the rise in the Mean Water Level (MWL) due to wave generated 

onshore transport of water mass. When the waves break near the coast in the surf zone, the 

broken water mass gets piled up against the bench slope following conversion of kinetic energy 

to potential energy. As a result the water level for a considerable distance offshore rises (See 

Figure 4.14). For this to happen a sustained wave attack of an hour or so is necessary so that the 

equilibrium surface gets formed. Calculation of wave set up is necessary to know whether low 

lying coastal area would be flooded or not in stormy waves. 

Referring to Figure 4.14 at the point of wave breaking there is a lowering of water level. 

This is called Set Down at the breaking point. Quantitatively, it is the depression of MWL (the 

level of symmetry for wave oscillations) below the Still Water Level or SWL (the water level in 
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absence of any waves) at the point of wave breaking and is denoted by Sb. From this point 

onwards there is an increase in MWL. The maximum MWL occurs when it touches the beach 

slope. This value measured from the SWL is called the net wave setup (Sw), while the same 

measured from the lowest MWL is called the total wave setup, ( S). 

The set down at the breaking zone, (Sb), can be given by, 

 
2

3

2
0

2
1

64 b

b
d

THgS


                   4.12 

where, 

H0 = Unrefracted deep water significant wave height 

T = Wave period 

db = Depth of water at the breaking point. 

Experimental investigations have shown that 

 S = 0.15 db                   4.13 

 S = Sw + Sb                   4.14 

 
This indicates that given the values of H0, T and db the total set up at the shore ( S) can 

be calculated from equations (4.12), (4.13) and (4.14). 

 
The value of db involved in above equations can be evaluated from Figure 4.16 referred 

to earlier or analytically by using, 

2gT
aHb

Hd
b

b
b


                    4.15 

  mea 19175.43                    4.16 

  me
b 5.191

56.1


                   4.17 

m = Seabed slope 

 

The set up produced by a group of irregular or random waves has different and complex 

features than the one generated by regular waves as described above. Some of the complications 

that arise in this case are that the random wave may strike the beach in groups with a small calm 
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period in between any two groups. During this calm period some water will be pushed back to 

the sea reducing the effective set up. 

 
If there is a wide flat bed, called a berm or a reef, present in between the surf zone and 

the beach slope as shown in Figure 4.15 the larger waves in a sea wave spectrum will break at 

the seaward end of the flat bed producing a set up which can sustain smaller waves within the 

flat portion. These waves will now break on the beach slope causing additional set up effects. 

 
Laboratory as well as numerical experiments have been conducted to determine the wave 

set up for the random waves. Figure 4.16 shows the laboratory study based graphs to obtain S/H0
’ 

values from d/H0
’ values for different wave steepness or H0

’/L0 values for a 1:30 beach slope 

while Figure 4.17 shows numerical results for obtaining S/H0
’ for a fixed magnitude of d/H0

’ for 

different sea bed slopes. 

 

Wave Runup 
 

The height above the SWL up to which the incident wave rises on the face of the barrier 

is known as the wave run up. In Figure 4.18, R is the run up produced along a structure (of 

height h above its toe). Wave run up indicates a complex process that is dependent on a number 

of wave characteristics, structure conditions and local effects. These include regularity of 

randomness of the wave as well as its broken or unbroken state, wave steepness, slope of the 

structure, its roughness and permeability, water depth and sea bed slope. 

 
Laboratory experiments have given rise to a set of guiding curves to obtain the run up. 

Figure 4.18 indicates an example of the same that gives the relative run up (R/H0) (where H0
’ is 

unrefracted wave height in deep water) against the structure slope (expressed as cot ) for 

various values of deep water steepness, H0
’/gT2). This Figure 4.18 typically applicable when the 

ratio of water depth at depth (ds) to unrefracted deep water wave height (H0) is 0.8. Similar 

graphs are specified for few other values of the ratio ds/H0
’ (SPM 1984). Graphs like these suffer 

from small scale effects due to their derivation from laboratory works and hence the resulting run 

up value is required to be increased by applying a correction factor determined from structure 

slope and intensity of wave attack. SPM (1984) also gives graphs (Figure 4.18) to determine the 

wave run up in a similar way for vertical, stepped and curved cross section walls that are smooth 
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and impermeable. If the wall face is rough and permeable then a roughness and porosity 

correction factor becomes applicable which is also tabulated in this reference. If the barrier has a 

composite slope, e.g. a beach with berms, then it is assumed to be replaced by a hypothetical 

uniform slope and the same design curves as referred to earlier are applied to evaluate the run up.  

 
If the waves at a location can no longer be assumed regular then above mentioned design 

graphs are not sufficient. In such case the individual run ups produced by a train of random 

waves is assumed to follow Rayleigh distribution, like that of the incident wave heights, and run 

up (Rp) having the probability exceedence (P) is calculated as: 

2
ln PRR sp


                   4.18 

where,  

Rs = Run up produced by a regular significant wave height (Hs) 

(Hs) = Significant Wave Height determined from the above referred design 

curves. 

Above equation (4.18) assumes that the wave larger than the significant one break on the 

structure. If this is less likely in practice and if they break on the seabed slope away from the 

structure then the actual run up value will be smaller than the one given by above equation 

(4.18). 

 

 
 
Fig 4.1    Wave Refraction 
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Fig 4.2   Wave Refraction 
 

 
 
 
 
Fig 4.3 Wave Diffraction 
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Fig 4.4 Wave Diffraction Diagram (Angle of Attack – 300) (Ref.: SPM, 1984) 
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Fig 4.5 Wave Diffraction Diagram (Angle of Attack – 1200) (Ref.: SPM, 1984) 

 
 
Fig 4.6 Isolation of Diffraction Coefficient (Gap length = 0.5 * Wave Length) 
(Ref.: SPM, 1984) 
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Fig 4.7 Isolation of Diffraction Coefficient (Gap length = Wave Length) (Ref.: 
SPM, 1984) 
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Fig 4.8   Random Waves Diffraction (Single Breakwater) (Ref.: SPM, 1984) 
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Fig 4.9 Pure Reflection 

 
 
Fig 4.10 Effect of Current on Waves (Ref.: Gerwick, 1986) 
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Fig 4.11 Determination of Breaking Wave Height (Ref. SPM, 1984) 
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Fig 4.12   Determination of Breaking Water Depth (Ref. SPM, 1984) 
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Fig 4.13 Breaker Types 
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Fig 4.14 Wave Set Up, Down, Run-Up on a Beach Slope 

 
 
 
 

 
 
 
 

Fig 4.15 Wave Set Up, Down, Run-Up over Flat Bed 
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Fig 4.16 Measurements of Set-Up Due To Random Waves 

(Ref.: SPM, 1984) 
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Fig 4.17 Prediction of Random Wave set-up (Ref.: SPM, 1984) 
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Fig 4.18 Determination of Wave Run-up (for smooth, impermeable slope, ds / H0 = 0.8, bed  

Slope=1:10) (Ref.: SPM, 1984) 
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Fig 4.19 Refraction Template (Ref.: SPM, 1984) 
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Fig 4.20  Ray Methods 
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Fig 4.21 Ray Method 
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4.10 APPENDIX 4.1 
GRAPHICAL PROCEDURE TO DRAW REFRACTION DIAGRAMS 

A refraction template shown in Figure 4.19 made up of a transparent material, like a Perspex 

sheet, necessary. The procedure to dram the refraction diagrams with its help is as under: 

(i) Obtain the hydrographic chart of the area of interest. 

(ii) Draw smooth bed contours at suitable intervals, like 2 m or so. 

(iii) Select a range of wave periods (T) and wave directions and draw separate diagrams for each 

T and  as below: 

Obtain C0/C1 values, where C0 is wave speed before refraction and C1 is the same after 

refraction over bed contour. In open areas rays are drawn from deep to shallow water and the C0 

belongs to deep water and C1 to shallow water case. In highly sheltered locations, it may become 

more useful to follow a reversed procedure to draw rays from the shallow to deep water. A 

tabular representation shown below is beneficial. Assume that the wave period is 8 seconds. This 

gives L0 = gT2/(2 ) = 99.84. 
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As shown in Figure 4.20 draw orthogonals (in deep water) to some spacing and write the 

C0/C1 values obtained from the above table on the hydrographic chart at appropriate places 

within the region of the two underlying contours. 

If the angle between the underlying contour line and the crest line is less than 900, follow 

the procedure given below (Figure 4.21) 

(A) Referring to Figure 4.20 and 4.21 construct a mid-contour. Extend the incident orthogonal 

upon it and draw tangent to the mid-contour at the intersection point. 

(B) Place the refraction template (Figure 4.19) on the top of the hydrographic chart such that the 

template orthogonal coincides with the intersection point # at mark ‘1.0’ on the template. 

(C) Turn the template around its turning point until C0/C1 value of the contour interval read on 

the template crosses the tangent to the mid-contour. The template orthogonal is now orthogonal 

to the changed direction of the incident orthogonal. 

(D) Move the template orthogonal parallel to itself so that incident and changed or turned 

orthogonals have same lengths within the portion of the contour intervals. 

(E) Repeat the procedure (A) to (D) for all contour intervals and for all incident orthogonals. 

 

If the angle between the crest line and the contour line exceeds 800, then the orthogonals 

appear almost parallel to the contours. In such case the region between two contour lines is to be 

divided into few blocks and the orthogonals turning is required to be made within each block 

(SPM, 1984). 
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CHAPTER 5 

 
NUMERICAL MODELING OF WAVES 

 
5.1 Introduction 
 
         Numerical modeling of waves is used to predict waves in the open ocean as well as to 

obtain distribution of waves in harbor and coastal areas.   It is adopted when wind has a large 

temporal or spatial variation, and also in cases involving superposition of sea and swell, irregular 

bathymetry and complex coastline geometry. There are two methods of the modeling: 

  

1) Phase Resolving models 

2) Phase Averaging models 

 

1) Phase Resolving Models: 

 
Fig. 5.1 A spectrum showing variation of wave energy against frequency 

 

In this type of model individual waves in a spectrum are resolved as per their phases  and 

phase, amplitude and surface elevations are predicted.  They are used when average 

properties of waves change rapidly (over a distance of few ‘L’) and when there is rapid 

variations in depth and shoreline. Wave propagation in harbors, wave-structure interaction 

are typical problems handled conveniently by these models, despite the fact that they involve 

high computational complexity.   The phase resolving models can be further classified as  

      1)  Boundary Integral Models 

      2)  Mild Slope Equation. 

2) Boussinesq Equation Models. 
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5.2 Boundary Integral Models: 
     These models do not involve any assumptions for wave conditions or site conditions. 

They solve the Laplace equation given as:  
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                                                (5.1) 

The solution involved is complex as both horizontal (x and y direction) variations are required to 

be determined.  This model is good for irrotationality dominance (breaking) cases but bad for 

viscosity dominance situations as well as for wave-structure interaction. 

 

       5.3 Mild Slope Equation Models: 
            The assumption in these models is that:  the sea bed slope (m) is very much less than kd, 

and, the waves are weakly nonlinear. (ak<<1).  The unknown velocity potential   is expanded as 

Taylor’s series in the formulation.  Berkhoff in 1972 originally gave the mild slope equation as: 

                                                           02   gg CCKCC                                   (5.2) 

 

      This formulation of the model can cater to the effects of wave shoaling, refraction, 

diffraction, reflection. For computational efficiency, a parabolic version of the original elliptic 

equation is often used. Boundary conditions over full domain are required. Using this model a 

solution at all the points is obtained.  In modified forms, the parabolic equation is used to include 

current, wider approach angles, and non-linear dispersion, dissipation, wind input. 

 

 

5.4 Boussinesq Equation Models:  
    These formulations assume that the bed slope, m, and ‘kd’ are very small compared to unity 

and further that the waves are weakly non-linear. ( 1
d
a ). Peregrine (1967) gave the original 2-

D form as follows. 
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where u =depth averaged horizontal velocity.  This model includes refraction, diffraction, 

shoaling, reflection, wave-current interaction effects. This also includes dissipation and wind 

input. 

 

5.5 Phase Averaging Models: (Spectral Models) 
By using these models, averaged information over a spectrum is obtained. These models 

consider evolution of a directional spectrum. They predict averaged or integral properties like 

significant wave height, average wave period etc. These are used when average properties 

change slowly (over few ‘L’).  The basic equation in deep water (advective transport equation) 

is: 

                                                        totalg SfC
t
F



                                         (5.5) 

where  tyxfFF ,,,,  is the directional Spectrum ( f = wave frequency, θ = angle of wave 

approach, x and y are horizontal coordinates, t = time instant), 

                                                            dsnlintotal SSSS                                         (5.6) 

Sin = source term representing wind energy input; Snl = source term representing input energy 

from non-linear interaction between different wave frequencies in a spectrum resulting in energy 

transfer to another component.   There can be two components in a spectrum which resonate. If 

they transfer energy to third one then it is known as Triad. If four components interact, then it is 

known as Quadruplate.  Sds = source term representing energy loss in dissipation like breaking. 

 

The solution to (5.5) involves specification of the initial values, boundary conditions along with 

an appropriate advection scheme to represent energy transport within the computational domain.     

As per the source term representation, phase averaging models are classified as follows. 

     a) First Generation:    

         These were developed after 1957 and assumed: 

                                                              dsintotal SSS                                                (5.7) 

          These were site specific and proved to be inaccurate in storms.  
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     b) Second Generation: 

           These were presented around 1973 and they specify: 

                                                           dsnlintotal SSSS                                           (5.8) 

where dsS   indicates ‘white-cap’ dissipation (deep water, H / L dependent) 

           nlS  specification is based on a parametric form (JONSWAP spectral) 

 For hybrid models instead of parametric-fixed, parametric-evolving forms were used.  

c) Third Generation:  

         These are developed around 1985 and they specify: 

dsnlintotal SSSS   

 where, Snl is represented in a different way than the second generation models mentioned above.  

The Third generation model use Discrete Interaction approximation to model nlS , which retains 

the basic physics of wave - wave interaction. 

 

 The basic equation in phase averaging models is as given in (5.5), i.e, : 

totg SfC
t
F



  

where fCg is advection of wave energy at gC .   For this purpose, discrete bins  f of 

directional spectrum are formed. (Fig. 5.2) 

 

 

 

 

 
Fig. 5.2 The discrete bins of frequency and approach angle intervals 
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Each bin is advected at its gC .   The equation mentioned above is solved using Finite Difference 

or Finite Element or Full Ray (Line to advect) or Piecewise Ray method. 

 

Typically the WAM model considers of 25 frequencies and 12 directions.  Recently efforts were 

made to collect data from buoys or satellite and by using error back propagation the model was 

fine tuned; the resulting procedure is model refinement being called the Data Assimilation. 
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CHAPTER 6 

 
DESIGN WATER DEPTH 

 
      Still water level (SWL) may be defined as the level in absence of gravity waves. There are 
many factors contributing to changes in such a level at a specified location and a knowledge of 
all of them is necessary for many purposes, like, obtaining the extent of damage due to flooding, 
determining safe elevations for sensitive structures (like nuclear plants) and knowing the design 
water depth at a given location. 
 
     Astronomical tide is a major factor in calculation of the mean water depth.    Statistical 

analysis of tidal levels at a given location is carried out and the mean value is derived.  All other 

factors, namely, tsunamis, wave set up, wind set up and pressure set up are studied as allowances 

to this value.  

 

    Following are the major causes of change in SWL. 

 

6.1 Astronomical tides 
 

        This is a major cause of change in the SWL.   Basically the Mean Tide Level is obtained by 
carrying out a statistical analysis of all tidal levels observed at the given location and then 
variations in this level created by all other factors described below are studied. 
 
         Tides represent periodic rise and fall of still water level due to differential attraction of sun 

and moon, influenced further by gravity and centrifugal forces. The moon has more influence in 

tide generation because of its proximity with the earth compared to the sun.  The period of tides 

could be 12 hours (semi-diurnal Tide) or 24 hours (diurnal tide).  (See Fig. 6.1).  Vertical 

difference between the high water (the highest elevation in one tidal cycle) and the low water 

(the lowest elevation in one tidal cycle) is the tidal range. 
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Fig. 6.1.  The types of a tide 

 
The tidal range changes from cycle to cycle because of continuous shifts in the positions of the 
earth, sun and moon. (Fig. 6.2)  

 
 

Fig. 6.2.  Time history of tidal elevations 
 

It is small in open sea.  The range attains maximum value (in a fortnight) during new or full 
moon days. (Figure 6.3).  This is called spring tide. Similarly it takes minimum value (in a 
fortnight) during quarters, which is called neap tide.  
 
 

Spring Tide:  
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Neap Tide: 

 

 
 

Fig. 6.3.  The spring and neap tide 

 

 
 

Fig. 6.4 Tide levels (highest HW – lowest LW) at some Indian locations 

 

Figure 6.4 shows the highest tidal ranges at some important locations around our country.  Figure 
6.5 shows relative levels, averaged over all occurrences, of Highest High Water(HHW), Mean 
High Water Springs(MHWS), Mean High Water Neaps(MHWN), Mean Low Water 
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Neaps(MLWN), Mean Low Water Springs(MLWS), Lowest  Low Water(LLW).  The HHW and 
LLW occur when the centers of the three celestial bodies involved passes through a common 
straight line, a phenomenon that takes place in every 11 years and 11 days.    

 
Fig. 6.5.  Relative water levels 

 

Mean Tide Level:    It is average of all tidal heights (Astronomical). 

Mean Sea Level:      It is actual average of sea levels (Astronomical or Meteorological) 

For structural design, Highest Astronomical Tide as well as Lowest Astronomical Tide are 
considered.    
Highest Astronomical Tide (HAT) = Mean Sea Level (MSL) +1.2 (Sum of certain location 

dependent tidal constituents like 2M , 2S , 1K , 1O ).                                   (6.1) 

The data of 2M , 2S , 1K , 1O  are available with Director, Geodetic and Research, Survey of India. 

 

Lowest Astronomical Tide (LAT) = Mean Sea Level (MSL) -1.2 (Sum of certain location 

dependent tidal constituents like 2M , 2S , 1K , 1O ).                                                  (6.2) 

Tidal levels are specified above ‘Chart Datum’, which is equal to the Indian Spring Low Water.    
Indian Spring Low Water = Mean Sea Level (MSL) - (Sum of certain location dependent tidal 

constituents like 2M , 2S , 1K , 1O ).                                                               (6.3) 

Chart Datum varies with location as shown in Fig. 6.6. 
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Fig. 6.6.  Chart datum 

 

Tide Prediction 

This is done using harmonic analysis, which is based on the assumption that because the tide is 
effected by motions of sun, moon, earth which are periodic, the tide levels can be resolved into 
periodic components, i.e., 

 
Fig. 6.7.  Tide superposition 

 

    ...coscos 222111  MtaAMtaA                                                              (6.4) 

(See Fig. 6.7). 
Where  = tidal elevation above or below the mean level, 1A  = amplitude, 1a  = rate of change of 

phase.  About 69 such harmonic components have been identified.       

At any important location, Tide Tables give predictions of High Water, Low Water, as well as 

their timings based on harmonic analysis. (Note: A Tide Chart gives tidal levels at a time at 

several locations in a bay).  Tide tables are available only at few ‘reference’ stations. Tide at any 

‘subordinate’ station is estimated from these reference station data. 

Actual water level is a function of coastline configuration, local water depth, sea bed topography, 
wind and weather (rain, runoff, etc.). Hence predicted level differs from actual level. For low 
barometric pressure and onshore wind, actual water level is higher while for high barometric 
pressure and offshore wind, actual water level is lower than predicted.  Prediction in the presence 
of high wind, rain, runoff, enclosed locations is bad while the one in open location and normal 
condition is always good.  
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National Oceanographic & Atmospheric Administration (NOAA), USA maintains its website 

www.noaa.org.gov, which gives online tide prediction at some 3000 subordinate stations on 

weekly, monthly, yearly basis. Most of the information is available free of charge. Many other 

companies and their software also provide tide prediction.  

Tide tables repeat exactly after 18 years 11 days because earth, moon, sun occupy exactly same 

positions after every such period. 

Tidal theories explain tidal mechanics.  One of them is based on Newton’s law, as indicated 

below, which considers equilibrium of any particle on earth assuming statistical condition. (F = 

force of attraction between two bodies,  = Universal constant, m1 = mass of one body, m2 = 

mass of another body, r = distance between them. 

                                                                2
21

r
mmvF                                                   (6.5) 

Another theory due to Laplace, considers rotational effect of the earth. 

 

 

 

6.2 Tsunamis: 
 

Introduction 

Tsunamis represent a sequence of ocean waves generated by an underwater impulsive action 
primarily caused by earthquakes and secondarily created by landslides, volcanic activities and 
meteorite-strike as well as an earthquake induced submarine slump. In tsunami formation huge 
water mass gets thrown vertically upwards due to the underwater impulse.  This mass falls down 
due to gravity, transferring its momentum and energy to remaining water.  Such action is 
comparable to that of a stone falling on a pond and creating dispersing ripples.  Continuous 
action of gravity as a restoring force ensures formation of a series of waves, which may typically 
be five to seven in number.  It is seen that the second or the third wave is most formidable.   At 
the source the wave height is only a few cm, but when it comes towards the shore the wave gets 
compressed with heights rising even up to 20 m or more.  The time required by a tsunami to 
complete one oscillation is of the order of 30 to 60 minutes while the same for wind-generated 
gravity waves it is 3 to 20 seconds and for the tides (tidal wave) created by sun and moon’s 
attraction it is 12 or 24 hours. 
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Time of travel 

Because tsunamis have large lengths (700 km or more) the so-called long wave or shallow water 
wave theory can be applied to study their behavior and so also the shallow water wave speed 
equation, namely, 

                                                           dgC                                        (6.6) 

Where, C = speed of propagation of tsunami, g = acceleration due to gravity and d = water depth.  
Hence the time of travel of tsunami can be given by: 

                                                            




sdg

st                                              (6.7) 

where, t = total travel time from the epicenter to the desired location, s = incremental distances 
over which the depth, ds, can be assumed to be the same  

Depending on the time of travel from the source to land it could be either a distant tsunami or a 
local tsunami. Distant tsunamis travel long distances of the order of thousands of km with 
relatively same speed and can be easily warned against while local tsunamis resulting from 
submarine landslides propagate over a small distance of a hundred km or less and are more 
dangerous because they leave no time to warn for evacuation.   

Properties of tsunamis 
 
Properties of tsunamis like their shape, phase velocity, group velocity, flow kinematics; induced 
pressures can be studied with the aid of wave theories.  All wave theories presume that the flow 
is potential and 2-Dimensional (in the vertical plane).  They initially assume that the velocity 
potential is some unknown function of wave height, period and water depth.  The unknown 
function is obtained by making such potential to satisfy the Laplace continuity equation as well 
as various boundary conditions including those at the free surface and at the seabed.  Once the 
function is determined its derivatives yield wave profile, flow kinematics, pressure and other 
desirable parameters.  Out of several wave theories the first order Airy’s theory as well as higher 
order Stokes and Laitone solitary theory describe the tsunami properties well and hence they are 
used in deep, intermediate and shallow waters, respectively. 
 
The Airy’s first order theory assumes that ratios of wave height to wavelength, and to water 
depth are small and so also the ratio of water depth to wavelength.  It gives sinusoidal profile and 
yields simplified equations but it is valid in deeper water away from the shore. 
 
The cnoidal wave theory of Laitone or solitary theory is more rigorous. At a first order of 
approximation the ratio of wave height to depth is assumed to be small, the vertical distribution 
of horizontal velocity is uniform and there is absence of transport of water mass. The second 
order approximation gives a realistic nonuniform velocity distribution and can predict the mass 
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transport. In general this solitary theory is appropriate when the tsunami height is less than 30 
percent of depth. 
 
Many tsunami researchers use the theory of Stokes at a second order of approximation in 
intermediate water.  The wave profile in it is obtained by superposing two sinusoidal components 
of period T and T/2, respectively. As a result the wave crest becomes peaked and the trough 
becomes flatter.  From this theory the water mass transport resulting from irrotationality and 
nonlinearity can be estimated. 
 

            
Fig. 6.8.    Tsunami run-up 

 

Inundation levels 
 

Damage caused by tsunamis is due to factors like associated hydrostatic as well as hydrodynamic 
forces, impact of objects being carried by the attacking water mass, high speed currents, 
overtopping, and, resulting flooding, and current induced erosion.  Additionally, a large wall of 
water advancing in the form of a bore may get developed if the forward speed of the tsunami 
front exceeds its phase speed (eq. 1) and this may result in flooding large areas.   
 
As tsunamis leave the generating area and disperse they undergo shoaling (change due to the 
bottom effect), refraction and diffraction before finally reaching the coast. Research on 
inundation in coastal areas due to tsunamis has been going on since last four to five decades.  A 
good account of the earlier works can be seen in Murty (1977). 
 
Run-up or vertical elevation above the meal sea level (Fig. 1) reached by a tsunami in coastal 
areas can be found by empirical formulae and curves and more accurately by a numerical 
solution to governing differential equations.  Laboratory experiments conducted by Kaplan 
(1955) first resulted in a simple empirical formula for run-up over a beach or a structure slope.  It 
is as below: 
 

                                                          b

L
Ha

H
R )(                                                       (6.8) 

 
where R = run-up above the undisturbed water level, H = incident tsunami height at the start of 
the slope, L = length of the tsunami at the start of slope;  a and b are two constants whose values 
depend on the beach slope.  Typically a = 0.381 and 0.206 for slopes of 1:30 and 1:60 
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respectively while b = 0.336 and –0.315 respectively for the same slopes.  There are many such 
empirical studies available in the literature including the one by Bretschneider and Wibro (1976) 
who considered the effect of an important parameter, namely, the seabed roughness.   
 
From the studies reported it is seen that the tsunami run-up increases with wave height, sand 
specific gravity and flatness of the slope and decreases with slope roughness and permeability.   
Also, the largest run-up occurs normal to the major axis of the seabed displacement. 
   
The above empirical studies have limitations due to underlying simplified assumptions and 
idealizations.  In recent years significant advances have been made in developing mathematical 
numerical models to describe the entire process of generation, propagation and run-up of tsunami 
events. (Yeh, 1996). The most common numerical modeling of tsunamis is based on two sets of 
governing differential equations called shallow water equations and Navier-Stokes equations in 2 
and 3 dimensions, with and without consideration of water compressibility.  The differential 
equations represent conservation of mass, momentum, and energy as indicated below  (Mader, 
2004):  
 
Conservation of mass equation: 
 

                                                        UU
t







 

                                   (6.9) 

 

where, t = time instant, U = particle velocity vector in 3-D,  k
z

j
y

i
x 











  

  = water density. 
 
Conservation of momentum equation: 
 

                                                    gUU
t

 

 )(                             (6.10) 

where,  ijij SP      ;   = Dirac delta function, P = pressure, S = viscosity with no shearing 
forces 
 
Conservation of energy equation: 
 

                                                 TUIU
t

2:)( 

                             (6.11) 

where, I = internal energy,  
j

i
ji X

UU



  :   ;   X = {x, y, z};   = real viscosity coefficient, T 

= wave period. 
 
The shallow water or long wave models are applicable when the water depth is small (less than 5 
percent) compared to the wavelength.  It assumes that the wave motion is essentially horizontal, 
i.e., the vertical component of the motion is negligible. Hence when the tsunami propagates over 
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underwater shoals the shallow water model becomes less accurate, but it could be good for large 
wave length (exceeding 10 times the depth), long area-generated and long period (more than 15 
minutes) tsunamis propagating over bed slopes steeper than 2 percent.   
 
Long distance or deep water or small width (less than 40 times the depth) propagations can be 
better simulated either by the Navier-Stokes equation or by the linear wave model. 
 
In above modeling water is assumed to be incompressible.  But large earthquake-generated 
tsunamis or those created by impact landslides have to be simulated by the compressibility-
incorporated Navier-Stokes equation. 
 
The differential equations as above are conveniently solved using finite difference methods. 
Sophistication in considering different terms of governing equations coupled with advances in 
numerical procedures have yielded the latest models that can work out water levels in as small a 
space grid as 10 m x 10 m and as small a time step as 0.2 seconds. They can yield flooding 
around different buildings in a residential colony.  
 
 
Closure 
 
Occurrence of the tsunami-generating earthquake can be recorded on seismographs and 
communicated via satellites to the warning center, where computer-based models as described 
above calculate tsunami heights and travel times.  This could be verified by a series of wave rider 
buoys and accordingly tsunami warning can be issued.  Such warning systems exist in Pacific 
countries including the U.S. and Canada since 1964.    
 
Research on tsunami hydraulics in this country in future may involve following studies (NIO, 
2005):  (a) Development of numerical models for tsunami in the Indian ocean, (b) simulation of 
past tsunami events identified in the tide-gauge records, (c) reconciliation of source parameters 
with arrival times using inverse methodology (d) construction of Green's function for the Indian 
Ocean, (e) development of finite-element and fractal models for tsunami run-up simulations, and 
soft computing tools (ANN, fuzzy systems, hybrid approaches) to evaluate water levels due to 
tsunamis 
 
 
 
 

 6.3 Pressure set-up: (Atmospheric or Barometric) 
 

It is the rise or fall in the SWL produced by changes in the atmospheric pressure  as in 
storms or cyclones. 
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Fig. 6.9.  Isobars  

At distance R, (Fig. 6.9) where the maximum wind speed occurs from eye of the storm, the 

pressure set up is given by: 

                                                       PconstP Rs                                                  (6.12)         

where P = actual pressure with respect to normal atmosphere measured in inches of mercury.  

At any radial distance r from the storm eye, the set up is: 

                                                            s
r
R

Rs PeP 







 1                                            (6.13) 

 

 

 

6.4 Wind set-up: (also called storm surge) 
 

This indicates the change in the SWL produced by wind accompanying a storm.   As shown in 

the following figure (6.10) an onshore wind can cause inland flooding due to the circulation 

pattern generated. 
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Fig. 6.10. Set up and down due to wind 

 

An offshore wind creates a circulation pattern in the opposite direction as shown in the figure, 
which may results in navigational draft problems as well as head problems for pumps. 
 

 

Prediction of storm surge 

 

Change in SWL because of wind set-up depends up on storm characteristics, sea bed features, 

and interaction with tide and gravity waves. The storm characteristics are wind speeds, duration 

of storm, path and pressure pattern. The seabed features include roughness, size and shape of 

basin.  Storm surge can also be studied by physical scale modeling or by numerical models based 

on solution of governing differential equations describing the water motion.   The underlying 

equations involve following assumptions:  

 

 

     a) Vertical acceleration of water particles is negligible. 

     b) Sea water is inviscid. 

     c) Sea bed is impermeable. 

     d) Effect of earth’s curvature is small. 
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Fig. 6.11  The definition sketch for storm surge 

 

For any horizontal position (x, y) and time‘t’: (Fig. 6.11), let d = water depth, s = surge height, D 

= d + s; u = current speed along x direction, v = current speed along y direction, t = time. 





s

d

udzU Volume of water transported per unit width along x direction.            (6.14) 





s

d

vdzV  Volume of water transported per unit width along y direction             (6.15) 

P = precipitation rate. 

Two sets of equations, continuity and motion, are involved. 

Equation of continuity:  
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                                                  P
y
V
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s
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


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



                                          (6.16) 

 

Equation of Motion: (based on the equation of force = mass x acceleration) 
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(6.17 and 6.18) 

where,  Mxx = transport of x-direction momentum along x direction; Mxy = transport of x 

direction momentum along y direction; Myy = transport of y-direction momentum along y 

direction;  f = Coriolis parameter =  sin2 , where   is angular speed of earth and   is 

latitude; g = acceleration due to gravity; D = d + S, where d = average water depth and S = storm 

surge;   =Pressure difference (with respect to atmosphere) in water head;   =tide potential in 

water head equivalent;  Sx , Sy = x,y components of surface wind stress;   xW , yW = x, y 

components of wind speed;  bx , by = x,y components of bottom wind stress;   =mass density 

of sea water;   
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S

d
xy 



 2                                                (6.19) 

                                                   dzUVM
S

d
xy 



                                                        (6.20) 

                                                  dzVM
S

d
yy 



 2                                                        (6.21) 



129 
 

 
 

 

Fig. 6.12.  The solution domain 

 

The above equations are solved numerically at several points simultaneously in the time–space 

grid (Fig. 6.12) using the Finite Difference scheme or alternatively the Finite Element method. 

 

 

 

6.5 Wave set-up: 

 
Breaking waves produces it. After breaking, waves travel to shore and during this journey the 
kinetic energy is converted to potential energy, generating the wave set up. (Fig. 6.13.) 

 
Fig. 6.13.     Wave set-up in general 
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Fig. 6.14.  Wave set up over sloping beach 

 

Wave set-up on a Sloping Beach:  It is as shown in the fig. 6.14. 

              

                          SSS bw                                          (6.22) 

Wave set-up    =     S     =    max. MWL – min. MWL 

wS =  max. MWL – normal SWL 

bS = set down = normal SWL – min. MWL 

 

Wave set-up on a berm (or reef):  (Fig. 6.15). 

 
Fig. 6.15.  Wave set up over berm 
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  Consider a spectrum of larger or smaller wave heights. Larger waves break in depth bd  

producing set-up. This increases depth upstream. Hence smaller waves still exist over the berm 

and do not break. They break on the shore and this additional set-up has to be considered in 

calculations.   Thus, very high waves contribute less to wave set-up. 

 

 

Set-up for regular waves: 

 

Based on the solitary wave theory Reid (1972) provided useful expressions as below: 

The set-down is given by: 

 

                                                      
2
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S


                                                  (6.23) 

While the set-up is obtained by: 

                                                          bdS 15.0                                          (6.24) 
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CHAPTER 7 
WAVE FORCES ON SHORE-BASED STRUCTURES 

 

7.1 Introduction 

 
The method to calculate wave-induced forces on shore-based structures depends primarily on its 

type, namely, vertical faced or sloping faced. 

 

Vertical faced structures:  A common example is a sea wall, of concrete or steel, constructed 

parallel to the shore in order to protect it against erosion 

Sloping faced structures:  It mainly includes a rubble mound breakwater formed by dumping 

rubble one over the other and constructed normally at an angle to the shoreline with a view to 

create calm water conditions.   

  

7.2 Forces on Vertical Faced Structures:    

 

The first step to make the force calculations is to choose an appropriate design wave height and 

also to understand the relative location of the structure with respect to the wave breaking zone. 

The choice of the wave height out of alternative definitions likes H1/100 or H1/10, or H1/3 (denoting 

average value of the top 1, 10 and 33.33 percent of all waves in a collection respectively) is 

guided by the structure type and the required harbor protection.  The type of the structure 

indicates rigid, semi-rigid or flexible.  Rigid structures like concrete walls do not involve any 

absorption of the incident wave energy, offer maximum protection, but can fail against a single 

large wave and hence are designed for the highest value, H1/100.  Semi-rigid structures include 

steel sheet pile walls and can absorb incident energy to some extent and hence could be designed 

for less than maximum wave, falling between H1/100 to H1/10.  Finally flexible structures like 

rubble mound breakwater, designed to absorb large amount of incident wave energy and easy to 

repair if damaged, can be economically designed with the help of H1/3. 
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Waves break in a depth ranging from about 0.8 to 1.4 times their height, depending on their 

steepness and seabed slope.  If the structure is located in this range of water depth then it would 

be subjected to the action of breaking wave forces.  On the contrary if it is installed in depth 

deeper than this range, it would be subjected to non-breaking wave forces.  Finally structures in 

depths smaller of this range would be influenced by broken water action.  While non-breaking 

wave forces are static in nature the remaining two are dynamic or time varying. 

 

 

Non-breaking wave forces:  

 
Fig. 7.1   Standing wave 

 

      Assume a smooth faced vertical wall. Then the incident wave would undergo pure reflection 

and standing waves will be formed.   Assuming linear theory to be valid the subsurface pressure 

at depth ‘z’ is given by  (as per SAINFLOU in 1928) 

                                                        
kd

zdkzp
cosh

)(cosh 
                                     (7.1) 

 where z is static and 
kd

zdk
cosh

)(cosh   is dynamic part. 
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For a standing wave  

                                                         tkxH  coscos                                               (7.2) 

Hence pressure for a standing wave at any depth ‘z’ is: 

                                         z
kd

zdktkxHp  



cosh

)(coshcoscos                               (7.3) 

Choosing x = 0,  cos (kx) =1, the maximum pressure will occur when cos wt =1 or physically 
when the crest appears on wall.  (Fig. 7.2) 
 
 
 
 

 
  

Fig. 7.2  The wave pressure diagram when crest appears on the wall 

 

Hence  

                                 z
kd

zdkHcP  



cosh

)(cosh                        --- at z = z              (7.3) 

and 

                                  d
kd

HPc 


cosh
                                   ---at z = -d             (7.4) 
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Similarly the minimum pressure will occur when cos wt = -1, or physically when the trough 
appears on wall.  (Fig. 7.3) 
 
 
 
 
 

 
Fig. 7.3 Wave force when trough appears on the wall 

 

                                      z
kd

zdkHtP  



cosh

)(cosh              ------ at z = z             (7.4) 

 

                                      d
kd

HPt 





cosh
                              --- at z = -d              (7.5) 

 

However in practical calculations some non-linear effects are assumed, because the above 

expression was found to lead to overestimation.  Miche (1994) & Rundgren(1958) accordingly 

gave the following corrected procedure: 
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CREST ON WALL case: 

 
Fig.7.4 Wave pressure diagram when crest appears on the wall. 

                                                               
L
d

L
Hh i  2coth

2

0                                            (7.6) 

Wave height at wall  =  iH + rH  

                                  =  i
i

r H
H
H









1  

                                  =(1+ X ) iH                                                                                  (7.7) 
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where X is reflection coefficient in range (0.9 , 1).  For rip-rap and rough wall the reflection 

coefficient is 0.9. 

 

 

 

 

TROUGH ON WALL case: 

 
Fig. 7.5 Wave pressure diagram when trough appears on the wall 

To find total force acting on the wall (F) and total overturning moment at base (M): 

The overtopping conditions:  
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Fig. 7.6 The overtopping condition 

Total force FrF F1  

                                                        









cc
F y

b
y
br 2                                         (7.8) 

Total Moment MrM M1  

                                                


















cc
M y

b
y
br 23

2

                                        (7.9) 

Replace cy by ty  for trough on wall 

 

The composite wall: 
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Fig. 7.8. The composite wall 

 

 

Total Force FrFF F11  

                           =  FrF1                                                                                 (7.10) 

Total Moment at the rubble bottom 

                                             MrM M 111
1                                       (7.11) 

Total Moment at the rubble top 

                                         FrbMM F 111
1

11
2                                (7.12) 
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BREAKING WAVE FORCES 

 

 

                               Fig. 7.9 Wave breaking on the wall 

 

Bagnold’s experimental analysis in 1939 indicated that the large pressure is exerted only for 

1/100 seconds duration when air is entrapped by plunger breakers.  Minikin in 1955-63 

combined this work with proto measurements and suggested following pressure diagram: 

 

 

  

 
Fig. 7.10  The wave pressure diagram for breaking waves 
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The maximum dynamic pressure due to wave breaking is given by: 

 

                                     s
s

D

b
m dD

D
d

L
HP  101                                         (7.13) 

which has a parabolic variation over the wall.   Here DL  = wave length in depth ‘D’, D= depth  

at one wave length away from the structure. 

                                                        
sds mLdD                                               (7.14) 

                                                      DynamicstTotal PPP                                          (7.15) 

                      Hence   bms
b

s
b

Total HPdHdHF
3
1

222
1







 













               (7.16) 

                                      sbms
b

Total dHPdHM
3
1

26
1 3







                         (7.17) 

 

 

 

 

FORCES BY BROKEN WAVES 

 

After breaking, the broken water mass travels towards the shore with velocities same as those 
before breaking. Depending on whether the structure is located landward or seaward the 
shoreline we have two types of forces as below: 
 

 
Fig. 7.11  Landward and shoreward structures 
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FORCES ON SEAWARD STRUCTURES: 

 
Fig. 7.12 Forces on seaward structures 

 

Take bc Hh 78.0                                                                                                     (7.18)                

g
cPd 2

2
  

             = 
 

g
gdb

2

2


 

                                                                      = bd
2
  

StaticdTotal FFF   

                                                                  =     cscscb hdhdhd  
2
1

2
          (7.19) 

                                                        3
6
1

22 cs
c

scbTotal hdhdhdM 





            (7.20) 
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FORCES ON LANDWARD STRUCTURES: 

 

Assume: 1) Waves break at bd  and travel up to shoreline with speed c becoming a  

                    translatory wave.  

                 2) Then they up rush up to a height = bH2 above SWL over the beach  

                 3) Velocity decreases from ‘c’ at shoreline to ‘0’ at the point of maximum up 

                      rush. 

 

 
 

Fig. 7.13  Forces on landward structures 

 

 1x =Horizontal distance from shoreline to structure  

 2x = Horizontal distance from shoreline to limit up to up rush 

   =Beach slope 

   
2

2tan
x
Hb  

   1C =celerity of broken wave at structure toe 
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    1h = Height of structure under influence of broken wave 

 

 
Fig. 7.14  Forces on landward structures 

 

21

2
1 c
g

Pd    ------ uniform along height 1h                                                   (7.22) 

sP =0  ----- at top of height 1h  

    = 1h    ----- at bottom of wall  

But  









2

11 1
x
xcc      -------  Since within distance 2x  change in velocity =c-0 , hence within 

distance 1x  change in velocity= c
x
x

2

1  

 

Similarly  









2

11 1
x
xhh c  

  Hence 
2

2

12 1
2
1











x
xc

g
Pd   
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 But bgdc    

  Hence 
2

2

11
2 










x
xdP bd

  

1hPF dDynamic    ;  
2

2

12 1
2 










x
xhF cstatic

  

Hence    total Force 
2

2

12
3

2

1 1
2
11

2 


















x
xh

x
xhd ccb 

               (7.23) 

Total Moment
3

2

13
4

2

12 1
6
11

4 


















x
xh

x
xhd ccb 

                    (7.24) 

 

OBLIQUE WAVE ATTACK: 

 
Fig. 7.15  Oblique wave attack 

In this case reduce dynamic force only.    




sin/1
sinFFnet   

       = 2sinF                                                                                   (7.25) 

  

 

  

 


 

F 

sinF
sin/1

1 



146 
 

 

 

 

 

 

STRUCTURE SLOPE:  (CONCRETE WALLS ONLY) 

 

 
                              Fig. 7.16  Forces on landward structures 

 

 

 

 

7.3 FORCES ON SLOPING FACE STRUCTURES: 

 

 
 The most common example of such structures is a rubble mound breakwater. 

 

21 sinnetnet FF 


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Fig.7.17 Forces on landward structures 

 

Its outer layer, which is subjected to direct wave action, is known as armor layer.  The wave 

action on this structure is complex. There are no explicit formulae to determine it. Only 

empirical expressions describing armor stability are popular.   Rubble mound can be either single 

or Composite. 

 

 

SINGLE RUBBLE MOUND   

 

Following Irribarren (1938)’s work, Hudson (1953) did model testing, which resulted in the 

Vicksburg formula given below: 

The weight of the armor unit stone: 

                                                   
  


cot1 3

3




rD

r

SK
HW                                         (7.26) 

---- For ungraded stones or when H>5 feet.  

  where W=Weight of armour unit (N or Kg) 

           r =Specific wt. of armour unit – Saturated , surface dry (N or 3/ mkg ) 

            H=Design wave height (m) 

            rS = Specific gravity of armour unit = 
w

r


  

             = angle – side slope horizontal in degrees. 

           DK = damage coefficient (2,15)  which is function of shape , roughness, degree of  

                      locking , damage , etc. 
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If graded stones are used or if H< 5 feet: 

                                                    
  


cot1 3

3

50 


rRR

r

SK
HW                                      (7.26) 

Where 50W = Weight of the stone of 50% size in the gradation 

            50max 6.3 WW   

             50min 22.0 WW   

  3.1RRK    if d<20 feet  

          = 1.7   if d>20 feet       --------- Assuming 5% damage. 

 

 

 

COMPOSITE BREAKWATER 

 

 

Rubble as foundation  : 

                                                   

          

 
Fig. 7.18 Rubble as foundation 
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Rubble as toe protection: 

     

 
Fig. 7.19 Rubble as toe protection 

                                                      
 33

3

1


rs

r

SN
HW                                  (7.27) 

Where W=Mean weight of rubble 

            r =Specific weight of rubble 

            rS = Specific gravity of rubble=
w

r


  

            sN =Stability Number obtained from the following Figure 7.20. 

 

 

 
 

Fig. 7.20 Variation of stability number 
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CHAPTER 8 

WAVE FORCE ON SMALL DIAMETER MEMBERS 

8.1 The Morison’s equation 
A structural member is considered to be of ‘small diameter’ when its diameter is less that 

about 0.15 times the wave length; for example, members of Jacket structures and piled jetties. 

 
Fig.8.1 Definition sketch 

 

    When member diameter is small incident waves do not get much scattered by the obstruction 
and in that case the equation given by Morison et al. (1950) becomes applicable. 
Morison et al. (1950)’s equation:   

 

It states that the total force, FI, in-line with the wave direction can be obtained by addition of the 

drag, FD, and the inertia, FI components, i. e.,  

                                                          T D IF F F                                                        (8.1)           

The force due to drag is proportional to kinetic head, i. e.,  

 
Fig. 8.2  Area projection on a vertical plane 
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                                                           21
2DF Au                                        (8.2) 

       Where       =mass density of fluid 

                        A= area of object projected on a plane held normal to flow direction  

                        u = flow velocity 

Introducing the constant of proportionality, CD, and assuming a steady, uniform flow in a viscous 

fluid, we have  

                                                       21
2D DF C Au                                       (8.3) 

where  DC  is coefficient of drag.  Its value depends on body shape, roughness, flow viscosity 

and several other parameters. 

 

 
Fig. 8.3 Particle velocities 

 

Because the direction of wave induced water particle velocity reverses after every half cycle, we 

write, 

                                                            1
2D DF C Au u                                      (8.4) 

The force of inertia is proportional to mass times the fluid acceleration: 
.

IF vu  

uVFI ..  

 where   V = volume of fluid displaces by the object. 

              
.
u  = acceleration of fluid  
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Hence, 

                                                      
.

I mF C vu                                            (8.5) 

    Where mC  =Coefficient of Inertia.  It depends on shape of the body, its surface roughness and 

other parameters. 

Most of the structural members are circular in cross section.  Hence,   

1 '
2D DF C DL u u  

2 .
'

4I m
dF C L u

  

Because u and 
.
u  vary along L’ and further considering unit pile length i.e.  L’=1. Hence, 

                                       
2 .1

2 4T D m
dF C Du u C u

                                         (8.6) 

 

where,  TF  = in-line (horizontal) force per meter length at member axis at given time               at 

given location. 

           1
2 DC Du u   = in-line (horizontal)  water particle velocity at the same time at the               

same location. 

            
2 .

4m
dC u

   is in-line (horizontal) water particle acceleration at the same time at               

the same location. 

Note that    cosu f    and    .  Hence u and 
.
u  are out of phase by 090  and are not 

maximum at the same time. 

 

      Basically CD  and Cm  are functions of size and shape of the object.  If that is fixed then they 

depend on Keulegan-Carpenter number, Reynold’s number as well as roughness factor. 

 

 

 

 
.

sinu f 
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Keulegan-Carpenter number: KC 

 

      It is basically a ratio of maximum drag to maximum inertia. We have,  

  2
max

max

1
2

F C DuD D  

            where,                       2
maxu    2 2 2

2
2 2

cosh
cos

sinh
H k d z

T kd





   

  max
max

2 .

4
dF C uI m

  

           where                               2

max 2

. 2 cosh
sin

sinh
H k d z

u
T kd





   

At    z=0, 

                         
 
 

max

max

1 cosh
sinh

F C H kdD D
C D kdF mI


 = max

2

1C u TD
C Dm 

                 (8.7) 

The ratio of maximum drag to maximum inertia can thus be taken as proportional to   

maxu T
D

   Where  maxu  =Maximum velocity in the wave cycle 

                                      T= wave period 

                                      D= Diameter 

The above ratio also stands for (Total horizontal motion of the particle / Diameter).        

 

If   KC < 5 then inertia is dominant, 

If   KC >15 then drag is dominant and regular eddies are shed at downstream section.  
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Fig. 8.4  Eddy shedding 

at frequency of Svfe
D

      where S = Strouhal No.   0.2. 

Alternate eddy shedding gives rise to alternate lift forces due to pressure gradient across the 

wake. 

 

 
 

Fig. 8.5  Variation of CD and CM against KC 

 

 

Reynold’s Number, Re:   

 

It is the ratio of the inertia force to the viscous force, i. e., Re: 

                                     maxu D
v

                                                                             (8.8) 

 

 

 

 

10 100 

1 

0 

CD 

Kc 
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Fig. 8.6  Variation of CD and CM against Re 

 

 

Roughness Factor: 

 
Fig. 8.7 Encrustation around cylindrical members 

 

Structural members are in course of time covered by sea weeds, barnacles, shell fish etc.  Due to 

this, effective diameter changes, effective mass increases, flow pattern, eddy structure changes .  

Finally the wave force also changes.  Lab studies have shown that mC  does not change much. DC  

changes appreciably and can become 2 to 3 times more than the initial value. 
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Fig. 8.8  Effect of roughness on CD and CM 

       

 Scatter in DC , mC  values: Many laboratory and field studies have been made to assess the 

effects of all  unaccounted factors like eddy shedding , past flow history, initial turbulence , wave 

irregularity directionality, local conditions , data reduction techniques. 

 But experiments are inconclusive.   

  

Experiments to evaluate DC , mC  are performed in the following way. 

 

Fig. 8.9  Flow chart to obtain CD and CM through lab measurement 

 

Almost all experiments suffer from widely scattered values. Major reasons of the scatter are: (1) 

use of either steady/ oscillatory / wavy flow, (2) difficulty in achieving high Re ( 710 ), (3) wave 

theories over predict velocity, (4) definition of Re is arbitrary, (5) waves are irregular, hence DC , 

Measure Forces 

Measure 
wave time 
histories 

Get H,T  
Compute  

u , 
.
u   (or 

measure)  

Correlate as in 
M. equation 

F= cu u  +k
.
u  

Get  
DC  , mC  
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mC  are large, (6) use of u
t




 (not du
dt

) overestimate forces, (7) no accounting for directionality, 

current, 3-D flow. 

 

Recommendations: 

1) For Indian conditions DC =0.7 ; Cm=2 are generally used. 

2) DnV  : DC  =0.7-1.2  ; Cm=2 

3) A.P.I. : DC  =0.6-1.0 ; Cm=1.5-2 

4) Shore Protection Manual: DC  -Refer Fig.    ; Cm=1.5  if Re>5 x 510  

                                                                                    =2   if Re<2.5 x 510  

                                                                                    = 5

Re2.5
5 10x

 , otherwise 

 

EXAMPLE: 

 

A one m diameter jacket leg is subjected to an attack of waves which are 5m high, 

           80 m long and 10 seconds in period. 

            Determine maximum Drag Force , maximum Inertia Force ,Total Force @ 

             
4
  , at a location 10m below SWL . The water depth is 60m. 

           Take DC  =1; Cm=2; Use linear theory.   

            =1030 3

kg
m  

 

   Solution : 

         max max max
1
2D DF C D u u  

                    cosh
cos

sinh
H k d z

u
T kd





  
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 2(5)cosh 50

80 .12(10)sinh (60)
80




  

                        =0.717 m/s 

 max
1 (1)1030(1) 0.717 0.717
2DF   

           =264.76 N/m. 

         

           

   max
max

2 .

4
dF C uI m

  

       

             2

max 2

. 2 cosh
sin

sinh
H k d z

u
T kd





   

              
 2

2

22 (5) cosh 50
80 .12(10 )sinh (60)

80




  

               =0.45 2

m
s

 

    

 
maxIF =

2(1 )2(1030) (0.45)
4

  

         =728 N/m. 

 

 

     cosh
cos

sinh
H k d z

u
T kd





  

 

       = (5)(25.3869) .cos
(10)(55.1544) 4
   
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       =0.5067 m/s 

  

     2

max 2

. 2 cosh
sin

sinh
H k d z

u
T kd





   

 

            =
2

2

2 (5)(25.3869) .sin
(10 )(55.1544) 4
 

 

 

           =0.318 2

m
s

 

   F
2 .1

2 4D m
dC Du u C u

        

                
2

2 11 1 1030 1 0.5067 2 1030 0.318
2 4


   

       

      =646.72 N/m 

 

 

 

8.2 Total Wave Force on the Entire Member Length 

 
Fig. 8.10  Variation of drag and inertia over a vertical 
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Consider a vertical located at x=0 as shown above. 

 

Consider Linear Theory  

2cos
2
H t

T
     as x=0 

 cosh 2cos
sinh

H k d z tu
T kd T

     
 

 

   

 2.

2

2 cosh 2sin
sinh

H k d zu tu
t T kd T

            
 

     

 

  tt
hd

zdk
T
HDCuDuCF TTDDD


 22

2

2

2

22

coscos
sinh

cosh
2
1

2
1 

  

When t=0,  maxDD FF   

   t
hd

zdk
T

HdCudCF TmmI





 2
2

22.2

sin
sinh

cosh2
44




  

When t=0,   maxII FF   

 But  

 maxIF  When  tT
2sin  =1 or when tT

2 =
2
   

                                            Or when    t=
4
T

  

At this time tT
2cos = 








2
cos  =0 Hence DF  =0 

 

 Note: When  maxDF  occurs IF =0 

            When   maxIF  occurs  DF =0 
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    maxDF   occurs after time 
4
T  when   maxIF  occurs.  

If   is small,  =0  ,  if   is not small ,  = 
T

tH 2cos
2

 







d
I

d
DT dzFdzFF  

   





d
I

d
D dzzdFdzzdFM    

Hence total horizontal force on entire member length at any time ‘t’ :  TITDT FFF   

 

 2 2 2

2 2

cosh1 2 2cos cos
2 sinhTD D D

d d

H k d z t tF F dz C D dz
T kd T T

    


 

         
      

 

         
2 2

2
2 2

cos cos1 cosh
2 sinhD

d

H t t
C D k d z dz

T kd

  




   

 

      
     2 2

2 2

cos cos sinh 21
2 sinh 2 4D

d

H t t k d z k d z
C D

T kd k k


  




  
  

 
 

 [Using  2 sinh 2cosh
2 4
x xx     ] 

           
2 2

2 2

cos cos1 1 2 sinh 2
2 sinh 4D

d

H t t
C D k d z k d z

T kd k

  




      
 

 

    
      

2 2

2

2 sinh 21 1 cos cos
2 4 4 sinhD

d

k d z k d zHC D t t
k kd




  



   
  

  
 

        2
2

2 sinh 2
cos cos

32 sinh
D

TD

z

k d z k d zC DF H t t
k kd



   


   
  

  
 

(8.9) 
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   
22

2

2 cosh
sin

4 sinhTI I m
d d

H k d zdF F dz C t dz
T kd

   
 

 
   

 
   

                    
   2 2 sin sinh2

4 4 sinhm
d

t k d zd HC
kd k


 




   
     

   
 

Hence       
2

2 sinh1 sin
4 2 sinhTI m

z

k d zdF C H t
k kd



  


 
   

 
  

(8.10) 

Similarly,  T DT ITM M M   

            
2

2

2 2 2 sinh 2 cosh 2 2 1 cos cos
64 sinh

D
DT

HC DM k d z k d z k d z k d z t t
k kd

             

         
22

2

sinh cosh 1
sin

2 4 sinh sinh
m

IT

H k d z k d z k d zC dM t
k kd kd

 


     
  

 
 

(8.11) 

 

 

 

 

EXAMPLE 

 

Obtain variation of total horizontal force and moment at the sea bed with time for a circular 

vertical pile of diameter 1.22 m extending into a water depth of 22.9 m. The wave height is 

10.67m and the wavelength is 114.3m. Take DC =1 and mC =2 . 

 =10.06 3

KN
m

. 

 What are the maximum force and moment values? 

Use Linear Theory. 

Consider two cases (a) Integration up to SWL. 

                                (b) Integration up to free surface.  
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SOLUTION: 

                     K= 2 2
114.3L

 
 =0.05497cycles/m 

    
11
22tanh 9.81(0.05497) tanh 0.05497 22.9gk kd      =0.6773 rad/s 

 

        2
2

2 sinh 2
cos cos

32 sinh
D

TD

z

k d z k d zC DF H t t
k kd



   


   
  

  
 

=         2
2

2 sinh 2
cos cos

32 sinh
D

k d k dC D H t t
k kd


  
 
 
  

 

     
   2

2

2(0.05497)(22.9) sinh 2(0.05497) 22.91(10.06)1.22 0.6773 10.67 cos cos
32(9.81)(0.05497) sinh (0.05497) 22.9

t t 
 

  
  

 

=123.022  cos cost t   KN 

     
2

2 sinh1 sin
4 2 sinhTI m

z

k d zdF C H t
k kd



  


 
   

 
 

     
2

2 sinh1 sin
4 2 sinhm

k ddC H t
k kd


  

 
   

 
 

        
2

21.3310.06 12 10.67 0.6773 sin
9.81 4 2 0.05497

t



           

 

=-106.74  sin t  KN 

Hence 

TF =123.022  cos cost t  -106.74  sin t  

 

Vary t=0, T 

2 t
T
 =0,  2 .T

T
  

 t=0, 2  

    =0, 6.284 

     =0, 1,2, …,7 
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 t 

 
TDF   (KN) TIF   (KN) TF   (KN) 

0 123.02 0 123.02 

1 35.01 -89.82 -53.91 

2 -21.31 -97.06 -118.37 

3 -120.57 -15.06 -135.64 

4 -52.56 80.78 28.22 

5 9.9 102.86 112.26 

6 113.42 29.83 143.24 

7 69.92 -70.13 -0.21 
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We can express:  cos cos sinF C K    .  For maximum conditions this equation can be 

worked out using  as:    10 sin
2

F K
c





  


. 

 

 

8.3 Wave Forces Using Stokes (V) Theory 
 

 Water particle kinematics are calculated at every m length of the vertical structural 

member (at its center along the immersed length of the member axis) using the Stokes Fifth 

Order theory.  Corresponding forces are worked out using the Morrison’s equation at every such 

segment and then they are added up to cover the full member length.  For a typical case of wave 

attack shown below, the results are further indicated in the following figure: 

 

 
Fig. 8.11 Calculation of total wave force 

DC =1 and mC =2  

 

8.4 Calculation Of Wave Forces Using Dean’s Theory 
 

For circular vertical piles, based on Dean’s theory and Morison’s equation, it is possible to 

express approximately the total maximum force within the wave cycle as:  
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                                                   2
m m DF gC H D                                             (8.12) 

Where,   m  =  Coefficient to be read from curves plotted for various values of 

                                                            m

D

C DW
C H

                                                (8.13) 

Similarly the total maximum moment at the base is: 

                                                    2
m m DM gC H Dd                                          (8.14) 

Where    m =Coefficient to be read from curves 

 

 

 

LIFT FORCES: 

 

        For high drag ( 15cK  ) there is regular and alternate eddy shedding on the downstream 

side on both sides of cylinder at a frequency. 

                                                         eddyshedding
svf
D

                                             (8.15) 

 where s = Strouhal No.   0.2,  = kinematic viscosity of sea water, D = diameter.  

This gives rise to lift force given by: 

                                                    1
2L LF C Du u                                            (8.16) 

Where LC  is Lift coefficient =  cf K  

                                              DC   If cK >20 

                                                      If cK <3  

 

If the frequency of eddy shedding goes close to the natural frequency of the structural member 

then resonance occurs and high structural vibrations result. 
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8.5 WAVE FORCE ON INCLINED MEMBERS 
Let Vn, an = normal components of total particle velocity and accelerations, respectively.  Then 

the normal (to member axis) wave force at any time ‘t’ is given by: 

 

 

 

 

 

 

 

 

Fig. 8.12  Normal to axis force 

                                                        

 

   n n n nF C V V Ka                                     (8.17) 

Where  
2D
DC C   

             
2

4m
dK C 

      

Where nV  and na  are normal components of total velocity (V’) and acceleration (a’) 

 
Fig. 8.13 Normal to axis force 

Fn 
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nV  (or na ) lies along the line of intersection of the two planes  

 'nV cx V xc  

 'na cx a xc  

If c  is unit vector along axis and xc , yc , zc  are its direction cosines and if, 

n nx ny nzV V i V j V k    

n nx ny nza a i a j a k    

x y zc c i c j c k    

then evaluating the products, 
2

2

2

1
1

1

nx x x y x z x

ny x y y y z y

nz x z y z z z

V c c c c c V
V c c c c c V
V c c c c c V

      
           

          

 

and  
1

2 22 2 2 2 2 2
n nx ny nz x y z x x y y z zV V V V V V V c c c c c c            

Thus we get, 

                                        
x nx nx

y n ny ny

z nz nz

F V a
F c V V K a
F V a

     
           
     
     

                              (8.18) 

Where     

2

2

2

1
1

1

nx x x y x z x

ny x y y y z y

nz x z y z z z

a c c c c c a
a c c c c c a
a c c c c c a

      
           

          

 

 

Note: If wave theory is used then  0y yV a  .   
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Fig. 8.14  Special case of a pipeline 

 

Further for a horizontal member,  0x zc c   and 1yc   

 

Note on calculation of direction cosines, 

 
Fig. 8.15  Direction cosines 

 

c c i c j c kx y z   ;  where,   

sin cos
sin cos

cos

x

y

z

c
c
c

 
 








 

 

A note on flexible cylinders 

 The previous discussion was based on the assumption that the cylinder on which the force was 
exerted was rigidly held at its bottom.  On the contrary if it is free to move appreciably with 
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waves, not only the exact volume of water displaced by the cylinder contributes to the inertia 
force but also some volume surrounding it behaves as one with the cylinder and contributes to 
the force due to inertia.   This volume is some fraction of the displaced volume V.  The resulting 
inertia force is thus: 

 
Fig. 8.16 Added mass effect 

 

                                             
.

( )I F aF C C V u                                          (8.19) 

Where FC  = Froude-Crylov coefficient and 

             aC = Coefficient of added mass =1 (theoretically) 

Hence Total IF  = Froude-Crylov Force  + Added mass force  

 
 
The Froude-Crylov Force  is the force required to accelerate the fluid particles within the volume 
of cylinder in its absence, whereas, the added mass force is the force due to acceleration of water 
surrounding the cylinder and oscillating with it. 
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8.6   Wave Slam: 

 
Fig. 8.17 Wave attack on a Jacket 

 

When wave surface rises, it slams underneath horizontal members near the SWL and then passes 
by them.  The resulting slamming force (nearly vertical) due to sudden buoyancy application is 
given as follows 

21
2z s zF C Du                                             (8.20) 

 Where sC    (theoretically for circular cylinder)  

 

The American Petroleum Institute (API) suggests that it should be taken into consideration to 
calculate total individual member loads and not to get the global horizontal base shear and 
overturning moments.  Impulsive nature of this force however can excite natural frequency of the 
members creating resonant condition and large dynamic stresses.  
 

 

8.7 Limitations of the Morrison’s Equation: 

 
1) Physics of wave phenomenon is not well represented in it. 

2)  The drag force formula and the inertia force formula involve opposite assumptions.  The 

former assume that the flow is steady while the latter implies that the flow is unsteady 
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3) Real sea effects like ‘transverse forces’, ‘energy spreading (directionality)’ are 

unaccounted for. 

4) There is a high amount of scattering in values of DC  and mC . 

5) Inaccuracies in the wave theory based values of water particle kinematics get reflected in 

the resulting force estimates. 
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CHAPTER 9 
 

MAXIMUM WAVE FORCE ON THE ENTIRE STRUCTURE 
 
9.1 Example 
 
Obtain the variation with time of total horizontal wave force and moment for the entire offshore 
structure as shown below: 
 
Also calculate maximum force and moments. (Horizontal)  Use linear theory (In-line) 
 
Given  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
H = 6m    L = 90m    d = 25m 
 
Pile dia. = 1.2m   bracing dia. = 0.6m 

1DC      2MC     306.10
m
kN

  

Solution 
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The members on which wave forces should be considered are: 
Group A: Vertical Piles   : 1-3/ 7-9 /4-6/ 10-12 
 
Group B: Horizontal Bracings  : 2-8/ 5-11 
 
Group C: Diagonal Front Face Bracings: 2-9/ 5-12 
 
Group D: Diagonal Side Face Bracings : 2-6/ 8-12 
Calculate TF for each member at same time instant wt = 0, 1, 2, ……7 
 

Example for wt = 6 
 

[A] TF for pile 1-3: 
m
c

L
k 0698.02


   

     2
1

tan kdhgkw   

    =     2
1

250698.0tan0698.081.9 h  

    = 0.8026
s
r  

 
        cos/cos/2sin2

sin32 2

2

 z
D

TD zdkhzdk
kdh

WH
k

SDCF  

 kx – wt   = cos
2
H  

 = -6     
     =3 cos (-6) 
 x = 0 
     = 2.881m 
 
 

 
              6cos/6cos/881.270698.02sin881.270698.02

250698.0sin
6

8026.0

0698.032
2.1

81.9
06.101 2

2








 h
h

 
       = 43.4 kN 
 

    


  sin
sin2

sin
4

2
2

kdhk
zdkh

HWDSCF z
MTI


  

 
        

    250698.0sin0698.02
sin881.270698.0sin8026.06

4
2.1

81.9
16.102 2

2

h
h 

  

 
= 22.17 kN 
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TF  = 43.4 + 22.17 = 65.57 kN 

 
 
IDENTICALLY: 

TF for pile 7-9 = 65.57 kN 
 

TF for pile 4-6: Here kx – wt 
  
      = 0.0698(15) – 6 
 
      = -4.953 rad 
 

and   mHz 7149.0953.4cos
2

  

 
        cos/cos/2sin2

sin32 7149.02

2

 z
D

TD zdkhzdk
kdh

WH
k

SDCF  

 
        cos/cos/715.250698.02sin715.250698.026583.1 h  

 
= 2.04 kN 
 

    


 sin
sin2

sin
4

715.02
2

kdhk
zdkh

HWDSCF z
MTI


  

 
= 8.9652    sin715.250698.0sin h    = - 4.953 
 
= 65.75 kN 
 
Total TF  on pile 4-6 = 2.04 + 65.75 = 67.8 kN 
 
Identically TF  on pile 10-12 = 67.8 kN 
 
[B] TF  on horizontal member 2-8: special case of inclined members 
 



















































nz

ny

nx

nz

ny

nx

n

z

y

x

a
a
a

K
V
V
V

VC
F
F
F
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nxnxnx KaVVCF   
 


























































z

y

x

zzyzx

zyyyx

zxyxx

nz

ny

nx

V
V
V

CCCCC

CCCCC

CCCCC

V
V
V

2

2

2

1

1

1

 

 
 (Here xC = 0; yC = 1; zC = 0) 

  =

















































z

x

z

y

x

V

V

V
V
V

0
100
000
001

 

 

 Similarly, 

































z

x

nz

ny

nx

a

a

a
a
a

0  

 
22

zxn VVV   & 
xx KaV

zxx VVCF


 22  
 
[Note: For calculating wuwu ,,,    ORIGIN is AT SWL] 
 

   wtkx
kdh

zdKh
T
HuVx 


 cos

sin
cos  ;  

w
T 2
  

        = 11829.7
8026.0
2


  

=      
    6cos
250698.0sin
150698.0cos

829.7
6


h
h  

 

 = 1.333 
s
m  

 
   wtkx

kdh
zdkh

T
HwVz 


 sin

sin
sin  

 

 = 0.303
s
m  

 
   wtkx
kdh

zdkh
T

Huax 


 sin
sin

cos2
2

2
  
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 = 0.311 2s
m  

 

3076.0
2
6.0

81.9
06.101

2


DSCC D  

 
  58.0

4
6.0

81.9
06.102

4
 DSCK M  

 
 311.058.0333.1303.0333.13076.0 22  XF  

 

= 0.741
m
kN  

 
TF  for entire member length 2-8 = 0.741(15) = 11.16 kN 

 
TF  for horizontal member 5-11: 

 

Here x = 15m;   wtkxH
cos

2
  

 
  = 3 cos (0.0698(15)-6) 
 
  = 0.715m 

 
   wtkx
kdh

zdKh
T
HVx 


 cos

sin
cos  

 

=   
     

s
m

h
h 331.06150698.0cos

250698.0sin
150698.0cos

829.7
6


  

 
   

s
mwtkx

kdh
zdKh

T
HVz 052.1sin

sin
sin





  

 
   

s
mwtkx

kdh
zdKh

T
Hax 082.1sin

sin
cos2

2

2





  

 
    kNFX 74.0082.158.0331.0052.1331.03076.0 22   

 
Therefore, Total TF  on entire member 5-11 = 15(0.74) = 11.1kN 
 
[C] Diagonal Front Face Member: 
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TF  on member 2-9: 

 
nxnxnX KaVVCF   

 

where; 

























































z

y

x

zzyzx

zyyyx

zxyxx

nz

ny

nx

V
V
V

CCCCC

CCCCC

CCCCC

V
V
V

2

2

2

1

1

1

 

 
Here 0xC ; 707.0yC ; 707.0zC  
 

=



































z

x

V

V
0

5.05.00
5.05.00

001
 

 
 xnx VV   
 
    zny VV 5.0    22

zxn VVV   
 
   znz VV 5.0   & xnx aa   

 xxzxX KaVVVCF  22

2
1  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Here, x = o & SWL is 10 m about “2” 
 


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 wtkxHz  cos
2

  

=  6cos
2
6

  

 
= 2.881m 

Immersed member length = 
707.0

881.210   

 
= 18.22m = l 
 
Actually we should calculate Force per each m of this l as z varies. 
 

But approximately, divide l into 
2
l each (= 9.11m) and calculate XF at each midlength, multiply 

this by 
2
1  and add up. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

881.2
2
441.6

Z  

 
            = 0.34m 
 

1XF :   z = -0.34m ;  x = 0  ;  wt = 6 
 

   wtkx
kdh

zdh
T
HuVX 


 cos

sin
cos  

 

=   
s
m4.29602.08852.2

7756.2
408.2

  
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   wtkxzdkh
kdhT

HwVZ  sinsin*
sin

1  

 

=  
s
m656.02794.0706.2

7756.2
408.2

  

 

   wtkxzdh
kdhT

Hau x  sincos
sin

12
2

2
  

 

=    25612.02794.0885.2
7756.2
9323.1

s
m

  

 

xxzxX KaVVVcF  22

2
1  

 

=      5612.058.04.2656.0
2
14.23076.0 22   

 

= 2.13
m
kN  

 

XF  for ml 11.9
2
  is 9.11(2.13)=19.4kN 

 
2XF :   X = 0  ;  Z = -0.34 – 6.441 = -6.781m 

 

 
s
mVX 603.19602.09237.1

7756.2
408.2

  

 

  
s
mVZ 398.02794.0643.1

7756.2
408.2

  

 

  
s
max 374.02794.09237.1

7756.2
9323.1

  

   374.058.0603.1398.0
2
1603.13076.0 22  XF  

 

= 1.02
m
kN  
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XF  for ml 11.9
2
  is 9.11 (1.02) =9.21kN 

 
Total XF for member 2 – 9 is 19.4 + 9.21 28.61kN 

 
 
 
Force on member 5-12: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

xxzxX KaVVVcF  22

2
1  

 
Here, x = 15m 

  wtkxHz  cos
2

  

 =   6150698.0cos
2
6

  

 
 = 0.715m 


Immersed length ml 16.15
707.0

7156.010



  

Divide l into 2 segments & calculate XF at center of each half-length ml 58.7
2
  
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1XF  : x = 15m  ; z = 1.96m 
 

   
s
mVX 537.02383.0597.2

7756.2
408.2

  

 

   
s
mVZ 02.29712.03968.28676.0   

 

    2756.19712.0597.26962.0
s
max   

 

    2756.19712.0597.26962.0
s
max   

 

     756.158.0537.002.2
2
1537.03076.0 22

1  XF  

 

 = 1.27
m
kN     kNFX 63.927.158.71   

 
 

2XF  : x = 15m  ; z = -1.96-5.36 = -7.32m 
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   
s
mVX 385.02383.08631.18676.0   

 

   
s
mVZ 325.19712.0572.18676.0    

 

    226.19712.08631.16962.0
s
max   

 

     26.158.0385.0325.1
2
1385.03076.0 22

2  XF  

 

 = 0.851
m
kN     kNFX 45.6851.058.72   

 
Total XF = 9.63 + 6.45 = 16.08 kN 
 
 
 
 
 
[D] Diagonal Side Face Members: 
 

TF  for 2-6: nxnxnX KaVVcF   
 


























































z

y

x

zzyzx

zyyyx

zxyxx

nz

ny

nx

V
V
V

CCCCC

CCCCC

CCCCC

V
V
V

2

2

2

1

1

1

 

 
 
putting 707.0xC  
 0yC  
 707.0zC  
 

= 




































z

y

x

V
V
V

5.005.0
010

5.005.0
 

 
0yV  
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  zxzxnx VVVVV 
2
15.05.0  

 
 0 yny VV  
 

  xzzxnz VVVVV 
2
15.05.0  

 

     zxnxzxnxzxn aaaVVVVVV 
2
1;

2
1;

2
1  

 
   zxzxX aaVVF  29.01088.0 2  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: Here x & z both vary: 
 

 wtkxHz  cos
2

  

 
=  wtkx cos3  
 

Also: 145tan10



x

z  

 
z = x – 10 x = z + 10 
 

  10cos3  wtkxx  
 
=   106cos3 kx  
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Solving by trial, x  12m 
 
   z = 2m 
 
Immersed length of member at wt = 6 is: 
 

 ml 97.16
707.0
12

  

 

Divide the member length l into half 





  ml 485.8

2
 

Calculate XF at the centre of each & add up. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1XF : x = 9m  ; z = -1m 

  
s
mVx 469.16127.07636.28676.0   

 

  
s
mVz 766.17964.0576.28676.0   

 

   2521.17904.07636.6962.0
s
max   

 

   21.16127.0576.26962.0
s
maz   

 

   
m
kNFX 7697.01.1521.129.0766.1469.11088.0 2

1   

 

  kNlonFX 531.6485.8
21   
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2XF : x = 3m  ; z = -7m 
 

  
s
mVx 4515.18811.08987.18676.0   

 

  
s
mVz 662.04729.0614.18676.0   

 

   2625.04729.08987.16962.0
s
max   

 

   299.08811.0614.16962.0
s
maz   

 

   
m
kNFX 5362.099.0625.029.0662.04515.11088.0 2

2   

 

  kNlonFX 549.4485.8
22   

 
Total XF on member 2 - 6 is 6.531 + 4.549 = 11.08 kN 
 
IDENTICALLY XF on member 8 - 12 = 11.08 kN 
 
TOTAL WAVE FORCE ON ENTIRE STRUCTURE AT wt = 6 is: 
 
 
Group  [A] : 65.57 + 65.57 + 67.8 +67.8 
 
 [B] : 11.16 + 11.1 
 
 [C] : 28.61 + 16.08 
 
 [D] : 11.08 + 11.08 
 
 

= 355.85kN 
 

 356kN 
 
 



187 
 

 

CHAPTER 10 

 
WAVE FORCES ON LARGE DIAMETER MEMBERS 

 

 

10.1 Introduction 

      
Fig. 10.1 Small diameter member case 

 

If the member diameter D is less than 15 percent of the incident wave length, L, flow separation 

takes place and a wake region is formed at the downstream of the flow direction. (Fig.10.1). This 

increases the drag force.  Hence the Morrison’s equation becomes valid, which among other facts 

assumes that the particle kinematics u and 
.
u  remain constant along the length ‘D’. 
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Fig. 10.2 Large diameter member case 

 
 

But if the diameter of member D exceeds 15 % of the wave length L then the flow separation is 

localized and confined to the small region of boundary layer around member surface.  (Fig.10.2).   

Hence the resultant drag force (viscous effects) takes a small value.   Then the wave force can be 

calculated by the potential flow theory.   Further, the incident wave is scattered or diffracted and 

the effect of scattered wave potential is required to be considered.  Also the variation of particle 

kinematics along ‘D’ becomes considerable.  However, if D is not very large compared to L  (not 

of the order of L) then the scattered wave height H remains small compared to (not of the order 

of) incident ‘H’.  Then the following approximate theory of Froude-Krylov can be used. 

 

 

 

10.2 Froude-Krylov Theory: 
 

It involves evaluation of the force by calculating the wave induced pressure over an element of 

the body surface area, multiplying it with the elemental area and then integrating the product to 

cover the whole submerged surface.  First we have to calculate pressure at the body surface 

points (by wave theory).      

 

It is assumed that the actual force is directly proportional to the Froude-Krylov force, i.e., 

                                 Actual force   F.K.force 

                                                       = [force coefficient] x Froude-Krylov force  
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This assumption is not valid when high diffraction is expected.  Note that the Froude-Krylov 

theory is approximate, generally not used in rigorous design but found to be good for submerged 

objects or objects with small diffraction.  

  
  

 
Fig.  10.3   Definition sketch 

 

Let p = normal instantaneous pressure (given say by a wave theory) acting on ‘ds’ (elemental 

submerged area). 

 
   xn  and zn  = x and z components of unit vector normal to ds respectively. 

                S  =  total submerged area.   (Fig. 10.3) 

 

Then total horizontal force component .x H x
S

F C p n ds                                          (10.1) 

          Total vertical force component  .z V z
S

F C p n ds                                            (10.2) 

 

 Where p = wave induced pressure, nx, ny = horizontal and vertical components of the unit axial 

vector; CH, CV = horizontal and vertical Froude-Krylov coefficients.  
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 1) Submerged Horizontal Cylinder: 

 

 

Fig. 10.4  Definition sketch 

 

Fig. 10.5  Horizontal cylinder 

 

.x H xF C p n ds          

       

   cosh
cos

2 coshh
k d zHp r kx t

kd



   

 

where,   (d+z)= 0S +asin   ( 0S = distance of cylinder center from the sea bed; a = cylinder 

radius;   = angle from the reference direction 
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  x = a cos  

               xn = cos  ;  ny = sin   

               ds = a (d ) l,       (where l = length of the cylinder) 

 

 Substituting and using series expansions of cosh , cos and simplifying  and neglecting end 

effects,   

                                                
.

2
0x HF C a l u                                       (10.3) 

       where, 2a l  = volume of cylinder,  
.

0u  = horizontal acceleration at ‘0’. 

                                                  
.

2
0z VF C a l w                                        (10.4) 

 

where ow  = vertical water particle acceleration at ‘o’.  HC  and VC  are functions of  Diffraction 

parameter = D ka
L

   , wave characteristics, proximity with boundaries.   Assuming small H 

and cylinder location away from bottom and top boundaries at least by ‘D/2’,    2.0H VC C       

if D
L

  (0,1) 

                                            If D
L

 >1, high diffraction effects would be encountered. 

 

 

  

 

2)  Submerged Horizontal Half Cylinder: 
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Fig. 10.6 Horizontal half cylinder 

 

 

Let, a = cylinder radius.    Following a similar procedure: 

                                            
2 .

0 1 02x H
aF C l u c ka w

     
                            (10.5) 

                                       
2 .

0 2 02z V
aF C l w c ka u

     
                             (10.6) 

 

Where  
 1 2

0

2 cos sin sinkaka kac ka d
ka ka

 
 

 
   

  
                                                  (10.7) 

              
 2 2

0

2 cos sin sinkaka kac ka d
ka ka

 
 

 
   

  
                                                (10.8) 

 
 = circular wave frequency; 2.0HC  ;   1.1VC     -------If ka  (0,1)  and if H is small and if 

the cylinder is away by distance D/2 from top and bottom boundaries.  Table 10.1 gives values of 

the coefficients used in the Froud Krylov force calculations 
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Table 10.1. Values of the coefficients in the Froud Krylov force calculations 
 

ak  1C  2C  3C  4C  

0.1 0.037 15.019 0.042 12.754 

0.2 0.075 7.537 0.085 6.409 

0.3 0.112 5.056 0.127 4.308 

0.4 0.149 3.825 0.169 3.268 

0.5 0.186 3.093 0.210 2.652 

0.6 0.223 2.612 0.252 2.249 

0.7 0.259 2.273 0.292 1.966 

0.8 0.295 2.024 0.332 1.760 

0.9 0.330 1.834 0.372 1.603 

1.0 0.365 1.685 0.411 1.482 

1.5 0.529 1.273 0.591 1.156 

2.0 0.673 1.105 0.745 1.034 

2.5 0.792 1.031 0.867 0.989 

3.0 0.886 0.999 0.957 0.977 

3.5 0.955 0.989 1.015 0.978 

4.0 1.000 0.987 1.045 0.985 

4.5 1.025 0.990 1.054 0.993 

5.0 1.034 0.994 1.047 0.998 

 

 

Note on the Bessel’s equation of order ‘v’: 

For any  ,y f t v  and   
2

2 2 2
2 0d y dyt t t v y

dt dt
     

has solution   
 

   
2

2
0

1
2 ! 1

m v m

Vv m
n

t
y J t

m v m







 

                                                (10.9) 

 

which is called the Bessel function of first kind of order ‘v’. 
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Fig. 10.7.  Bessel function 

 

The Bessel Function of Second kind of order v is: 

                                                cos
sin
V V

V

v J t J t
Y t

v





                              (10.10) 

Bessel Function of third kind of order v: (Hankel  Function) 

                                             V V VH t J t iY t                                         (10.11) 

Positive sign indicates  1
VH t  of first kind and negative one means  2

VH t  of second kind. 

 

 

3) Submerged Sphere:  

 

 

 
 

                                                Fig. 10.8.  Submerged sphere 

 

 

V 

 VJ t  
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.

3
0

4
3x HF C a u                                                (10.12) 

                                                 
.

3
0

4
3z VF C a w                                                (10.13) 

Where  a = radius, uo and wo = horizontal and vertical accelerations of water particles, 1.5HC  , 

1.1VC  , if aK  varies from 0 to 1.75 and if H is small and if, the                                                 

sphere is away by distance ‘a’ from boundaries. 

 

 4) Submerged Hemisphere                            

 
                                                Fig. 10.9.  Submerged half sphere 

 

 
.

3
0 3 0

2
3x H aF C a u c K w      

                                                                 (10.14) 

 
.

3
0 4 0

2
3z V aF C a w c K u      

                                                                  (10.15) 

Where        1
3 2

0

2 !3
2 1 !

n
n

a a n a
n

nc K K J K
n








  

                      2
4 1

0

2 !3
2 !

n
n

a a n a
n

nc K K J K
n







 
 

 

 Note:          2n aJ K  and  1n aJ K  are Bessel functions. 

 

wo and  u0 are vertical and horizontal particle velocities, 1.5HC  , 1.1VC    ------if aK  varies 

from 0 to 0.8, if H is small and if the sphere is away by distance ‘a’ from the boundaries. 
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5) Submerged Vertical Cylinder 

 

 
 

                                         Fig. 10.10 Submerged vertical cylinder 

 

                                           .
13

0

sinh2 2

2

a
x H

a

kl
J K

F C a l uklK
                                (10.16) 

1.5HC   ? 

 

 

 

6) Submerged Rectangular Block: 
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                                        Fig. 10.11  Submerged rectangular block 

 

3 1
.

1 2 3 0
3 1

sinh sinh
2 2

22

x H

kl kl

F C l l l ukl kl                                (10.17) 

3 1
.

1 2 3 0
3 1

sinh sinh
2 2

22

z V

kl kl

F C l l l wkl kl                                  (10.18) 

 

l1, l2 and l3 = in-line, transverse and vertical dimensions of the block, 1.5HC  , 6.0VC     ---- If 

aK  varies from 0 to 5 

 

 

7) Submerged Circular Disc: 

 

 

 An example of such a disc is the cap of a cylinder.   
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                                                  Fig.  10.12.  Submerged disc 

 

The design wave force on such a cap is calculated by considering it to act from one side only. 

                                             2
1

0

2 a
z V

a

J KaF C u
k K


                                   (10.19) 

1.5VC   ? 

 

 

 

 
10.3 Diffraction Theory 
 
 
 
Following figure explains regions of applicability of the Morison’s equation and the diffraction  
 
 
 
theory. 
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Fig.10.13 Regions of applicability 
 

 
 
 In diffraction theory the sea water is assumed to be irrotational, incompressible and inviscid. 

                                                      
1

n
n

n
  





                   ----  where 
2

KH          (10.20) 

                                                         2 3
1 2 3 ...         

     =  11                                      in linear (First Order) diffraction theory        

       =  11 +  2
2   + 3

3   +……  in non-linear (Higher Order) diffraction theory  

 

Total Velocity Potential:  i s                                                                            (10.21) 

 

Initially each velocity potential  1,  2,… is conceived as an unknown function of H,T,D and 

later these unknowns are found by making  the potentials to satisfy the Laplace equation and 

various boundary conditions.  Thereafter the total potential   is put in the dynamic equation to 

get wave pressure and force values. 
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Fig. 10.14  Boundary conditions 

The total potential is a summation of incident as well as scattered one, i.e., 

 = i + s 

Each one of them has to satisfy: 

 

 Laplace Equation: 

                                                       2 0  , i.e.,                                                  (10.22) 

2 2 2

2 2 2 0
x y z
    
  

  
 

 

DFSBC:  (Dynamic free surface boundary condition) 

21 0
2

p gz V
t


   


 

                  where, at the free surface ,  z   ,   = 0. 

Hence 
22 21

2
g

x y z t
   


                         

 

 

KFSBC:  (Kinematic free surface boundary condition) 

0
t x x y y z
          
   

     
 …….at  z   
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BBC: (Bed boundary condition) 

At z = -d,        0
z




 

 

BSBC: (Body surface Boundary condition) 

                  At body surface,          0i s 
 
 

 
 

 

 

Radiation Condition: 

                                   0s   , at very large radial distance from the object. 

 

Sommerfield R.C.: (at large radial distance R the scattering effect is zero) 

                                              lim 0sR
R i

R
 



    
                                  (10.23) 

                                where,  = Eigen value. 
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Linear Diffraction Theory:  
 

It assumes that the wave steepness is small. Hence the dynamic equation and boundary 

conditions can be linearalized as in the linear wave theory.  

Application to the case of vertical circular cylinder:  (as per McCamy and Fuchs 1954) 

                     

 
                                          Fig.10.15 Large diameter member 

 

It is convenient to use the cylindrical co-ordinates (r,  , z), because then the Laplace equation 

takes the form of the Bessel’s equation for which ready solutions (Bessel functions) are 

available. 

Expressing   in complex form and applying boundary conditions, 

     
   (1)

(1) '
0

cosh '
cos

2 cosh
m i t

m m r m
m m

k d z J KagH i J K H Kr m e
kd H Ka

  







       
   
  

(10.24) 

where   g = acceleration due to gravity 

            H = wave height 

             = 2 / wave period 

            K = 2 / wave length 

            d = water depth 

             z = vertical co-ordinate where   is determined. 

             m = 1 if m=0 
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                  =  2 mi  if m 1  

 m rJ K        =  Bessel Function of First kind of order ‘m’ 

             r      =  radial distance of the point 

 'mJ Ka     =  derivative with respect to ka of  mJ Ka  

             a     =  cylinder radius 

 (1)'
mH Ka  =  derivative of Hankel function of first kind of order m (of ka) 

  (1)
mH Kr   =  Hankel function of first kind of order m  

                 =  co-ordinate   

t                  =   time instant  

  

Putting the above value of    in the dynamic equation yields the wave induced pressure, which 

when integrated over the body surface gives the net wave force per unit axial length.   Thus, the 

instantaneous (horizontal) wave force per unit axial length: 

 
 

 cosh
2 cos( )

cosh
A Ka k d z

F gHa t
Ka kd

  


    

(10.25) 

where      2
1

2 ' 2
1 1'A Ka J Ka Y Ka


     

   1 ' '
1 1tan /Y Ka J Ka        = phase shift between max force w.r.t.  0   

Horizontal Instantaneous Total wave force: (on entire cylinder) 

                                       
 

tanh2 cos( )
A Ka kdF gHad t

Ka kd
                               (10.26) 

Instantaneous overturning moment at the base: 

 
   

2
2

sinh 1 cosh2 cos( )
cosh

A Ka kd kd kdM gHad t
Ka kd kd

  
  

  
  

 

(10.27) 
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FORCE ON IRREGULAR SHAPED CYLINDERS: 

 
                              Fig. 10.15  Discretization for structures of arbitrary shapes 
 
 
The problem is solved by the integral equation method.  Typical of them is the wave source 
method  

                     
Fig. 10.16  A Source 

 
 

Figure 10.16 shows the imaginary Source (2 Dimensional) point from which the fluid moves 
radially outwards in all directions  The strength of the source is the total flow coming out per unit 
time.  
 
The equation for   on the cylinder surface is developed and solved by discretizing the surface 

into different elements and getting   in each element. 
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 Total  = (x,y,z,t) 

            =  Re '( , , ) i tx y z e                                                                                    (10.28) 

 

 where  ' i s    ,   represented by continuous distribution of point sources over the entire 

body surface.  This   is made to satisfy various boundary conditions.   It is  obtained 

numerically and then  the pressure, force,… are derived. 

 

Many published results for specific object configurations are available.  Some of them are as 

below. 

 

Axisymmetric bodies, (conical, truncated) 

  

 
Fig. 10.17 Force on conical shaped structures 

 

 

Horizontal cylinders: 
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Fig. 10.18  Force on floating structures 

 

Vertical cylinders with square, rectangular, random shapes 

 

 

                              

                               
Fig.10.19 Force on arbitrary shapes structures 

 

For such specific cases design curves are available to obtain the diffraction force, moments as 
functions of cross-sectional areas. 
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Floating Large Diameter Objects: 

 

In this case the total potential is conceived as: i s f        

where f  is velocity potential due to disturbance (waves) created by the movements  

of floating objects. 

 

Each potential satisfies the dynamic equation, 

                                              f
f nvel

n





 


                                      (10.29) 

 

Drift force: 

 

   The total potential is given by:         2 3
1 2 3 ...          

where 
2

KH
  ;   2

2   and 3
3   are higher order terms which give the higher order force, which 

is called the Drift Force 

 

Unlike the first order force, 

0

0
T

t

DriftForce


  

(where T = wave period), i.e., the drift force is non-oscillatory.  For regular waves, it is steady, 

while for random waves, it is oscillatory but the period of oscillation is very high.  The drift 

forces are an order of magnitude smaller than the first order force but if frequency-coupled with 

disturbances, they could cause large structural oscillations. 

 

There are two approximate approaches as alternatives to the above analytical one in arriving at 

the diffraction force as mentioned below: 
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Diffraction Coefficient method: 
Approximately,  

    Total force on vertical cylinder = HC    x    Froud Krylov force 

CH is the diffraction coefficient expressed as the ratio of the maximum diffraction force to the 
maximum FK force given by, 

                                                            
 1

2
H

A Ka
C

KaJ Ka
                                       (10.30) 

 

Effective Inertia Coefficient Technique: 
 

 

Since the diffraction force is acceleration-dependent, the diffraction force per unit axial length at 

any depth ‘z’ can be given by 

                                  
2 .

cos( )
4

mz m
dF C u t

                                      (10.31) 

  Where mC  is effective inertia coefficient  
 2

4A Ka
Ka

                                       (10.32) 

Substituting for um the diffraction force per unit axial length (at z, t) can be given as  

 2 cosh
cos( )

8 coshm

k d zDdF C gHK t
kd


  


   

Hence diffraction force for entire length at ‘t’ is given by 

                        
2

tanh cos( )
8m
DF C gH kd t

                             (10.33) 

Total moment at time ‘t’ is:  

             
2 sinh 1 cosh cos( )

8 coshm
D gH kd kd kdM C t

K kd


  
    

 
             (10.34) 

Also , 

                                                   
2 2

max 24m
D HLF C

T
 

                                 (10.35) 

                            2
max

tanh sec 1
16m

kd kd hkdM C gHLD     
 

                (10.36) 
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CHAPTER 11 

 
SPECTRAL AND STATISTICAL ANALYSIS OF WAVE FORCES 

 

 

 

11.1 SPECTRAL ANALYSIS OF WAVE FORCES 
 

 

Time series analysis of two random variables: 

 

                            
Fig. 11.1 Time series analysis 

Let X(t) and Y(t) be stationary, ergodic and real valued processes.  For example, X(t) is sea 

surface elevation, Y(t) is horizontal water particle velocity .   

  

Cross Correlation Function: 

   
0

1( ) ( ) ( ) ( )
T

XYR E X t Y t X t Y t dt
T

                        for  =0,1,2,…  (11.1) 

 

Cross Spectral Density Function: 
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 XYS f  =Fourier Transform of Cross Correlation Function 2( ) i f
XYR e d  






    (11.2) 

The real part is the co spectrum and the imaginary part is the quadrature spectrum.   

 
If we consider only a single process instead of the two, then, we can define: 
                

     ( ) ( )XX XR E X t Y t R       Auto Correlation Function           (11.3) 

         2( ) i f
XX XX XS f R e d S f  






      = Auto Spectral Density Function      (11.4) 

 

Estimation of spectral density of the wave force spectrum at wave frequency,  f:  FS f  

 
 
This information is required in the spectral analysis of structural response.  Its direct computation 

is obviously not possible in absence of any wave force time history at the design stage. 

 
 

Application of the Morison’s Equation: 

 

 
Fig. 11.2  Wave force on a small cylinder 

 

 

Total horizontal force per unit length of vertical circular cylinder is given by, 

                                                  ( ) ( ) ( ) ( )F t C u t u t Ka t                                   (11.5) 
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Where 
2D
DC C                                                                                                (11.6) 

        ( )u t  = horizontal wave particle velocity  

        
2

4M
dK C 

                                                                                               (11.7) 

       a(t) = horizontal wave particle acceleration.  

 

( ) ( ) ( ) ( )F t C u t u t Ka t   

( ) ( ) ( ) ( )F t C u t u t Ka t          

 Wave force auto-correlation function: 

   
0

1( ) ( ) ( ) ( )FFR E F t F t F t F t dt
T

  


     

          (using over bar to denote the time averages)    

                                                                             = ( ) ( )F t F t   = 

2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )C u t u t u t u t K a t a t CKu t u t a t CKu t u t a t               

 

Using classical theorems in time series analysis: 

                                      2 4 2
2

uu
FF u aa

u

R
R C G k R


  


 

  
 

                              (11.8) 

Where  2
u =Variance of u 

             
2D
DC C  ;                 

2

4m
dK C 

  

        uuR  = auto-correlation function of u 

   If  
2

uu

u

R 


=r;    

1
2 1 2 5 72

3(2 )sin 6 (1 ) 1 4( ) 8 ...
3 15 70

r r r r r rG r r r
 

    
      

 
 

(11.9)             

 aaR  =auto-correlation function of ‘a’. 
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The above equation involving a non-linear velocity term is difficult to solve. 

 

Noting that the series G(r) converges fast and that if we retain only first term of G(r), then the 

difference: [full series of G(r) - truncated series 1( )G r  ] could be low as 15%.  Therefore we may 

write: 

 
1 2

8 8( ) uu

u

RrG r


  
   

It is then possible to show that the auto-correlation function of the wave force can be given as: 

                                        2 4 2
2

81 uu
FF u aa

u

R
R c K R


  

 
  

   
   

 

where    c = CD  D/2; u = standard deviation of velocity u; Ruu( ) = auto-correlation function 

of velocity for time lag ; K = CM   D2 / 4;  Raa() = auto-correlation function for acceleration 

for time lag . 

                                           2 2 28
FF u uu aaR c R K R   


                           (11.10) 

It can be proved that the same result can be obtained if,  

                                                 8
uu u u 


    
  

                                          (11.11) 

 

Let F C u u Ka     Hence 

 ( ) ( ) ( ) ( )F t C u t u t Ka t     8
uc u t Ka t


   

    8( ) uF t c u t Ka t   


      

Multiplying:

       2 2 28 8 8( ) ( ) ( ) ( ) ( ) ( )u u uF t F t c u t u t K a t a t CK u t a t CK a t u t       
  

          

Time Averaging, 

   2 2 28 8 8( ) ( ) ( ) ( ) ( )FF u uu aa u ua u auR c R K R CK R CK R       
  

     
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Spectral density function of force F: 
 
 
Spectral density function of force F = Fourier Transform of auto correlation function. 
 

Hence, 

      2( ) i f
FF FFS f R e d  






     2 2 2 2 28 i f i f
u uu aac R e d K R e d       


     

                                      2 2 28
FF u uu aaS f c S f K S f


                              (11.12) 

  Where ( )uuS f is Spectral Density Function of ‘u’ and ( )aaS f is Spectral Density function of 

‘a’. 

We have,                                          cosh
( ) 2 ( )

sinh
k d z

u t f t
kd

 


  

                                                    cosh
( ) 2 ( )

sinh
k d z

u t f t
kd

   


    

 

   2
2

2

cosh
( ) ( ) 2 ( ) ( )

sinh
k d z

u t u t f t t
kd

    


    

Hence        
2

2
2

cosh
2

sinhuu

k d z
R f R

kd   


  

   Taking Fourier Transform, 

                                    
2

2 2
2

cosh
4

sinhuu

k d z
S f f S f

kd 
    
  

                     (11.13) 

                                                                                             where  22 tanhf gk kd   

                                                   =   ( )u nnT f S f       

                   ( )uT f is the velocity transfer function 

Similarly we get  

       
2

22 2
2

cosh
4

sinhaa

k d z
S f f S f

kd 
    
  

                   (11.14) 

                                                =   22 uuf S f  
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                                                   aT f S f  

              aT f = acceleration transfer function 

 

 

11.2 Statistical Analysis of Wave Forces 

 

 
Fig.11.3. Force time history 

 
This mainly involves deriving probability distribution functions of instantaneous force F, or peak 

force Fp whose knowledge could be used to obtain values of the design force with known 

probability of recurrence. 

 

There are two main methods to derive this information. 

1) Semi-deterministic 

2) Probabilistic- a) Linearized  and  b) Non-linearized 

 

Semi-deterministic: 

 

This method is popularly used to obtain the probability distribution of peak force Fp. 

 

The steps involved are as follows 

1) Draw scatter diagram of (Hs ,Tz) 

2) Obtain ( )LTP H  versus H 

3) Associate appropriate ‘Tz’ to each ‘H’ 

4) For each pair of (H,T), obtain u, 
.
u using a wave theory. 

5) Obtain force using Morison’s equation. 

6) Assume:    
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P(Fp) =  P(H). 

 

                                           Fig. 

11.4.  Long term peak force 

                                                                                                   

Probabilistic-Linearized: 

 

F C u u Ka   

If  u u    8
uu


, then force will be a linear function of u and a and further because u and a are 

linear functions of sea surface elevation, which is Gaussian distributed, the wave force also can 

be described by the Gaussian distribution. 

Hence in short term, 

                                                   2
1
21( )

2
f

F

f

p F e 

 

 
    
                                      (11.15) 

( ) ( )P F p F dF   

 and the probability distribution of the peak force is given by the Rayleigh Distribution Function. 
 
 The above equation of p(F) involves standard deviation of force, F.  Following procedure is 
stated to obtain its value. 
   

Obtain  S f  versus f, then derive  uS f  ,  aS f .  Integrate these spectra and get 2
u , 2

a .  

Finally estimate F
2 using: 

                                              2 2 4 2 28
f u ac K  


                                           (11.15) 

This equation can be easily derived by integrating: 

     2 2 28
FF u uu aaS f c S f K S f


   

Probabilistic-Nonlinear:      
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This is based on the full form of Morison’s equation, which when used in this way makes the 

force variable non-Gaussian distributed as below: 

Probability density function of instantaneous force F is: 

                          
   

2 2

2 2
1( ) exp / 2

2 u a u a

u ap F du
K    





  
    
    

               (11.16) 

Where,  u = standard deviation of particle velocity 

             a = standard deviation of particle acceleration 

              
F C u u

a
K


  

 
Long term force distributions 

 

Long term probability distribution function of force F is obtained by multiplying the short term 

distributions as above by long term probability of occurrence of the given short term sea state 

and taking their summation as below: 

                                  ( ) ( )LT i
alli i

FP F p prob Hs
Hs

 
  

 
                               (11.17) 

 

Where 
i

Fp
Hs

 
 
 

 = conditional probability density function of F for given wave Hsi value 

                               in the short term    

 

 

 

STATISTICS OF RESPONSE: 

 

 Structural response indicates its behavior against loading.  In general response spectrum 
(of say member stresses, displacements) can be obtained by multiplying the force spectrum by 
appropriate transfer functions. 

                                                2( ) ( ) ( )r FS f H f S f                                  (11.18) 

Where ( )rS f  = spectral density function of response ‘r’ at wave frequency ‘f’. 
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          2( )H f = transfer function obtained from theoretical / experimental considerations 

            ( )FS f = spectral density function of force ‘F’ at frequency ‘f’ 

 

If we assume that the response amplitude is linearly related to wave force amplitude,  then  all 

statistics of response will be similar to that of force.  For example: 

 

 
Fig.  11.5. Response time history. 

 

                                               

2

221( )
2

r

r

r

p r e 

 

 
 
 
                                     (11.19) 

where, p(r) = probability density function of response ‘r having a standard deviation of r. 

                    
 

2

22
2( )

2

peak

r

r

peak
peak

r

r
p r e 



 
 
 
                                     (11.20) 

p(rpeak) = probability density function of peak of the responses belonging to different cycles 

having a standard deviation of r. 

 

E(rmax) = 0.705 rs (ln N)1/2 

 

where E(rmax) = expected value of the maximum response within N cycles for a given significant 

response rs. 

 

Above equations for response evaluation pertain to short term sea states.  For long term response, 

all long term theoretical distributions used for wave heights are valid.  For example the long term 

peak response is given by, 
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                ( ) 1

c
peakr A

B

peakp r e

                                                   (11.21) 

 

where A, B = constants, dependent on response data. 

 

A general flow chart depicting all major steps involved in the stochastic analysis involving 

waves along with typical variations in the values of functions with frequencies is as shown 

below:  

 

 

 

 

 

 

11.3 FULL STOCHASTIC ANALYSIS OF WAVES 
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Fig.  11.6 Summary of wave and wave force analysis 

 

 

Measure Surface Elevation 
time history  ( )t  

Obtain wu
(or Hs) 

Calculate auto-correlation 
function ( ) ( ) ( )R t t       

Calculate  Surface Spectrum 

0

( ) 4 ( )cos 2S f R f d     


   

Calculate velocity and acceleration 
Spectral density and variance 

   2
2

2

cosh
( ) 2 ( )

sinhuu

k d z
S f f S f

kd 
    
  

 

  . .

2( ) 2 ( )uu
uu

S f f S f  

2

0

( )u uuS f df


   and . ..

2

0

( )
u uu

S f df


   

Calculate force spectral density  and variance : 

     
. .

2 2 28
uu

F u uuS f c S f K S f


   

2D
DC C   and 

2

4M
dK C 

  ; 2

0

( )f fS f df


   

Calculate response Spectra 
2( ) ( ) ( )r FS f H f S f  

Calculate theoretical spectrum eg. 
P.M. 

4
02

5( ) gS e









   
   

0 / wg u   

Get design parameters 

04sH m  
1
2

0 2( / )Tz m m  

Where 
0

( )n
nm f S f df



   

Short/long term wave 
height/period distributions 
eg. 

2

2
2

( ) 1 s

H
Hp H e



   

Short/long term wave 
force distributions 
Eg. 

2

221( )
2

f

F

f

p F e 

 



  
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Fig. 11.7 Components of the wave and wave force analysis 
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CHAPTER 12 

 
WAVE RUN UP 

 
12.1 Introduction 
 
 
 

 
When waves hit a barrier they move up its face with or without breaking.  The vertical distance 
‘R’ moved up by them over and above the Still Water Level (SWL) is called the wave run up. 
Knowledge of run up is important to know the height of structure.  Run up is a complex process 
and depends upon the structural characteristics, (slope/roughness/ permeability) site conditions, 
(water depth/bed slope) and wave attack (steepness and other relationships between wave height, 
period and water depth).        
 
12.2  RUN UP 
 
         RUN-UP FOR REGULAR WAVES 
 
This is given as: 
 

                                                  









s

s

s

i
t

i L
d

L
HC

H
R 


 2cot
2

 

 
where   is surface slope, Ls s is wave length, Hs is the height in deep water. 
 

tC depends on structure roughness and permeability.  For smooth concrete slope its value is  
0.9 ~ 1.0.  For rip rap it is in between 0.5 to 0.7. 
 
 
FOR BREAKING WAVES 
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                                                     









oi
t LH

C
H
R

/
tan  

In practice graphical relationships based on model tests are preferred.  The values so obtained for 
smooth slopes need to be corrected for rough slopes by multiplying by certain constants.  For 
rough slopes, use roughness, porosity correction factor,  

 

‘r’ =
slopesmoothR

sloperoughR  

 
Graphs are available for following type of walls as in Table 12.1: 
 

 
 

 
 
 
Table 12.1  Correction factor ‘r’: 
 

Slope 
Surface 
Characteristi
cs 

Placement r 

Smooth, impermeable --- 1.00 
Concrete blocks Fitted 0.90 
Basalt blocks Fitted 0.85 to 0.90 
Gobi blocks Fitted 0.85 to 0.90 
Grass --- 0.85 to 0.90 
One layer of quarrystone 
(impermeable foundation) 

Random 0.80 
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Quarrystone Fitted 0.75 to 0.80 
Rounded quarrystone Random 0.60 to 0.65 
Three layers of quarrystone 
(impermeable foundation) 

Random 0.60 to 0.65 

Quarrystone Random 0.50 to 0.55 
Concrete armor units 
(~ 50% void ratio) 

Random 0.45 to 0.50 

 
 
 
 
Example: 
 

 
 
Solution: 

:oH  

 03957.0
)9(56.1

0.5
2 

oL
d  

  

 067.1
oH

H  

 

 mHo 343.2
067.1

5.2
  

 

Therefore, 00295.0
)9(81.9

343.2
22 

gT
Ho  

 

 494.1
343.2
5.3


o

s

H
d  

From the Figure:  for 8.0
o

s

H
d   8.2

oH
R  
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   for 0.2
o

s

H
d   7.2

oH
R  

 
Therefore,   R = 2.75 (2.343) 
  
   =     Uncorrected 

From the figure:  for 4.0
5.2

1tan   

 
   k = 1.17 
 
Therefore,  R = 1.17 (6.44) 
 
   =       
 
           
  RUN-UP FOR IRREGULAR WAVES 
 
The run up height varies with time regularly for a regular wave attack while it changes randomly 
for an irregular attack.   The probability distribution of run up heights is given by the Rayleigh 
distribution.   
 
Therefore,    2/ HrmsHeHHP   
 

      2/2 sHHe   

                   ln   
2

2 






 


sH
HHHP  

Therefore, 
 

sHHHPH .
2

ln 2
1





 

  

Where, H =Height of run-up associated with problem of exceedence  HHP   
  

sH =Height of run-up associated with significant wave height [given by previous graphs] 
 
 
Example: 
 
Data: Significant wave height = 2.5m measured in 5m water depth. 
 
 
 
 
 
 

6.44 m 

7.53 m 

3.5M 

Structure
Smooth, Impermeable 

2.5

1 
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OBTAIN: (a) ‘R’ from 

100
1

10
1 ,, HHH s  

 
   (b) Probability of exceedance for 18 m run up. 
 

Solution: 
 

(a) from previous example, mH s 5.2      
 

 

for  53.7
2

1.0ln,
2
1

10
1 



H    =    

 

for  53.7
2

01.0ln,
2
1

100
1 



H  =  

 
 

(b)   53.7
2

ln12 



 


HHP  

 
Therefore,   HHP   =    
 

 
12.3     Wave Overtopping 
 

7.53 m 

8.08 m 

11.43 m 

0.6% 
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In regular waves:   

 
From economical considerations many times height of the structure, h, is required to be kept less 
than ds + R, where ds is depth of water at the toe of the structure and R is the run up above the 
SWL.   In these situations a few largest waves may overtop the structure.  If the structure is in the 
form of an embankment (either a levee for retaining purpose or a dyke to prevent low areal 
flooding) it is necessary to know the volume of water overtopping for pumping out which is 
known through rate of overtopping in mm sec/3 length of wall.  Saville (1953 ~) has given 
following formula for this purpose:  
 

   














 







 R

dhh

oo

s

eHQgKQ
1tan217.0

2
1

3
*

.   

 
Where, Q is the rate of overtopping mm sec/3 length. 

 
 K is onshore wing correction factor 

*

.Q &are impirical constants of 








o

so

H
d

gT
H ,2  

    

             K = sin1.01 





 


R

dhK s   

 

 K   =              
00
530
260





mphu
mphu
mphu

 

 
 R = run-up for no overtopping 
 
Example: 

h

d s



227 
 

 
For the impermeable structure with smooth slope, obtain the volume of water overtopping over 
its 500m length in 3hrs. if oH = 1.75m; T = 7 Sec. 
 
Solution: 
 

Run-up: 0.2
75.1
5.3


o

s

H
d  ; 

  
00364.0

781.9
75.1

22 
gT
Ho  

from figure 6.2
oH

R  uncorrected for sale 

from figure, for tan k = 1.17 
 
R=2.6 (10/75) (1.75) = 5.32 m 
 

*: oQ : for (nearby slope 1:3) Figure    025.0;08.0 *  oQ  















 







 R

dhh

oo

s

eHQgKQ
1tan217.0

2
1

3
*

.   

=     













 

32.5
2tan

08.0
217.0

2
1

3
1

.75.1025.081.9
h

eK  
 

=















 
 sin1.0145.0
R

dhKK s  = 3714.01.0
32.5
211 






   

=
ms

m


3

53.0      = 1.1765 

=   3610*862.2500*3360053.0 m  
 
IN IRREGULAR WAVES: Ahrens (1977 ~) had suggested as follows: 
 
If 

sHR = wave run-up corresponding to sH (obtain from previous procedure) 

2.0m

3.5 m

1

2.5

on shore  w ind 40m ph
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   HR = waver run-up corresponding to H  having problem of exceedence ‘P’, 
 

 
2

ln HHP
R
R

H

H 
  

 
Rate of overtopping corresponding to ‘P’:  

  




















 






 H

sH

sH

s
R
R

R
dhh

soop HQgQ
1tan217.0

3
*

exp.


 
*

.Q &are impirical constants = f 








o

so

H
d

gT
H ,2  

Normally, %5.0Q     extreme overtopping rate, 
      

    Q   average overtopping rate 
 

Desired, =
199

995.0015.0010.0005.0 QQQQ 
 

 
 
 
 
Example: 

 
For the impermeable structure with smooth slope,  SecTmH

so 7;75.1   
 
Obtain: a) Rate of overtopping corresponding to sH , 
             b) Extreme rate of overtopping for %5.0Q  
 c) Average rate of overtopping, for Q  

2.0m

3.5 m

1

2.5

on shore  w ind 40m ph
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Solution:  
 
(a) Run-up corresponding to sH : 
   

 
00364.0

781.9
75.1;0.2

75.1
5.3

22 
gT
H

H
d o

o

s  

 

from Figure, 6.2
oH

R  uncorrected for scale effects 

from Figure, (for tan = 0.4), k = 1.17 
 
Therefore, R = 2.6 (1.75) (1.17) = 5.32 m 
 

From figure (for nearby slope 1:3), 025.0;08.0
*
 oQ  

 

Therefore, 














 

 







 R

dhh

oo

s

eHQgKQ
1tan217.0

3
*

.   

=     













 

32.5
2tan

08.0
217.0

3
1

75.1025.081.9
h

eK  
 

 = 0.45 K  Where, 



















 sin1.01

R
dh

KK s  

                 














  3714.01.0

32.5
211  

 
                 = 1.1765 

 

 = 
ms

m


3

53.0  

 
 

(b) 376.0
32.5
2;08.0 




sH

s

R
dh

   

 
From Figure;   )53.0(5.15.1%05.0  QQ  

 

ms
m



3

795.0  
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(c)      From Figure; )53.0(45.045.0  QQ  
 

ms
m



3

239.0  

 
12.4    Transmission of Waves 
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12.4  Transmission of waves 
 

 
Transmission of waves is usually studied with respect to a structure submerged below SWL. 
 
      Sub-merged below water              Sub-aerial below water 
 
         SWL         
 
         SWL   
 
 
 

 
 

Transmission due to 
 
 
 
       Permeability of          Overtopping by  

below water               high run-ups 
 
 
Submerged BW 
 
  

Transmission Coefficient, 
I

T
T H

HK  .  It is high, more than 0.4 in this case.  It is less if incident 

waves are high (as they may break).  Empirical curves re available to know the transmission 
coefficient. 
 

H IH T



232 
 

      
 

      
Subaerial BW 
Hhere larger wave height means higher transmission coefficient. 

Seeling (1980): has given the coefficient as:      



 

R
FCKT 1  

where  ‘C’ = 0.51 - 0.11 hBif
h
B 2.3; 





  

‘F’ = free board = sdh   
‘R’ = run-up for no overtopping 
 TK  irregular waves <  TK  regular waves 

since, it involves smaller waves. Therefore, less run-up.  It  requires less ‘h’ than regular wave 
concept. 
 

TK  canbe obtained by empirical curves 

K T = 








sR
F

h
Bf ,  

= where ‘B’ is (impermeable) BW’s widt 
= ‘h’ is height of BW 
= ‘F’ =  sdh   

h

R

d s

B
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= ‘ sR ’ is run-up corresponding to sH . 
Example 
 
For the permeable BW with smooth slope, incident significant wave height is 5m with 
corresponding run-up of 4m: 

(a) Obtain the transmitted significant wave height. 

(b) Obtain the % of time the transmission by overtopping occurs. 

(c) Obtain the transmitted wave height for 1% exceedence. 

Solution: 

(a) ;7.0
4

68.8





sR
F  

6.1
8.8
08.14


h
B  

from figure: 
 
  07.0

Is

Ts
T H

H
K     mH Ts 35.0  

(b) from figure:   0PTH  P = 38% 

from figure: 6.165.0 
h
BforCF  

38 (0.65) = 24.7% of time 
 
(c) from figure     for 1% P: 
 

   IsFPT HCH 4.0  
 

= 0.4 (0.65) 5 
 

= 1.3m 
 

14.08 m

8.8m

6m
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                                   CHAPTER 13 
 

PIPELINE HYDRODYNAMICS 
 
 
13.1 Introduction 
 
 
The stability requires that the pipeline should not move from its installed position.  The 
movement may be caused by forces, which could be natural or artificial, like environmental 
forces and man made changes in the environment. 
 
The pipeline can be fixed at its position by, Anchors,  Gravel sand bags / concrete bags, 
providing higher conc. coating or wall thickness.  If the pipeline is subjected to high wave, 
current loads, lengthwise soil sliding, earthquakes and faults and if it is hazard to navigation then 
it is better that it is buried below the sea bed. 
 

 
Fig.13.1 Pipe cross-section 

 
.2 Hydrodynamic loading 
 
 
One of the common exercises in pipeline design involves determination of minimum pipe weight 
for stability.         

  
 

Fig. 13.2 Forces over a pipe cross section 
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0 xF     FD + FI     Fr + W sin  = 0                           (12.1) 

 
 

0 yF     N + FL    W cos  = 0                           (12.2) 
 

Since Fr  =  N,   (  = 0.3 for clay and  0.7 for gravel) 
 

 from (12.2) 


rF
 + FL = W cos   

 
           Fr +  FL =  W cos  
 

from (12.1) FD + FI +  FL –  W cos   + W sin  = 0 
      FD + FI +  FL  = W(-sin   +  cos  ) 

 

        W = 



cossin 

 LID FFF
                                                (12.3) 

 
IF  = 0; MINIMUM SUBMERGED WEIGHT OF 
PIPE FOR STABILITY, 
 

W = 


 LID FFF 
 

 

Or   W = FL+

1 (FD + FI)                                    (12.4) 

 
note: FI =0,    if FD is maximum. 

  
Use of ‘effective Velocity’, ue: 
 
 
 
 
 
   generally 
 
 
 
 
 

Fig.13.3 Variation of horizontal velocity 

u 

z 

1 m 
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In actual, 

 dzzuDCF
Pipeheight

z
DD )(

2
1 2

0




  

         

In practice, 2

2
1

eDD uDCF                                                             (12.5) 

 
To obtain   ue: 

 Within the boundary layer  
7
1

1)1(
)(









z
u

zu       

 
  (Assuming 1 m boundary layer) 
 

Approximately, u 2
e  = 

D
1
 

D

z
u

0

2(z) dz 

(over pipe height) 
    
 
Substituting  u(z) from (1), 
    

   286.022 )
1

()1(778.0 Duue                                     (12.6) 

  
 Where u(1) = maximum water particle velocity given by wave theory 

at 1 m above sea bed 
 
Similarly, 

  FI = CM    euD


4

2  

 Where eu   = horizontal particle acceleration at 1 m above sea bed 
 
AND , 

  2
22

1
eL uCF               

(12.7) 
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Recommendation to obtain CD  and CM from given Re values: 
 
 Re   CD   CL   CM 
 
 < 50,000  1.3   1.5   2.0 
 50,000 – 100,000 1.2   1.0   2.0 

 100,000 – 250,000 1.53 - 
000,300
eR

  1.2 - 
000,500
eR

  2.0 

 250,000 – 500,000 0.7   0.7   2.5 - 
000,500
eR

 

 500,000 >  0.7   0.7   1.5 
 
Example:  

Deep water Hs = 3.315 m    = 0.5 
        Ts = 9.8 sec   =10.06  3m

KN  

        d  = 30.49 m   = 0.33 x 10 5    sec
2m  

         D = 1 m 
          = 0   Determine submerged 
Assume no refraction    wt of the pipe 
 
Soln :  Lo =   2

2T  

 
     = 1.5613 (9.8) = 149.95 m 
 
    d/Lo = 95.149

49.30  = 0.2033   225.0L
d  

              92.0
oH

H  

 L =  225.0
49.30  = 135.51 m 

 H = 3.315 (0.92)  = 3.05 m 
 

u = 
kdh

zdkh
L
TH g

cos
)(cos

2
 .  cos (-t) 

 
@ 1 m above sea bed 

umax = 
)51.135(2

)8.9()81.9(05.3     
49.30

51.135
2cos

)1(
51.135

2cos





h

h
 

        = 0.4975 m/s 
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 u 2
e  = 0.778 u2(1) (D/1)0.286 

 

ue =  2
1

2)4975.0(778.0  = 0.4388 m/s 
 
Re = ue 

D  

 
    = 0.4388 (1) / 0.33 x 10-5 = 133000 
 
 CM = 2 ; CD = 1.53 – [133000 / 300000] = 1.09 
 
CL = 1.2 – [133000 / 500000] = 0.934 
 

FD = 
2
1  CD    D  u 2

e  

 

    = 
2
1  (1.09) 

9
06.10  (1) 0.4388 2  = 0.1076 m

kN  

 

FL = 
2
1  CL    D  u 2

e  

 

   = 
2
1  0.934 








9
06.10  1 (0.4388)2  = 0.0922 m

kN  

 

W = FL + 

1  (FD + FI) 

  

    = 0.0922 + 
5.0

1  (0.1076) = 0.3074 m
kN  

   

    = 31.34  m
kg  
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Safety against vortex induced vibrations 
 
Example: 
Given,     pipe diameter,   = 0.324 m 
            
             wall thickness, t = 0.0127 m 
 
             pipe span,        L = 30.488 m (s.s.) 
 
            flow velocity   V = 0.61 m / sec 
 

seawater = 1030 3m
kg   E = 2.09 x 1011  2m

N  ; 
steel

 = 7830 3m
kg  

 
Will there be vortex induced vibrations? 
 
Soln : For cross vibrations, e < 0.7 n 

  e = 
D

SV  

 
      = 0.2 (0.61) / 0.324 = 0.38 Hz 

 

 n  = 2L
C  

M
EI

 

 C = 1.57 

 I  = 
64
  

4

outer
   - 

64
  

4

inner
      

   = 
64
  0.324 4  - 

64
  0.2986 4 = 0.00015048 m4  

          

E I = 2.09 x 1111  x 0.00015048 = 3.14 x 107 Nm2 
 
M =  actual  mass  +added mass  
      in air 
 
    =  

4
steel

 [ 22
inout   ] 1 + 1 (displaced assume mass) 
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    = (1830) 4


 (0.3242 – 0.29842) + 1030 4


 (0.324)2 

 
    = 97.985 + 84.921 = 182.91 kg/m 
 

n = 
91.182
1014.3

488.30
57.1 7

2

x
  = 0.7 

 
 
SINCE  e = 0.38   Hz  < 0.7 n 

    < 0.7 (0.7) 
    < 0.49  Hz 
 
PIPE   IS   SAFE   AGAINST   VORTEX   EXCITATIONS 
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CHAPTER 14 
 

STATICS OF FLOATING BODIES 
 

14.1   Introduction 
One of the most common types of freely floating structures is a ship.  For coastal and ocean 
construction a variety of ships and small barges are used as construction equipments and it then 
becomes necessary for an ocean engineer to understand basic design and analysis concepts of 
ships to know their capabilities and performance characteristics. Fig. 14.1 and 14.2 illustrate the 
various terms associated with the ship structure. 
 

 

                       
 

Fig. 14.1 Basic terminology of a ship structure (Elevation and plan) 
 

 
 
 

Fig. 14.2 Basic terminology of a ship structure (lateral section) 
 
 
Displacement: It is the amount (in weight or volume) of water displaced by a ship. 
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Dead Weight: The weight that can be carried by a ship is called as dead weight. 
 
Tonnage:        Tonnage is the capacity in volumes, its various terms are: 
 
1. GRT (Gross Registered Tonnage): It’s the total internal capacity or the total available 
space 
 
  Unit: 33 m83.2ft100   
 
2. NRT (Net Registered Tonnage): It’s the commercial carrying capacity by volume 
 
  NRT = GRT – (Volume of engine room, machinery, fuel, provisions…) 
 
3. DWT (Dead Weight Tonnage): It’s known as the carrying capacity by weight  
 
  Unit: 1 ton = 1016 kg. 
 
DWT = (Displacement when loaded to full load line – Displacement when light without cargo, passengers, 
fuel…) 
 
4. DT (Displacement Tonnage): It’s the actual ship weight. There are two divisions of DT. 
 
  (a) Loaded DT: Ship weight with cargo, fuel etc…) 
 
  (b) Light DT:  Ship weight without cargo, fuel etc…) 
 
 
A typical empirical relationship between the draft and the DWT is shown in Fig. 14.3.  
 

 
 

Fig. 14.3  Variation of draft with DWT 
 
Typically  a ship with a DWT of 17850, the vessel length = 150m, breadth = 21 m, depth = 
10 m and its peed could be up to 14 knots. 
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Rake  : Inclination, Knuckle 
 
Knuckle :  Sudden change of curvature of a ship in water under different wave  
   heights. 
 
Trim  : Fore draft - Aft draft 
 

 
 
 

Heeling : Transverse inclination of a ship on the surface water level is heeling. 
 

 
 

Sheer  : Longitudinal (uppermost) curvature of the deck of a ship. 
 

 
 

Aspect Ratio : Normal to In-line (to motion, in order) dimension. 
 

 
 

Bulkheads : Sub-division (compartments:-normal or watertight) of ship structures  
   under various heads. Longitudinal, transverse-Uppermost & continuous  
   Bulkhead Deck. 
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Margin Line : A level 3   below Bulkhead deck. 
 
 
Hogging : When ship’s both ends are lower than its middle portion in the sea water  
   level, hogging takes place. 
 

 
 
 
Sagging : When ship’s both ends are higher than its middle portion in the sea water  
  level, sagging takes place. 

 
Boom  : Pivoted  spar (pole) 
 

Water plane Coefficient : 
ship ofbreadth   ship oflength 

area planeWater 


WC  

 
 

 
 

Block coefficient  : 
draft breadth  length 

displaced Volume


BC  

 

Prismatic coefficient  : 
amidship arealenght   sectional cross

 volumeDisplaced


PC  

 
14.2   Stability of a Floating Body 

 
It indicates the ability of a ship to return to its original position. It consists of 2 types. 
 
1. Statical : When disturbance to a ship is steady in the water. 
 
2. Dynamical : When disturbance is time varying or F(t). 
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Consider fluid at rest: 
 


The force acting on a surface can be locally divided into a normal and a tangential (shear or 
frictional) force as shown below: 
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The frictional force creates a velocity difference in between different layers of a moving fluid as 
shown in the above figure.  The resulting frictional or shear stress is given by: 
 

Shear stress  = 
Y
V



                                                                                            (14.1) 

 
where, V = change in velocity and 0Y  (change in the vertical distance) as the fluid is at 
rest.  Hence the only force acting is normal.  Consider a freely floating or a submerged body 
(Fig. 14.1) 

 

  
Fig. 14.4  Free body diagrams of a freely floating or a submerged body. 

 
If the body is in equilibrium, yx FF  0  
 

0 xF  indicates that there is  no net horizontal fluid force and,   0F indicates that the net 
vertical fluid force (Buoyant Force) = Body weight 
 
It is possible to show that the body weight = weight of fluid displaced by body, or, net vertical 
fluid force = weight of water of submerged volume of body  V Fluid  
 
Principle of Floatation (or Buoyancy) :    weight = displacement 
 

 
Fig. 14.5.  Basic stability 

 
Centre of gravity, CG is a function of the mass distribution while the centre of buoyancy, CB 
depends on the shape of the displaced fluid and it represents the centre of the mass of the 
displaced fluid.  For basic stability the CG and the CB should lay on the same vertical. 
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For stability of the submerged objects the relative position of the CG and the CB matters.  The 
CB should be above CB (Fig. 14.5) otherwise as shown in Fig. 14.6 overturning moments may 
be set up.  
 

 
 

Fig. 14.5.  Submerged instability 
 
 
 

 
Fig. 14.6. Submerged stability 

 
As against the above mentioned submerged stability, in case of the floating stability it is the 
relative position of the metacentre, M, that matters.  As shown in Fig. 14.7 for initial transverse 
stability M should be above the CH or ‘G’ so that the distance GM would be positive.  The 
location of ‘M’ changes with θ but for small values of it ‘M’ gets positioned and distance GM 
gets minimized.  If ‘M’ goes below ‘G’, the overturning moments are set up which create further 
instability (Fig. 14.8). 
 

 
Fig 14.7 Initial Transverse Stability - I 
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Fig. 14.8 Initial  Transverse instability - II 

 
 
 
To obtain GM : (at design stage) 
 
 

 
 
 

 
Fig. 14.9  Various sections of a ship structure 

 
Let the ship heel (about xx) by small ‘d’.  When this happens the original water line WL 
becomes the new water line W’L’ and two wedges of the same volume dv get formed.  Taking 
moments (for small θ), 

    



  ydVBBFB 3

221    

where,  is the fluid density, 
 

  













  3

2
2
12 dxydydBMV   

where, V  is the total volume of the displaced fluid. 
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dxyBMV 3

3
2
  

 
  xxdI  (moment of inertia of the elemental plan area about XX) 
 
 xxI  (m. i. of the total water plane area) 
 

V
IBM xx  

(14.2) 

BG
V
IGM xx   

(14.3) 

Note: If CB or ‘B’ is  above G  BG
V
IGM xx   

(14.4) 
In order to find B we can draw cross section of the ship structure on a mm x mm graph paper and 
count squares equal on bothe left and the right side.  Typically a cargo vessel has GM = 3.1 m, a 
semi-sub has GM = 5.5 m. 
 
 
Example: Obtain the increase in the draft requirement of a ship of 12000 t displacement and 

21200m  waterplane area when it enters fresh water form sea water where the water density was 
31020 mKg . 

 
Solution: weight of ship   =   displacement 
     
      waterseain  displacedrfresh wate V   
 
     rfresh watein  displacedrfresh wate V   
 
since, larger is , small rfresh watefresh V  
 
draft in fresh water more 
 

   
freshζ
seaζVolVol seafresh   

 

       
1.00
1.02Vol sea   
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For 1000 Kg of water   31rfresh watein  displaced Vol.1 mt   
 

    
 

398.0
02.1
00.11 waterseain  Vol. m  

 
change in volume 302.0 m  for 1t. 
 
total change in volume   32401200002.0 m  
 
        = A (change of draft) 
 
        = 1200 (D) 

 
D = 0.2m (Ans.) 
 
Example: A barge of 40 t displacement has a rectangular waterplane area of 8m x 4m. Obtain the 
maximum permissible distance of its C.G. from its keel  3

water 1020 mKg . 
 
Solution:  

 
For stability ‘M’ should be above ‘G’ or should coincide with it. 
 
i.e. KGKM   
 
Obtain KM : 
 
KM = KB + BM (KB is half of d) 
 
To obtain ‘d’:  weight = displacement 
 
   40,000 = 1020 (V) 
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    = 1020 (8 x 4 x d) 
 
   d = 1.225m 
 

   m
z
dKB 613.0  

 

To obtain ‘BM’: 
V
IBM   

 

   
 

225.148
48 3

12
1


  

 
   = 1.088m 
 
KM = 0.613 + 1.088 = 1.701m 
 

 
 

Example: Obtain GM  for stable rolling & pitching for a ship of 3000 t displacement. 
 
        x 
Solution:  
 
    d  
       y              y 
 
       b  
 
     
        x 
 

3

12
1 dbI xx       ;   3

12
1 bdI yy   
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       d              x       d      x 
          b   
x b         x       
 

3

12
1 dbI xx       ;   3

36
1 bdI xx   

 
GM = BM – BG 
 

       5.2
V
I  

 
V:  weight = displacement 
 
  3000   =  1.020V 
 
  32.2941 mV   
 

Rolling:     33 2045
12
11012

12
14 







xxI  

 
  434000m  
 

  
2.2941

34000


V
I xx  

 
  = 11.56m = BM 
 
  GM = 11.56 – 2.5 
 
  = 9.06m (Ans.) 
 

Pitching:       
















 

2
33 5.22

3
122012

2
11220

36
124520

12
1

yyI  

 
  4322335m  
 

  
2.2941

322335


V
I yy  
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  BMm  6.109  
 
  GM = 109.6 – 2.5 = 107.1m (Ans.) 
 
Que.: How will a square c/s buoy with l > a float? (sp. gr. of buoy = 1/2) 
 
  
 
 
 
  l  
 
 
  a 
 
 
Ans.: 
           M 
 
           G 
 
  a          B        a/2 
 
  a 
 
 

For the above position: 





  dww Vla  2

2
1ntdisplaceme weight  

 

V
IBM   

 

 
2

3

2
1

12
1

la

la
  

 

 
6
a

  

 
GM = BM – BG 
 

 
46
aa

  
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 = Negative (unstable) 
 
             
             
             
         a   M a        
             
     G         
             
     B         
           a   a        
              
 
For the above position: 
 

V
IBM   

 

 
 

2

3

2
1

2
12
1

la

al
  

 

 a
3
2

  

 
GM = BM – BG 
 

 
23

1
3
2 aa   

 

 







2
1

3
a  

 
 = Positive (stable) 
 
 
 
 
Que.: State whether a floating cylindrical buoy of 1.8m diameter & 2.3m height and 1900 Kg 
displacement would be stable in sea? 
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 If this buoy is to be held to the sea bed by a chain, what would be the minimum tension 
required to keep it stable? 
 
Ans.:  

 
 
GM = BM – BG 
 

       = BM – KG + KB where, 
V
IBM  ; KG = 1.15m; KB (weight = displacement) 

 

 

1020
1900

8.1
64

4

         





  d218

4
10201900   

 
= 0.277m        d = 0.732 
 
GM = 0.277 – 1.15 + 0.366 



256 
 

 
= - 0.506 (unstable) (Ans.) 

 
 
When ‘T’ is applied, d  d 
 
   B  B
 
   G  G 
 
For stability: BM > BG 
 

 
 

1020
1900

8.1
64

4

TV
IMB






 

 

     T


1900
6.525  

 
Weight = Displacement 
 

  





  dT 28.1

4
10201900   

 
 

6.2595
1900 Td 

  

 
BG= KG - KB where,    15.1190019000   GKTMGK k  
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     T
GK




1900
2185  

 

   & where, 
2
dBK   

 
  KBGKGB   
 

  
6.5195

1900
1900

2185 T
T





  

 
For stability: BM > BG 
 

  
2.5191

1900
1900

2185
1900

6.525 T
TT








  

 

  
TT

T









1900

6.525
1900

2185
2.5191

1900  

 

        
T


1900

4.1659  

 
     4.16592.51911900 2  T  
 
            28.8614277  
 
  1900 + T > 2935 
  
  T > 1035 Kg (Ans.) 
 
 
 
 
14.3 Large angle displacements 
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For large ‘’ : ‘M’ not fixed, old & new water lines do not meet in the middle line. 
 
Righting Lever, GZ  Atwood’s formula: 
 

   sin10 BGhh
V
vGZ   

(14.6) 
v = volume of a wedge 
 
V = total volume of displacement 
 

10hh  = horizontal projection of 10gg  
 

0g  = centroid of emerged wedge 
 

1g  = centroid of immersed wedge 
 
Example: For a ship of 12000gN displacements it is noted that a 30 angle of heel produces the 
two wedges of displacement such that the volume of each wedge is 10% of the total displaced 
volume of the ship and that the line joining the centers of these wedges makes a projection of 
15m on the horizontal. 
 
 Obtain the righting moment. (The C.G. is 0.5m vertically above the C.B.) 
 

Solution: sin10 BGhh
V
vGZ   

 
         = 0.1 (15) – 0.5 sin 30 
 
         = 1.5 – 0.25 
 
         = 1.25m 
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      moment = 12000g (1.25) 
 
          mN147150  
 

14.4    Vertical shifting of weight: 

 
 

Fig. 14.8 Vertical shifting of weights 
 
If weight ‘w’ on the ship 

 is moved up by ‘z’ CG goes up by z
W
w  

 
  sin111 GGGZZG    

(14.7) 
( 1GG +ve if ‘w’ upward) 
 
 
 

14.5    Horizontal shifting of weight: 
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Fig. 14.9.  Horizontal shifting of weight 

 
Further to above, if ‘w’ moved horizontally, by ‘y’, 
 

  y
W
wGG 21  

 
  cos211122 GGZGZG   
 
   cossin 211 GGGGGZ   

(14.9) 
Static Stability Curve 
 
One diagram for one ‘G’ & one ‘V’ value 
 

 
 

Fig. 14.10.  Static stability curve 
The shape of the above shown curve of GM versus displacement θ =  (form of ship) 
 
  ...32   dcbaGZ  
 

To obtain GM while afloat: 
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Fig. 14.11.  Determination of GM 
 

Roll known weight ‘w’ across deck by known ‘d’ ship will heel by  

 
Measure it by plumb-bob hanging inside ship (Note: l ; x) 
 
DISTURBING MOMENT  =  RESTORING MOMENT 
(for rolling weight)     (moment of weight at metacentre) 
 
  sinGMWdw     (where ‘W’ indicates ship weight) 
 
   tanGMW   
 

   
l
xGMW   

 

  l
x
d

W
wGM   

(14.12) 
 
 
 
 

14.6 Loss in GM due to partially flooded compartments 
 
(Free Surface Effect) 
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Fig. 14.12  Loss in GM due to partially flooded compartments 
 

Many times ships contain ballast water or any other liquid stored in partially flooded 
compartments.  If the tank is full it undergoes rigid body healing.  Otherwise the CG ‘g’ of the 
liquid mass, the same ‘G’ of the ship as well as the centre of buoyancy B change to new 
positions of g’ G’ and B’ respectively.  The inside water piles up towards ‘G’ and the combined 
C.G. moves towards direction of C.B. shift.  The lever arm between the CG and the CB reduces 
(Fig. 14.13) and this gives rise to the loss in the stability. 
 

  



n

i
ii IV

GM
1

1 


 

(14.13) 
 where, n = no. of tanks 
 
  I = m.i. of inside water surface about an axis through centroid of free surface,  
        parallel to axis of rotation of ship. 
 
 
Loss in GM due to freely suspended weights 

 
 

 
 
 

Fig. 14.13.  Loss in Gm due to suspended weights 
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When suspended weights are present as the ship heels the CG shifts towards the direction of the 
shift in CB (Fig. 14.13), which gives rise to loss in GM and hence the stability.  This loss is 
given by: 

  



n

i
iilm

V
GM

1

1


 

(14.15) 
 

14.7 Flooded stability 
 

 
Fig. 14.16.  Longitudinal stability 

 
Consider Fig. 14.16 dealing with the longitudinal stability.  The original waterline WoL0 changes 
to W1L1.  The spacing in between the transverse bulkheads like ABCD is so decided that 
flooding in at least one compartment does not sink the ship.  The maximum length of a 
compartment that can be flooded without submerging margin line in the water is called floodable 
length. 
 

 
 

  where,  WL - Original water line 
    11LW  - New water line 
    C.F. - Centre of flotation 
 

Fig. 14.17  Longitudinal stability 
 

The transverse and the longitudinal rotations assumed independent, which is true when ship is 
symmetrical about both axes. 
 
  smallvery ~L  
 
Righting lever:  sinLL GMGZ   
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Righting moment:  sinLGMW  
 

Approximately  LL GMBM   where, 
V
IBM L

L   ;    LI  to be calculated at C.F. 

 
Wind heel stability criteria 
 
Wind attacking from the side of a ship creates overturning ot heeling moment at say the 
longitudinal centerline. The U.S. Coast Guard & American Bureau of Shipping Rule is as 
follows: 

 
 

Fig. 14.17  Wind heel stability criteria 
 
The righting moment above is the Static Stability Curve (One diagram for each ‘G’ & volume 
‘V’)  
     ...2   cba  
 
Area under the curve up to ‘’ = Work done by the moment up to that ‘’ 
     = Dynamical stability  
               (It controls heels due to sudden impulses) 
 
For Stability, work done by righting moment > upsetting wind energy 
  ( A + B ) > 1.4 ( B + C )                                                           (Fig. 14.17) 
 
Note: 
 

(i) If any part of vessel develops allowable stress before ‘’ of second intercept, (or it 
catches water) areas A, B, C are to be calculated up to that  (called Angle of 
downflooding). 

 
(ii) The situation shown in Fig. 14.18 say for a leg raised jack up is unacceptable. 
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Fig.14.18  Areas A, B and C for a jack up with legs raised 
(iii) 
 

 
Fig.14.19  A schematic of a semi submarine 

 
As per Fig. 14.19 for a semi sub, jack-up, the further located columns are the better it is 

since 2.. ArIM   (A= cross sectional area and r = the radius of the leg) 
 
(iv)  As shown in Fig. 14.20 during the lowering of a weight module or a structure launched 

on the top of a launch barge when the deck goes below the water line there is a 
danger that the moment of inertia becomes very small and hence the stability may 
become very critical. 

 
Fig. 14.20 Launch barge action. 

 
 

(iii) For jacket-in-transit , the MI becomes very important (as the C.G. is high) 
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(iv) For gravity structures, semi-sub. anincrease in draft  indicatessignificant reduction 
in water plane. 

 
 
14.8    The Pressure Integration Technique 
 
Submerged V, wA  yields the stability information  ,...,... like GZGM  for small , fixed form 
 
If  large form arbitrary thePressure integration technique is used. 
 

 
 
 

Fig. 14.21. Definition sketch 
 

The distribution of ‘p’ around body surface obtained, integrated over surface, done by converting 
Surface Integrals to Volume Integrals through Divergence Theorem is the pressure integration 
technique. 
 

[If P, Q, R  functions of x, y, z in volume V bounded by surface S] 
(single valued, continuous first derivatives) 

 

   


















S
zyx

V

RdSQdSPdSdV
z
R

y
Q

x
P                                (14.18) 

   
  where, zyx RdSQdSPdS   are outward projections of dS. 
 
   OR 
 
  dSnfdVf

SV

ˆ   ; (- sign.) if n̂  into the surface 

(14.19) 
  where,   is the gradient operator & f  is the vector field 
 
At any point, X (x, y, z) p =  zdg   
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Normal hydrostatic    dSnzdgdF ˆ   
 
     where, n̂ = normal vector into the body  zyxf ,,  
 
Total hydrostatic    dSnzdgF

S

ˆ                                                            (14.20) 

 
Moment   dFXdM   
 
Total moment     dSnzdgXM ˆ    
 
For equation:  kWF ˆ  
       [W = body weight & GX = C.G.] (14.21) 
at C.G.   kWXM G ˆ     
 

Using divergence theorem, equation (14.19):     kdVzdg
z

F ˆ



    

 
          kgV ˆ  
 
                = displaced volume weight 
  Archimedes’ Principal 
                         = weight of body from (14.21) 
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CHAPTER 15 

 
                                       VIBRATIONS 

 
15.1 Introduction  
 
Consider bodies undergoing time dependent motions, specifically the periodic or vibratory 

motions.   The best method to study them is on the basis of a mass-spring system. 

 

Mass-spring system 

 

 

 

 

Fig. 15.1  The mass-spring system 

 

Equation of motion of mass ‘m’:  at any time ‘t’ 

  Force = mass x acceleration 

   kx  = m  2

2

dt
xd  

     )(txx   

  02

2

 kx
dt

xdm    

 or  0 kxxm    S.H.M.                                              (15.1) 

 

has solution t
m
kct

m
kcx sincos 21   

    at any time ‘t’                                              (15.2) 

 

 

 

y 

smooth 
 

k 
x   

x 

m 



269 
 

 
2

cos(sin 22


 t
m
kct

m
kc ) 

        = tan –1 
1

2

c
c  

       phase angle 

        

 

         

Fig. 15.2  Simple Harmonic Motion 

 

 

Alternatively )(cos  t
m
kAx        

A = 2
2

2
1 cc    = maxx   = amplitude of motion.                           (15.4) 

 

  If 
m
k t -  =   

  x = A cos   

 

 

 

 

 

 

 

                          Fig 15.3  Displacement time history 

   = 0   0 t
m
k  

 t1 = 
mk /

  

x 

y 

c1 

c2 

c1 
c2 

A  

t
m
k

x 
 

2


t
m
k  

2 2 

x 

 
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   = 2   2 t
m
k  

 t2 =  
mk /

2    

Time required to complete 

    one cycle    = t2 – t1 = T = 
mk /

2  

       Period of the motion 
 

No. of cycles per unit time = 
T
1   

          = frequency (natural) of motion 

 

   = 
2
/ mk  

No. of cycles per unit time in radians    = 
m
k  

 Equation of motion :  0 kxxm   

 0 x
m
kx  

 02  xx   

To obtain ‘’ in   = 
m

k equivalent                                                      (15.5) 

Practical problems 
 
 
 where   eqk  = Force / deflection 

 

15.2 Free Vibrations with Damping 
 

 

 

 

 

Lubricant 

k 
x   

m 
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                       Fig. 15.4    Damped vibrations 

      Frictional force at support (not dry friction) 

           or damping force    velocity of mass ‘m’ 

  
dt
dx  

 = - c 
dt
dx   c = coefficient of damping 

Eqn of motion: 

 m
dt
dxckx

dt
xd

2

2

 

 xckxxm    

                                   i.e.       m 0 kxxcx   

has standard solution  x tectx 
1)(   

substituting      tt eccecm   1
2

1 01 teck   

         m2 + c + k = 0 

 2 + 0
m
k

m
c   

  = 
2

4
2

m
k

m
c

m
c











 

   = 
m
k

m
c

m
c









 2

22
 

 

 

 = 21 ,   say 

In such a case  tt ececx 2
1

21
   
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  
t

m
k

m
c

m
c

ecx
























2

22

1  

 + 
t

m
k

m
c

m
c

ec






















2

22

2  

Consider the case when 0
2

2









m
k

m
c  

i.e. 
m
k

m
c









2

2
 

i.e. c = 
m
km2  

i.e. c = 2m n    n  = natural frequency of undamped free vibration 

 

 critical damping coefficient = Cc  

   Cc = 2m n 

  (for given systems) 

ratio       
cC

C  = d  damping factor 

Now   m
d
c 2 n    nd

m
c 

2
 

 
tdd nnnecx 



 


222

1


 

 + 
tdd nnnec 



  222

2


 

 
tdd necx





 


1

1

2

 

 + 
tdd nec





  1

2

2

 

tdd necx




 


1

1

2

  + 
tdd nec





  1

2

2

 

 

when d = 1  d = 1
cc

c   CRITICAL DAMPING 
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   tt nn ececx    21  

      exponential decay of x 

 

 

 

when d > 1 12 d   positive 

 large exponential decay 

 large damping 

 

 

 

 

 

 

when d < 1  d2 – 1  negative 

    12 d =    22 111 did   

 x  = 
tdidtdid nn ecec

 



 



 


22 1

2

1

1  

 = 








  tectectd n

di
n

di
n

e


21
2

21
1

 

since  sincos ie i   

    x       = 
    









 



  tdccitdcctd nnn

e
 2

21
2

21 1sin1cos
  

we have seen that if x  = A cos tBt  sin  

  =    tBA cos22  
td nex  { X   }1cos 2   td n                                                          (15.8) 

 
       
      exponential decay of cosine function 
       Light Damping 
 
 
 
 

x 

t 

x 

t 

 

t 

cosX   X   
x 

T 

td neX   
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                    NOTE: 21 dn    

Fig. 15.5 Damped vibrations 
 
 
15.3 Forced Vibrations 
 
 
 
 
 
 
 

Fig. 15.6  Forced vibrations 
 
Assume mass ‘m’ resting on smooth support acted by a hormonic force F cos t 
  
Eqn of motion:  m tFkxx cos  

 i.e. )1(cos  t
m
Fx

m
kx   

 (linear –non homogeneous –2order) 
 
has soln  pc xxx   

cx complementary or transient solution that makes 0 x
m
kx  

         and hence is = tctc nn  sincos 21   

            where n  = frequency of ‘free’ vibrations = m
k   

 vanishes   with time ‘t’ in practice. 
px particular solution or steady state soln  

         that makes t
m
Fx

m
kx cos  

     =  tcos amplitude of motion 
putting in eqn (1) 

                t
m
FtX

m
kt  coscoscos2   

               
m
F

m
k







  2  

k 

 

x   m F cos t 
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2

2
1 

k
m

k
F

km
F





  

 
 
 
 
 
 
  

Now  
k
F     =  static deflection of ‘m’ 

        =  deflection of ‘m’ if force 
               FoFtF  )(coscos    
              applied statically 
        =  
 

and 2
2 1

n
n k

m
m
k


   

        2

1 











n


 

       t

n






 cos

1
2












 steady state soln                                    (15.9) 

and complete soln  is 

       221

1

coscossin














n

ttctcx




  

Now      max. ‘steady state’ deflection = magnification 
                        static deflection   factor 

      = 












 1.

1
2

n


 

      = 2

1

1











n


 

     from graph:  
 

2)(1

1

n



 

 
n

 
0 

-1  

6
 

 

1       
 

2  2 3 4 
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(1)     when 1
n

 Very large 

     magnification 
     Resonance 

(2) If 1
n

    m.f.    +ve 

    1
n

  m.f.    –ve (force & 

    displacement opposite) 

(3)  when 2
n

 , m.f. <1 (fraction) 

(4) when you start an electric motor from rest ( = 0) to any higher , resonance condition is 
met with and hence should be surpassed quickly. 
 
 
15.4 Forced Damped Vibrations 
 
 
 
 
 
 
 
 
 

Fig. 15.7  Forced damped vibrations 
 
Equation of motion:  xckxtFxm   cos  
         i.e. tFkxxcxm cos      ------(15.10) 
has general solution 
 x = xcomplementary  +  xparticular 

 

                       

 

    

 

 

 

 

 

 
represents transient motion        steady state vibrations 
lasting for very small time 
 

-6- 

F cos t k 

 

x   m 
 




xc
kx


 

t 

x 
x 

t 
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sol

n  xp       =   cos (t-) 
                       
                  
                 amplitude     phase angle 
putting value of x in eqn  (1) 
           tktctm cossincos2  

= F cos t                                                                                  (15.12)) 
 

when      cos)2(,0 2 Fmkeqt n   

when    sin)2(
2

Fceqt n   

squaring and adding,      22222 Fcmk    
 
 
 

   222  cmk

F


  

& dividing tan  2

mk

c


  

222

1 


















k
c

k
m

k
F


                                                                  (15.13) 

F/k = static deflection of spring by given force F = 

n
n m

kas
k

m 



 2

22

 

 
k

c
c
c

k
c

c
c

 )(  

       = (d). [2m n] 
k
  

       = 2d 
n
  

222

21 

































nn

d





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and tan 2



mk
c


  = 























2

22

1

2

1
n

n

d

k
m
k

c










 

22

2

2

21

1
























nn

d






   magnification factor 

 
 
 
 
 
 
 
 
 
 
 
 

22

2

2

21

1




















nn
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





 

 
 
 
 
 
 

Fig. 15.9  Dynamic amplification of the motion 
 

1) As damping reduces, magnification of motion increases 
    To reduce vibrations use large d or keep >n 
 

2) Peak magnification is at 1
n

  

                      exact value can be obtained by 

3 

2 

1 

3
0 

1 2

 
  0.3    

d=0 

d=0.2 

0.5 

  

1.0 
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                          0
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1
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


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
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
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n


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15.5 Torsional Vibrations 
 
 

   Vibrations            restoring force 
                                                                                   
                                                                                                    restoring torque 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
          
           
           
 
    Consider a circular disc attached 
    to a tubular shaft (as shown)  
    fixed at upper end. 
 
 
 
 
 
 

 
k 

m 

L 

X 

Mz 

 

y 
z 



280 
 

 
 
           
 
                      Fig. 15.10  Torsional vibrations 
 
Rotate disc (by applying moment Mz) by angle  
Shaft will get twisted & supply a restoring  
torque - Mz  
 
                        causes torsional vibrations of disc. 
 
Equation of Motion: 
 
for translatory motion: Newton’s eqn 

                                         force = mass x acceln 
for rotational motion:  Euler’s eqn 

   moment about axis of rotation = moment of inertia of disc   x   rotational accln 

                                             







 2

2

dt
dIM zzz


   

                                              (15.14) 
 
 
We have, 
         restoring force = -  (spring constant) displacement 
 
Similarly 
        restoring torque = -  (torsional spring constant) rotation 
           )( tz KM   
                            = zzI   from eqn (15.14) 
           0  tzz kI   

            0 
zz

t

I
k   02    

           
zz

t

I
k

   

has soln : tctc  sincos 21   

                   = A cos (t - )   
 
note:       for circular shaft  
 
 
 

 
 
L 
 

0 

2 r 
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L

GJkt     

     G = shear modulus of shaft material 
      J = polar moment of inertia of shaft c/s 
                                                              = m. of i. about an axis normal to plane of c/s 

                                                          = 4

2
1 r   

 
 
 
 
 
 

Rate of Damping 
 
Note:     In order to get vibratory motion  
                d<1. 
Then           tdexx n

tdwn 21cos'  
 
 
 
 
 
 
 
                         x1 
      t 
 
    
   T=period 
 
 
 
X1 = amplitude at any ‘t’ 
X2 = amplitude time (t+T) 
       (successive amplitude) 
 
Rate of damping  logarithmic decrement 

                 
2

1

x
xnl  

                      =  
 













)(1cos
1cos

2)(1

2'

Ttdex
tdexnl

n
Ttd

n
td

n

n

                                        (15.15) 

since cosines of angles 1 cycle apart are same, 
          Td nenl    

z 

t t + T  

x 

x2 
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






 n
n dd 22

  
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CHAPTER 16 

 
MOTIONS OF FREELY FLOATING BODIES 

 
16.1 Encountering Wave Frequency 

 
Encountering frequency is also called apparent or relative wave frequency, relative to the ship’s 
speed and as encountered by the ship.  Let  is the angle made by the ship direction with the 
wave direction. Then  = 0 means a ‘following sea’ (Tapparant > Tabsolute)).  Then  = 1800  means a 
‘Head sea’ (Tapparant < Tabsolute)).  = 900 indicates ‘Beam sea’.   
 

 

                     
         
        
                     
                            
                
               
 
 
 
 
 
 
       Fig. 16.1  Ship’s movement 
 

Let L = wave length 
   T = wave period  (abs.) 
   C = wave speed 
   V= ship speed, 
 

Relative speed of waves   = CV cos  

Relative period of waves,  Te  = 
cosVC

L


 

     = 
cos

.
VC

TC


 

     =   cos/1 CV
T


 

   





cos/1
/22

CVe 
  

 

L Le=L/cos 

 

wave direction 

ship direction crest line 

(Bow. encounters waves 
  after every Te sec) 
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           













  cos1

C
V

e   

 

Since c = 

g    










g
Ve




cos
1  

           (deep water) 
 
Note: (1)   e

90  
          (2)  CVe  cos0 ship remains in  

same position   
     w r.t.  

wave profile 
 

    0e Following sea   
 
     
 

   0e Overtaking sea   
        
 

 

(3) For     0:max ewe dd  V cos
2
c  

 
Ex.  If the bow of the ship encounters wave crests after every 15 seconds and if the  
            crests take 10 seconds to cross the ship from its bow to stern, obtain  
            (i) the wave length, (ii) wave speed, (iii) ship speed. 
  The length of the ship of 150 m makes an angle of 60 with crest lines. 
Soln :          

          = 30 
        Ls = 150 m 
  

       V = ship’s speed 
        L = wave length 
        C = wave speed 
 
 
 
 
 
 
Along ship dirn :      

crest line 

600 

wave 
ship direction 
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  bow encounters waves after 15 sec. 

   
cos

15
VC

L


      

Along wave dirn :      
                    10 = length along wave dirn 

                             speed along wave dirn  

                        = 
cos

30cos150
VC 

 

             CV cos  = 15   cos 30 = 
15
L     

             L = 194.86 m  

In deep water,  C = 
2

9L  

      = 
2

)86.194(81.9  

      = 17.44  m/s 
 
we have  CV cos  = 15   cos 30 = 12.99 
      = 17.44 – V cos 30 
   V = 5.14  m/s 
          = 10 knots 

 
16.2 Ship Motions 
 
 The ship motions could be classified into two types: translatory and rotational.        
  
As shown in Fig. 16.2 there are 6 independent motions of a ship or 6 degrees of motions for it.  
In actual they are dependent on each other (coupled) but for mathematical simplicity we assume 
them to be independent or uncoupled.  Out of these 6 types of motions the heave, pitch and roll 
are purely oscillatory and hence can be more dangerous. 
                     
                         
             6 degrees of 
             freedom  
 
 
 
 
 
     
 
                   Fig. 16.2 The six degrees of freedom 
 
UNCOUPLED MOTIONS 

y-swing z y 

x 

Surging 

Rolling 
Pitching Heaving 

Swaying 
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16.3 Heaving motions 
 
           Equation of free heaving motion :  This takes place in absence of waves. 
 
                           0 zczbza   

The first, second and the third term in the above equation represent the inertial, damping and the 
restoring force, respectively. 
a = inertial coefficient, b = damping coefficient, c = restoring force coefficient, z, z. and z..  = 
vertical displacement, velocity and acceleration respectively of the ship. 
The vertical motions are evaluated with respect to the CG.   
The inertial coefficient is also called virtual mass and it has two components:  Actual ship mass 
and the added mass.   

                                             k 
                         
It has soln  (for oscillatory motion,   d <1) : 
   )(sin    tAez d

t                       damping factor 

    damped frequency,          = 
cb

b    

  = decaying constant        = 22  z          = 
za

b
.2

   

    = 
a

b
2

    < z        free undamped  

            

         zddd
ut TTtctce   sincos 21                        

a
c

z   

                                         obtained from initial conditions e.g.           
                     t = 0  z = za    , 

            0z   
 
 
 
 
 
 
 
 
 
 
 
                  Fig. 16.3  Attenuation of displacements 
 
    

z 

t 

za 

0 

frequency 
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INTERTIAL FORCE : 
 
                          any mass, ‘m’, accelerating in fluid  z  
                            experiences a force > m z  
 
                                additional   force = (added mass) z  
                               typically 80% of m 
                 inertial force    =  force accelerating              force accelerating   
                         body,   ‘m’                liquid 
                  az  z    = m z       +      az’. z  
                                      
                 virtual  mass    actual  mass                   added mass  
               [or inertial coefficient]        (for heaving) 
 
       Lewis (1929)    studied conventional hull c/s 
                              a method to obtain      az’ by 
                     STRIP THEORY 
 
 
 
 
 
 
 
 
 
 
        For any nth c/s :     mass density of fluid 

   


2

8 nn BpCa 
    

 added mass     mass of semi-circular c/s of 
 coefficient        non-d    diameter Bn and length 1 m 
 for nth c/s section 
   added mass 
   coeff. 

                          = ),,,( nenn TBf         
8

12
nB

  

               area coefficient     

     = 
nn

n

TB
S
.

        given c/s area 

 Total added mass for entire ship 



2/

2/

1 .
L

L
nz dxaa  

                

Bn 

L/2 L/2 

z 

● 

mid ship c/s 
nth c/s of unit length 

T

Bn 


  

B

Tn 

+ 
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 DAMPING FORCE : 
    
                            opposes motion 

                     due to radiated waves,  
                         (generated by heaving) friction, eddies 

 
     Grim (1959)         STRIP THEORY 
        for nth c/s 

        Damping Coefficient,  23

2

Agb
e

n 


  

              
     A  =     amplitude = amplitude of radiated waves 
            ratio     amplitude of heaving motion 
 
  = ),,,( nnne STBf   
 

                      for entire ship          



/

2/

L

L
n dxbb  

 

Note:   1) b  (water plane area)2 ,       
shipVL

B 1,  

       2) (damping)V type c/s > (damping)u type c/s 

  
 
RESTORING FORCE : 
 
          due to additional buoyancy caused by deeper submergence 
        = c.  z  =  g (Awater plane) Z 
       c =  g Awp     (1) 
 

 If Cwp = coeff. of     =     actual water plane 
  water plane     area,   Awp 
  area   L.B 
 
             wpCBLgc    
 
Note also:   Block Coefficient,   CB  = Actual volume displaced 
                        LBT 
                Also from (1) 

      



2/

2/

L

L
xn dBgc   

 
● 

L/2 L/2

dx 

Bn 

x 
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 EQUATION   OF   FORCED   HEAVING   MOTION : 
 
              [in waves] 
 
    


 tFczzbza eo cos  

 
          
    has soln:    Z   =   Ztransient  +         Zsteady state  

            
             free  damped 
           =     tztctce eadd

t  cossincos 21  
           =     tzteA ead

t  cossin
  

 

 
                we have         zsta ZZ   

                                      
       amplitude of  forced     amplitude of      magnification  

                      heaving     static heaving      factor 
 

                   
  2222 41

1




kC
FZ xst   

 
              tuning factor              damping factor 
                      zze k  //   
         

      
a
c

z               

              
 

       Note:  (1) 2
1

1
2tan

  k   

(2) For max. response : 
     ze    

     when damping large 
          1/ ze   

         2210 k
d
d

z 


  

(3) wave elevation w.r.t.  ship, 
z  is imp. as deck wetness 

depends on it. 
 

exciting force 
 

decays   rapidly 

8 

K=0 

0 
1 

K=0.1 

K=0.2 

K=0.3 

K=0.4 

2 

3 

4
 1 

5 

6 

7 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

decaying factor 
 )2/( ab  

z  

ze  /  
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       EXCITING FORCE :   
 
                                             due to waves causing excess buoyancy at ‘t’ 
         assume       (i)     at  Load  WL      ship wallsided 
                               (ii)     t = 0       wave crest   @   midship 
                              (iii)    ship remains still w.r.t. vertical motion 
                                        i.e. waves pass slowly by the ship. 
    
 
 

                 dxxygF
L

L

..)(.2.
2/

2/




  

                                      coskke   

            = dxtxkxyg ee

L

L
a .)(cos)(2

2/

2/

 


 

[assuming surface profile = effective profile, )]cos( txk ee
e
a

mTek

 


 

           = tdxxkxyg ee

L

L
a  cos..)(cos.)(2

2/

2/












 

          = [ F ].cos te  [note: phase ]0F  

non-d force amplitude       
LBg

Ff
a


   

                

                                          dxkxxy
LB

f
L

L

).coscos(.)(2 2/

2/




   

 
              parametric studies  
                                                            effective wave length wL : 

                                                            If wL < 
2
1 Lship  small heaving force 

                                                                     <     Lship  moderate force 
                                                              wL  wpcf    
    
 
 
 
 
 
 

half width at section @’x’ 

ship wave 

k 

  

● 
dx 

2y(x) 
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Ex.        For a ship of length = 128    m, 
                                    beam = 17.07  m, 
                     draft upto keel = 6.05    m, 
obtain,     1)   natural period of heaving in still water 
                2)   heaving amplitude in still water 
                               if   t = 0       z = 0;      68.1z m/s 
               3)   maximum force exerted on the deck by a suspended 2 t anchor. 
Assume added mass for heaving = 90% of ship mass wpB CC       ,  
     damping    negligible 
1) Undamped free heaving frequency, zz T/2   

                         
c
aTz 2  

                              = 
wpAg
MM




9.2  

                              = 
BLCg

M

wp


9.12  

                             = 
BLCg
CLBT

wp

B





)(9.1

2  

                             = 
g
T9.12  

                             = 
81.9

)05.6(9.12  

                             = 6.8      sec. 
 
(2) For Free Undamped Heaving,      z=A sin tBt zz  cos  
                        t=0     z=0     0=B 
                                                       tAz zz  cos   

                        t=0     
8.6

268.1/68.1 Asmz   

  A = 1.818 m 
 
(3) Maximum force by anchor = 2 g  +  2. maxz  
                         z = 1.818    sin (0.924 t) 
                    )924.0(cos)924.0(818.1 2 tz    
                    2

max
/552.1 smz    

                Max force = 2g + 2 (1.552)  =  22.7 kN 
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Ex.:             A ship of length = 137.16   m, 
                                     beam = 21.336   m, 
              (mass) displacement = 12700    t 
             water plane area coefficient = 0.8 
         is attacked by 6.10 m high waves with 5.325 sec. encountering period. 
        Added mass for heaving = 80% of ship mass. 

       Non-dimensional damping coefficient, 7.1
mg

gLb
 

      Non-dimensional heaving force amplitude, 17.0
LBg

Ff
a


  

OBTAIN                         1)  Heaving amplitude 
                                        2) Phase angle between wave motion & heaving motion 
                                        3) Maximum acceleration in heaving 
Take 3/1030 mgk     4) Relative motion of ship w.r.t. wave & its max. value. 
Soln :  (1) Amplitude of forced heaving, zsta ZZ .  

      = 
  2222 41

1




kC
F  

     c =  g Awp 

           =  g L B C wp         
z

e




  z /  

            = 1030 (9.81) 137.16 (21.336) 0.8 

        = 23   6,5   5,7   49   N/m            
a
c  

az
b  

  BLgF a17.0     
        = 0.17 (1030) 9.81 (3.05) 137.16 (21.336)  
        = 153, 31, 882    N 
   325.5/2 e  = 1.18    r/s 
   ɑ   = (0.8 + 1) m 
        = 1.8 (12700) 103    kg 
        = 22860  x  103    kg 
  acz /  = 000,60,228/749,55,236  
        = 1.017   r/s 
    ze  /       = 1.18 / 1.017 
        = 1.16 

16.137)81.9(/]81.9)000,12700(7.1[7.1  b
mg

gLb
 

                             = 57,73,955 
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    017.1/)22860000(2/5773955/)2(  zz abk   
   = 0.126(1.017) = 0.124 
 
 

2222 )16.1()124.0(4)16.11(

1
74955236
88231153


 aZ  

   = 1.44  m 
 

2.                                     =                                +                               
                    wave  heaving              wave   exciting                 exciting   heaving 
                motion     motion          motion     force                     force        motion 

 
                                                                  

                                                  2
1

1
2tan



  k     

                                                     = 2
1

16.11
16.1)124.0(2tan


  

                                                     = -39.77 
 
3.           Heaving motion :      )(cos  tzz ea   
                                               )(cos2  tzz eea   
                                       2

max )18.1(44.1 z      
                                                  =             m/s2 

 

4.           Relative wave motion  =   z 
                at say  x = 0                  = )(coscos  tzt eaea   

                                                 = 







 )(coscos t

z
t e

a

a
ea 


  

                    For  max (  z),    0)(
)(

 z
td

d
e




 

                  0)(sinsin 







 tzat e

a
ea 


  

                 0)(sinsin  tzat e
a

e 


  

                   0sincoscossinsin  ttzat ee
a

e 


  

                 






 


t
z

ea

a

 tan
sincos1  

 2 

0 
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                    






 


tetan
)77.39sin(77.39cos

05.3
44.11


  

                36.25 te  
 
 

                 



   77.3936.25cos

05.3
44.136.25cos05.3)( zMax   

                                   = 2.15  m 
 

16.4     Pitching motion  
          
Free Pitching: 
 
Equation of motion:                                      
   0  cba                                                                    16.1     
 
where, a  is the Inertial Moment, in which a  is virtual mass m.i. &   is angular acceleration,   
      b  is the Damping Moment, in which b  is damping moment coefficient &   is angular 
velocity. 
 c  is the Restoring Moment, in which c  is restoring moment coefficient &   is angle of 
rotation. 
 
To obtain ‘a’: 

 
Fig. 16.1   Schematic vertical section and plan of a ship 

 
 yyyy IIa    where, yyI  is m.i. of ship in pitching & 
     yyI  is the added mass m.i. of ship in pitching. 
 
                yyI   which also called the virtual mass moment of inertia 

CG



X

Y

A

y
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           dPAI yy

2     where, A is the sectional area & 2  is distance along x   
    direction from C.G. of the section.  
 
 
          daI nyy

2 ,           where, na  is added mass for nth cross section 
 
 
To obtain ‘b’: 
 
  dbb n

2   where, nb  is the damping coefficient for nth section. 
 
 Note that  damping is proportional directly to the beam width and the ‘V’  form of the ship and 
inversely to the draft, and natural frequency. 
 
To obtain ‘c’: 
 

Fig.16.2  Schematic plan of the ship 
 

  dcc n
2 ,    where, nc  is the restoring coefficient for nth c/s. 

 
Restoring Moment due to rotation ‘ ’ 
 

  momentelementalc  
 

     xxdxxypg 2  
 

yIpg    where, yI  is m.i. of load water plane area. 
 

x

x

y(
x)

dx

 X
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VBMpg L     where, LBM  is the distance between C.B. and metacentre & 
     V  is displaced volume. 
 

 LGMMg for small ‘ ’ where, M is the ship mass for pitching & 
     LGM  is metacentric height. 

LGMMgC   
 
Equation of free pitching:  

0  cba                                                                 (16.2) 
 
    0  Lyy GMMgbI   
 

since decaying constant  za
bv   

 

         
yyI

b



2

 

Undamped circular natural frequency for pitching: 
a
cw   

 

             
yy

L

I
GMMg


  

 
Natural pitching period:      Tθ 

  = 2π / (ω θ) 
 

               
L

yy

GMMg
I 

 2  

 
has the solution:   twCtwCe dd

vt sincos 21                                                           (16.3) 
 
        twAe d

vt sin  where, twd  is damped pitching frequency 22 vw    
 

Damped pitching period: 
d

d w
T 2

  

 

    
22

2
vw 




  
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2

1

12



















w
vw

 

     

    
2

1 















w
v

T  

 
NOTE:  Generally Tpitching  50% Trolling  DWTforTpitching 200007   

 
                   Theaving 
 
Forced Pitching motion 
 

 
Fig. 16.3 The water plane area 

 
 
The equation of motion is:      twMcba eo sin                                (16.4) 
 
where, twM eo sin  is the exciting moment due to unbalanced moment about y-y 
 

               xdxxypgM
L

L





2

2

2  

 

y/y
CG X

1/21/2

dx

K 

Wave

Ship
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 Putting the value to above  twkx ea   coscos  & assuming   ship is symmetrical 
about mid-ship section, 
 

    twdxkxxxypgM e

L

L
a sincossin2

2

2













 



  

 
        twM esin  
 
where,     dxkxxxypgM ao    cossin2  
 
Also,  1cos  twMM eo  
 
where, betweenphase 901  the  exciting moment & wave motion 
 

Non-d amplitude 
2

2
1 BLRg

MM
a

o
o


  

 

 Parametrically, oshipw MsmallLL 
2
1  

 
           oship MhighL   
 
Equation (16.4):       twMGNmgbI eoLyy sin              
 
Has solution:                  
 
                                       2sinsin   twtwAe ead

vt                                 
 
where,   twAe d

vt sin  is transient 
 2  is the phase-exciting moment & pitching motion, 
The equation can be showed as: 
 

     2
1

2 1
2tan



    

 
  steady state  2sin  twea  
 
 where,  Mtsa   
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       M
e

M o   

 

       
  222 41

1



L

o

GMmg
M  ;   where, 



 w   &  
w

we  

 
NOTE:  Max amplitude when 221   
   
  Normally 85.0 - � RESONANCE90.0   
 
Example: Obtain natural pitching period as well as pitching angles for 4 cycles for a ship with 
displacement of 15241t & length of 152.4m sailing in calm water. 
 
 The radius of gyration along pitching axis is 25% of ship length. The metacentric height 
for pitching is 152.4m. The added mass n.i. is 90% of mass m.i. the coefficient of damping for 
pitching is sec774192 mkNg . The motion starts from rest when  5 . 
 
Solution: Free Pitching: 





wT 2  

 

   where, 
a
cw   

 

   29.1 yy

L

Mk
GMMg

   after canceling M at numerator & denominator we get 

 

    
  24.15225.09.1

4.15281.9
  

 
   = 0.736 rad/sec 
 

   sec54.8
736.0
2




T  

 
Equation of Motion for Free Pitching:     twAe d

vt sin  
 

22 vwwd    ; 
   24.15225.0152419.12

774192
2 


g

I
bv

yy

 

 
       = 0.90 
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   22 090.0736.0   
 
= 0.73 rad/sec 
 

00  t          twAvetwAwe d
vt

dd
vt sincos  

 
     sincos0 vAAwd   
 
    vAwd 5cos0    
 

 50 t    sin5 A  
 

    
dAw

v5cos    ;
A
5sin 

  where, A = 5.04 

 

    





 97.82
090.0

73.0tan
v
wd  

     45.173.0sin04.509.0   te t  
 
     50 t  
 
          3.245.8   
 
          06.180.17   
 
          48.026.25   
 
 
Example: A ship with length = 137.16m, breadth = 21.336m & displacement = 12700t moves 
head sea against 6.096m high waves that have 5.32 Sec period [encountering]. 
 
 It has pitching metacentric height = 137.16m, coefficient of water plane area = 80%. 
pitching radius of gyration, yyK  = 33.53m. added mass m.i. = 54% of mass m.i. Non-d. damping 

coefficient for pitching, 154.09
2 

MgL
Lb Non-d. exciting moment amplitude, 25.0

2
1 2


BLpgn

M

a

o . 

 
OBTAIN - Amplitude for pitching motion, 
  - Phase difference between pitching & wave motions, 
  - Variation of wave motion, pitching motion & exciting motion with  
  time. 



301 
 

Solution: Steady state equation of pitching motion: 

   2sin  twea  
 
 where,  Msta   
 

  
  2222 41

1




L

o

GMmg
M  

 

    336.2116.137048.381.91030
2
125.0 2





oM  

 
= 1545251.5 kNm 
 

rad
gst 09.0

12700
5.1545251
  

 

w
we   ; 

a
cw   

 

    
yy

L

I
GMmg


  

 

32.5
2      

253.3354.1
16.137

m
gm 

  

 

34.1
88.0
18.1

   = 0.88 rad/sec 

 




w
v

   where, 
yyI

bv



2

  and where, 
gL

Lmgb
2154.0

  

 
 
 16.13781.9

16.137154.0 2mg
  

 
= (78.98) mg kN-m sec 
 

 
  4.1731127002

98.78 gmv   
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  254.1 yyK  
= 0.224 
 

882.0
224.0

k  

 
 
= 0.254 
 

    222 34.1254.0434.11

1


 M  

 
 
= 0.96 
 

 09.096.0a  
 
 
= 0.086 rad = 4.93 
 

         Phase 
 
 
 
 
  Pitching Motion     Wave Motion 
 
 
 
 
= Phase - Pitching Motion Exciting Moment + Phase-exciting Moment    Wave Motion 
 
 
 

  2
12

1
2tan



                 = 90 

 

    
2

1

34.11
34.1254.02tan


   

 
  = - 41 
 
= 49 
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EQUATION OF WAVE MOTION: twea cos   
 
EQUATION OF PITCHING MOTION:   41sin twea  
 
        49cos twea  
 
EQUATION OF EXCITING MOMENT:   90cos twMM eo  
 
 
16.5  Rolling Motions 
 
Free Rolling: 
 
Equation of motion:                               0  cba                                           (16.5) 
 
where, a  is the Inertial Moment, in which a  is virtual mass m.i. for rolling &   is  angular  
acceleration. 

b  is the Damping Moment, in which b  is damping moment coefficient &   is angular 
speed. 
c  is the Restoring Moment, in which c  is restoring moment coefficient &   is angular 

displacement. 
 
INERTIAL MOMENT: 

 
a = m.i. of actual ship mass + m.i. of added mass 
 

22
xxxx kmmk    ; where, m < 20% of m  �Not Very Important 

2
xxmk  

 
 
DAMPING MOMENT: 
 

x

z

y
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 The damping Moment is important as it may magnify rotation ��by�5 to 10 times.  The 
damping moment is due to the generated waves (called the wave making resistance which is the 
largest in the magnitude), the friction between ship & water- (called the eddy making resistance), 
the bilge keel, fittings, the air resistance, the heat loss and the surface tension. 

For wave making only:  
2

2

3

2

2
ABn

w
pgb

e
n 






    

Where for the Lewis forms:  

                        where, 
22

2 









g
BwdA ne

  

 
where,  nnfd  ,  

where, 
nn

n
n TB


  in which ‘n’ is actual     & where, 

n

n
n T

B
2

  in which n  is not ‘c/s’ 

Note: 1. Speeding ships have higher damping,    2. Damping moments   bf  similarly, if  
large 
 
 
 
 
 
 

 
Fig. 16.4 Calculation of the damping moment 

 
 
 
 

S'  = 1.2









nS'  = 1.2

S'  = 1.0n

n

S'  = 0.6

S'  = 1.4



d



S'  = 0.8

n

nS'  = 1.0

n

n



305 
 

The restoring moment 
 
 

 
 sinGMmgC   

 
         TGMmg  (if  small) 
 

TGMMgc   
 
Equation of motion:  0  cba                                                         (18.6) 
 

    0 
a
c

a
b  

 
    02 2   wv  
 

where, 
xxI

b
a

bv



22

  ; 





TI
GMMg

a
cw

xx

T 2



  ,    T  is the undamped period 

 
Solution:   twCtwCe dd

vt sincos 22    
 
        twAe d

vt sin  
 

where, 
d

d T
vww 


22    ;  dT is the damped period 

 
 
The Forced Rolling motion: 

FB

B

G
B1

mg

M
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Exciting Moment: 

Equation of Motion:   Mcba                                                          (16.6) 
 
 where, M  is the exciting moment due to change in buoyant force by waves. 
 
 For element of width xd  
 

  






  yvolumegM

3
22   

 
Equation of Motion: twMGMmgbI eTxx sin    
 
Solution:     2sinsincos   twtwDtwCe eadd

vt   
 
where,  twDtwCe dd

vt sincos   are free oscillations �vanish 
 
STEADY STATE  2sin  twea  

where, sta M      &  where, 2
1

2 1
2tan



    

 

in which 
c

M o
st   

 

 
c

cM 
  

 
 M   

 

y

M

y

2/3 y



z
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taking the above eqn.: sta M    ;  from which:  
  222 41

1





M  

 

  where, 
w

we   &  



w
v

  ,  in which, 
xxI

bv



2

 

 

For max   22 210  



 MM  

 

  
212

1





M  

 
 
Example: A ship has length = 137.16m, mass, m = 12700t, radius of gyration, rolling, 

9.39mxxk , transverse metacentric height, TGM  = 1.76m, coefficient of roll damping, b = 
9910g kN-m-sec, its rolling added mass = 20% actual mass. 
 
 Obtain its natural & damped rolling period. 
 

Solution: Undamped 





w
T 2

  

 

 
xx

T

I
GMmg

a
cw


  

 

 22.1 xx

T

mk
GMmg

  

 

 
2.1

1 T

xx

GMg
k

  

 
 = 0.404 rad/sec 
 
 

sec55.15
404.0
2




T  

 

 
22

22
vww

T
d

d





  
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      22 39.9127002.12
9910

2.12
9910

2
g

mk
g

I
bv

xxxx




  

 
 = 0.36/sec 
 

22 036.0404.0
2





dT  

 
 = 15.61 sec 
 
 
Example: A ship with 15240t displacement has transverse mGM T 475.1 and rolling 

mkxx 90388 . Its added mass m.i. = 20% of mass m.i. in rolling coefficient for roll 
damping=9910gkN-m-sec. 
 
 Plot the rolling motion time history for 3 periods if the ship is initially inclined at 7. 
 
Solution: Equation of free rolling: 0  Txx GMmgbI   
 
 Has solution:  twDtwCe dd

vt sincos   
 

    2388.9152402.12
9910

2
g

I
bv

xx




  

 
  = 0.0302 
 

 22.1 xx

T

km
GMmg

a
cw   

 

   
 2388.92.1

475.181.9
  

 
  = 0.37 m/sec 
 
 2222 032.037.0  vwwd   
 
  = 0.37 m/sec 
 

 70 t   c 7  
 

00  t        vtt
dd

t
dd

t
dd

vt evwDtwCwDwwCwe   sincoscossin  
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  vcDwd 0  
 

  
369.0
0302.07


dw

cvD  

 
 = 0.573 
 

    tte t 369.0sin573.0369.0cos70302.0    
 

71
37.0

2 


dT  

  
 
Example: A ship of 137.16m length &12700t displacement has its transverse mGM T 765.1 =1, 
radius of gyration, rolling = 9.388m, damping moment coefficient = 9910g kN-m-sec. Its added 
mass = 20% of mass m.i. in rolling. 
 
 If the ship is encountering 18.29m high waves at an angle of 150��with wave direction 
with a speed of 20 knots. Plot M  for ww = (0, 1.20) at 0.1 rad/sec intervals. 
 
 What is the amplitude of maximum roll? 
 

Solution: 
  2222 41

1





M  

 

 where,  
w

we
221    &   




w

a
b

2224   

 









 cos1 V

g
www w

we  

 

1 .7
2

 

2  (1 .7 )
4 

3  (1 .7)
6 
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   



  150cos514.020

81.9
1 w

w
ww  

 
   9075.01 ww ww   
 

a
cw   

 

 22.1 xx

T

km
GMmg

  

 

  
 2388.92.1

756.181.9
  

 
 = 0.405 rad/sec 

Damping factor 
 




ww

v xxkm
b

22   

 

      
405.0

2388.9127002.12
9910 g

  

 

  
405.0
036.0

  

 
  = 0.089 
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ww  
sec/rad  

 wwe www 9075.01  
sec/rad  w

we  
  2222 41

1





  

0 0 0 1 
0.1 0.109 0.269 1.078 
0.2 0.236 0.583 1.497 
0.3 0.382 0.942 4.923 
0.4 0.545 1.346 1.179 
0.5 0.727 1.795 0.445 
0.6 0.927 2.288 0.235 
0.7 1.145 2.827 0.143 
0.8 1.381 3.410 0.094 
0.9 1.635 4.038 0.065 
1.0 1.908 4.711 0.047 
1.1 2.198 5.428 0.035 
1.2 2.507 6.191 0.027 
1.3 2.834 6.998 0.021 
1.4 3.179 7.850 0.016 
1.5 3.543 8.747 0.013 
1.6 3.924 9.689 0.011 
1.7 4.324 10.676 0.009 
1.8 5.177 11.707 0.007 
1.9 5.177 12.783 0.006 
2.0 5.681 13.904 0.005 

 
 
 
Maximum Amplitude:     sta M   :

.max.max   
 

5.0sin 


 amm
T

mTo
st nk

GMmg
GMmg

c
M   

 

(*) 
wL

k 2
  ; (*)  

2
2

.max
2

2
81.9

2 















 Mforw

gTL
w

w
w  

 
For max. M   ; 221   
 

     2089.021  
 
    = 0.992 
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From table for sec/312.0092.0 radww    ; 64.5  

(*)From the above equation: 
2

312.0
2561.1 









wL  

 
     = 633.07m 
 

    
07.633

2
k  

 
     = 0.0099 
 
     145.90099.05.064.5max  a     5.0akM   

 
  = 0.255 rad    where,  145.9;0099.0;64.5   kM  
 
 = 146 
 
 
Example: The equation of rolling motion of a ship is tww em sin164.00724.0 2

    the 

maximum effective wave slope is .
20

rad  Plot natural & forced rolling time histories for an 

encountering frequency of 0.2 rad/sec assuming that the ship is still and upright when hit by 
waves. 
 
Solution:    221 sinsincos   twtwCtwCe eadd

vt   
 

    where, 
a

bv
2

  ; 

    

    22 vwwd    in which, 
a
cw 2

  ; 

 

   ma M     in which, 
  2222 41

1





M  ; 

 

    










 
2

1
2 1

2tan   

 

  
405.0

2.02.0

1
164.0


w

we  
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   = 0.494 
 

  0362.0
1.2

0724.0
2


a

bv  

 
   = 0.0362 
 
   22 0362.0485.0 dw  
 
   = 0.403 rad/sec 
 

  
405.0

0362.0





w
v  

 
   = 0.089 
 

  
      22222222 494.0089.04495.01

1

41

1








M  

 
   = 1.316 
 

  







20
316.1   msta MM  

 
   = 0.206 rad = 11.83 
 

   






















 
2

1
2

1
2 494.01

494.0089.02tan
1
2tan   

 
   = 0.116 rad = 6.659 
 

024.0sinsin00,0 2121  aa CCt   
 

      22121 cossincoscossin   twwevtwCtwCtwwCtwwCe eea
vt

dddddd
vt   

 
212 cos00,0  ead wvCwCt   

 
 

d

ea

w
wvCC 21

2
cos


  

 
= -0.099 
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      116.02.0sin206.0403.0sin099.0403.0cos024.00362.0   ttte t  
 

 
Example: At what heading angle against the waves, the largest rolling is expected, if a ship with 
a natural roll period of 15 seconds is sailing with a speed of 35 knots & length of waves is 
274.32m. 
 

Solution: For largest rolling,  1
w

we  

 
    i.e. wwe   
 

Now, 







 cos1 V

g
www w

we  

 

where, wwe    ;  
w

w L
gw 2

   ;  35514.0V  

 

 
15
2

    ;  23.274
2 g

  

 
 = 0.419 rad/sec ;  = 0.474 rad/sec ; = 17.99 m/sec 
 
This gives  3.82  
 
[NOTE: To have wwe   change Vor ] 
 
 
 
 
 
 
 
 

N atu ra l
F orced

1 00
t 
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CHAPTER 17 
 

MOTION RESPONSE OF COMPLIANT STRUCTURES 

 
17.1 Freely floating buoy:  Consider the sectional elevation of a freely floating cylindrical 
buoy before and after the wave attack as shown in Fig. 17.1 below: 

 

 
Fig. 17.1 Freely floating cylindrical buoy before and after the wave attack 

Let z=heaving at time ‘t’;   = Sea surface elevation at ‘t’ 

Relative motion of the buoy with respect to sea water is due to forces induced by the added mass, 
damping , stiffness (hydrostatic). 

Hence   zczBzAzm 





 






  

........
                                                     (17.1) 

Where 
..
zm  is mass of buoy= hr 2  

            





 

....
zA   is added mass 2

3
1 r  (Tables available for different shapes) 
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            





 

..
zB   is damping coefficient 

              zc   is stiffness coefficient = 2rg  

 (Note :  cz= restoring force) 

Hence    cBAtFczzBzAm 
......

)(                                             (17.2) 

  Let ta  cos  

         ta  sin
.

  

         ta  cos2
..

  

Hence     tcataBtaAtF  cossincos)( 2   

                     tBtaca  sincos2   

                      tFa cos    ------   is between wave force and wave motion. 

  Where    222  Bac
a
Fa   

                  21 /tan  acB    

  Hence equation of motion :  

            )cos(
...

  tFczzBzAm a                                                   (17.3) 

has solution      tzz a cos  -   is the angle between heaving motion and wave force. 

   Where 
    222

1

 BAmcF
z

a

a


                                                   (17.4) 

                    21 /tan  AmcB                                                      (17.5) 

Heaving of a semi-submersible 

 It is not monohulls like ships 

 For  deeply submerged pontoons,  wave pressure is low for low ‘z’. 

 For Small wpA and large submerged volume , Long nT for heave , pitch roll is not of the 

order of waveT   

 

17.2    Semi-submersible:           FREE UNDAMPED HEAVING 
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Circular cross-section pontoons 

  
 

Fig. 17.2  Circular C/S Pontoons 
 

The equation of motion is:            0
..

 czzAm                            (17.6) 

Undamped natural period: 

  

                                                 
c

AmT 
 20                                       

                                                     
2
1

2
21

2
1

2
2

2
222

Rgn
LRhRnLR


 

      

add/mass coefficient for vertical motion =1 for circle  

                                                     







 2

1

2
2

1
212
nR

LRh
g

  

                                      Hence   212 1
0 

g
hT                              (17.8) 

        Where  = pontoon volume/ submerged column volume=
1

2
1

2
2

2
2

hRn
LR


  

                                                                                                          (17.9) 
 
Rectangular cross-section pontoons 

 

  

 

L 

1h  

N Legs on each side (2 shown) 
1R  1R  

2R  2R  
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Fig. 17.3 Rectangular cross-section pontoons 

 

                                   2
1

221
2
122

0 2
2222

Rgn
LhbChRnLhbT M


 

  

                                       =  







 
 2

1

22
1

112
Rn

LhbCh
g

m


  

                      Hence    mC
g
hT  112 1

0                              (17.10) 

Where mC  is a function of 








2

2

h
b             (available in Tables)  

1
2

1

22

2
2

hRn
Lhb


   

 

Circular columns with circular base:   

  (Occur during the construction of concrete platforms.  See Fig. 17.4) 

 

RECTANGULAR C/S PONTOONS 
 

1h

2b
2h

2b
2h
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Fig. 17.4 Circular columns with circular base. 

 
c

AmT 
 20  

     
2

1

3
22

2
21

2
12

Rg
RChRhR M


 

    where  221 hRRfCM   

    









1
2
1

3
2

1
2

1

2
2
21 12

hR
CR

hR
hR

g
h M  

    









21
2

1

22
2
21 12

hhR
CRhR

g
h M  



















2

21
0 112

h
CR

g
hT M                                                                (17.11) 

 

FORCED UNDAMPED HEAVING: 

Consider a four column semi-submersible barge (Fig. 17.5) 

      

1h

2h

R

2R

R

2R
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Fig. 17.5 A semi-sub barge 

Equation of motion : 

     tFczzAm 
..

 

LAdAm hv  44     --------- ( LAh 22   =2 pontoons ) 

LACA hm4  

 vgAC 4  

Vertical wave exciting force ( neglecting drag) : 

     rfvxmh

L

L

ppAdxwCAtF  


212
.

    --------[(For 
.

xw  @ z=-d ) , ( fp  @ z=-d, x=L) , ( rp  

@ z=-d, x=-L  )] 

Assuming deep water conditions in linear wave theory,  

   tkxeaw kd    sin2
.

 

    tkxe
k

ap kd 


  sin
2

 

Substituting 

           
















 


 tLke

k
aAtkLe

k
aAdxtkxeaCAtF kd

r
kd

v
kd

mh

L

L

 sin2sin2sin12
22

2  

           tkLCAgeatkLCAgea mv
kd

mh
kd  sincos14sinsin14    

          tkLCAkLAgea mhv
kd  sinsin1cos4                                         (17.12) 

z 

L L 

x 

hA  

r f 

vA  
dx 

x 

d 
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Substituting in      tFtF a sin  and solving    tFczzAm 
..

  

 We get      tZtZ a sin  

 

If damping due to drag is introduced, we get:  

Forced damped heaving: 

   tFczzzBzAm v 
....

 

To linearize this equation, the energy dissipated at resonant motion at frequency ‘ 0 ’by 

nonlinear and linear terms is equated , giving 

 
.

max
...

3
8 zBzzzB vv 









 

To solve subsequently : 

   Assuming vB =10% of critical , then get  max

.
z  accordingly.(i.e. maximum heaving) 

max

.
z is determined finally by iterations. 

 

 
17.3 Articulated tower 

 
 
It is a buoyant structure (its stability is due to its buoyancy). 

It has a large tank at the surface, which brings it to the inertia ominant regime. 

It is used in the early production system/SALM/SALS. 
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Fig. 17.6.  Articulate tower 

 

 In its simplest form, the motion has one DOF along the wave direction. 

Wind, current create disturbing moments which are restored by tank buoyancy. The static offset 

angle is   where,   is the angular displacement due to waves with respect to static equilibrium. 

The motion is damped by radiated waves and viscous drag while motion is restored by change in 

buoyancy at SWL and from equilibrium. 

 
Case 1:    Damping linear (no drag) 

                                               tieMRCI   0

...
                               (17.13)               

    Where  
..
I  is inertia force moment 

                
.
C  is damping force moment 

                 R is restoring force moment 

                  0M  is exciting moment amplitude 

U 
current 

d 

0S  

Pivot 

wU  wind 

r 

D(r)   

  
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                   is phase angle of exciting force (obtained from exciting force given by the 

diffraction theory.)   

  The above equation has solution: 

                                                        tie   0  

       Where 0  is motion amplitude  

                     is motion phase angle 

    Hence    tiei   0

.
 

                     titi eei     2
0

2
0

..
 

         Substituting,          titititi eMeReiCeI     000
2

0  

   Hence     iiii eMeReiCeI 000
2

0   

                                               CiIR
eMe

i
i








 2

0
0   -------                      (17.14) 

This equation will give 0  and   values. 

 

Case 2:  Damping Non-linear: 

This is valid if drag (producing moment at pivot) is considered.    

            
 

Normal velocity  sincos vuw   

  

u 

v 

w 

  

  
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 Hence           rdrwrwrrDCB

sd

D 





 






 



..cos

0

.
)(

2
1

0




                         (17.15) 

Equation of motion: 

 

                               tieMRCBI  





 0

....
                            (17.16) 

 Equation (17.16)is solved numerically.  The linearization of 





 .
B can give closed form 

solution. This is good in inertia dominance and when    wavesnTowern TT   

Thus, equation (17.16) has solution: 

                                      tie   0  

Let  tieww   0  ;   where 0w  and   are known from  sincos vuw   

  Hence       titi eweirwr    00

.
 

                            tiii eeweri   00  

 

  Based upon Fourier Series Linearization: 

                                               uuuu 03
8


  

                         





 






 





  wreweriwrwr ii

.

00

..

3
8




   

 

Substituting in (17.16): 

 tiii

sd

D eMRCrdrwrewerirDCI 





 















   0

..

00

cos

0

..

3
8)(

2
1

0

 

 

.
2

cos

0
00

..
)(

3
4

0

























 



drrDreweriCI

sd

ii
D        
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                     tii

sd

ii
D edrrrDeweweriC 

























  )(
3
4

0

cos

0
00

0

 tieMRC   0

.
 

 

Therefore            titi eBeMRCBI     ,, 020

..

01

..
            (17.17) 

 

    Where   drrDreweriCB

sd

ii
D )(

3
4, 2

cos

0
0001

0











                           (17.18) 

 

                   drrrDeweweriCB i

sd

ii
D )(

3
4, 0

cos

0
0002

0







 



                   (17.19) 

 

Substituting  tie   0  in (17.17), 

            
    CBiIR

BeMe
i

i













,
,

01
2

020
0                                                 (17.20) 

 

This has total iterative solution.  To obtain 0  and  : follow the steps below: 
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To find the shear force and the bending moment at any point in the tower: 

  For each segment, (Point) from 0  and  ,    

..
I , 

.

1B , 
.
C , R  are determined normal to axis to any phase angle and added to steady wind 

and current load. 

 

 
Case 3:  IN-LINE AND TRANSVERSE FORCES 

In actual, waves induce for the tower a transverse motion also: 

Set  021 BB initial values of 0  and   
 

Substitute in RHS of (D) and (E)  

Get 1B  and 2B  

Get next values of 0  and   from (F) 
 

Repeat till 
convergence 
within 
specified 
limit 
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 Hence top of tower may move as follows: 

 

 
This shows that there is 2-DOF system.   Let   =displacement in-line 

       L = transverse displacement  

Equation of motion (Transverse): 

                   rdrrururDCRCI

sd

LLLL 





  



..cos

0

...
)(

2
1

0




                     (17.21) 

Where tieuu 
0  (If phase 0u ) 

Similar to in-line motion: 

 





 






 

.

00

..

3
8 


  ruueriruru i  

 

Solution of equation of motion (Transverse) can be written as: 

 

                                  
   

  CiIR
eBiBe

i
i

L
L












 2
00102 ,,

0
                        (17.22) 

  Where                   drrrDueriuCB i

sd

L )(
3
4, 000

cos

0
02

0







  



 

                               drrDreriuCB i

sd

L )(
3
4, 2

00

cos

0
01

0







  



 

  (Note: L  depends up on in-line motion magnitude and phase 

Equations can as well be derived using Taylor’s series) 

If drag is high 
If inertia is high 

or 

Motion as 
per lift 
frequency 
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.
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3
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






                                    (17.23) 

      Where  
.
x  is structure velocity 

                uu  is expanded by Fourier Series 

               0
2 uu


   Temporal average 

17.4 Tension Leg Platform 

 

 
Fig.  17.7   Vertical section and plan (schematic) of a TLP 

The TLP has advantage that its stiffness and tether-tension leads to less heave, pitch and roll 

caused by the waves.  However the wind leads to surge and sway offsets.   The current (steady) 
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leads to lowering (set-down) as shown below:                   

 
The deeper locations of pontoons cause low wave pressure, which is advantages.  Further for any 

buoyancy change at certain wave frequency, the                         upward wave force on vertical 

columns can equal the downward wave                           force on the horizontal pontoons and this 

can lead to cancellation of forces. 

Analysis of a TLP is same as that of a semi-submersible, but involves additional tether stiffness 

matrix.  Due to this,  heaveT  3 to 5 sec. as against the semi-sub.  heaveT 18 to 25 sec.  Even then 

for heave-sensitive operations, the heave study is important. 

 

Equation of undamped forced heaving: 

                                             tFzcczAm zt 
..

                                     (17.24) 

  Where   
g
TLAdAm hv

4244                  

               mzh LCAA 24     where, mzC  is added mass for pontoon cross-section in  heave (to be 

considered for only members whose axis is normal to flow) 

               vgAC 4       ( members near SWL only to be considered).  This is hydrostatic 

stiffness.  (Note:  c x z = additional buoyancy). 

                14tC         ( 1  is axial stiffness for each tether 
Length

T
 ) 

 

Neglecting the wave drag force, the vertical wave force: 

                    mfhm

L

L
xhz CwLACwdxAtF  



1212
..

   rvfvmrh pApACwLA 2212
.

   
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Using   tkxeaw kd    sin2
.

;    tkxe
k

ap kd 


   sin
2

, 

                  tkLCkLAkLCAkLAgeatF mhmhv
kd

z  sincos1sin1cos4    

(17.24) 

 

THE EQUATION OF UNDAMPED FORCED SURGING: 

 

Consider the schematic of a surge as below: 

 
Fig. 17.8.   A TLP under surge 

 

We have the equation of motion as: 

                                      tFxCCxAm xt  11
..

1  

  
g
TLAdAm hv

4244    

  11 422 mxvhmx dCALACA     ------where mxC  is added mass coefficient for     

   horizontal  flow normal to pontoons. 

   1
mxC =1 

hA  

T 

T T 

T 
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Z=0 
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r 
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vA  
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   1C    = 0          (No buoyancy change);       1
tC       (4T/ Length of tether) 

         pAuCqLAuCqLAudzAudzAtF hrmxhfmxhrv
d

fvx 2111122
...0 .
 



  

   Where 
.

fu @  x  =   L , 
.

ru  @  x  =-  L  

               mxC  is added mass coefficient for horizontal flow normal to pontoons. 

  Substituting   tkxeau kz   cos2
.

  

                         tkxe
k

ap kd 


   sin
2

 

      tkLegaAtkLeCLAae
k

AatF kd
h

kd
mxh

kdv
x 

 cossin4coscos1218 2
2

 







  

 

17.5 Mooring Buoys:   They can be used to tie vessels and could be of catenary type 

    Refer to Fig. 17.9 . 

For static equilibrium 0 xF .      Hence      coscos TTT  

                                                                   0coscos   TTT            

       0coscoslim 



 x

TTT
ox

  

    Hence     cos0cos TT
dx
d constant= 0T  

         sinsin0 TSWTTFy   

         SWTTT   sinsin  

    W
s

TTT
oS







 sinsinlim     

        WT
dS
d

sin  

          WST sin  

  Dividing, 
0

tan
T

WS
dx
dy

  
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  Note:  22
0 WSTT   

 
Fig. 17.9  a.   A moored buoy 
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Fig. 17.9 b:  The free body diagram of the cable element 

 


s

dxX
0

    
s

ds
0

cos     


 2tan1sec
dsds  

        











2

0

1
T

WS

ds   ;   Assuming that the self weight as the only load, 

Hence 
0

10 sinh
T
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W
TX     ; (the constant of integration =0)                          

  

dx 

dy 

ds 

TT   
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  
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00

sinh
T

WS
T

WX
  

Hence 
0

0 sinh
T

WX
W
TS   

We have 
0T

WS
dx
dy

  

 Hence dx
T

WSdy
0

 dx
T

WX

0

sinh  

Hence   dx
T

WXdyy
0

sinh  

              1
0

0 cosh c
T

WX
W
T

  

As x=0, y=0 and hence 
W
Tc 0

1   

Hence 







 1cosh

0

0

T
WX

W
Ty  

Note: For long lines, drag force should be added while considering equilibrium. 

 

17.6 The T L P: Consider the following figure. 
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If the buoyancy is excessive, pretensioning of the legs shall be done. Because of this heave, 

pitch, roll is reduced.   The response is mainly of three types: Usual motion at wave frequency, 

Low frequency drift (mainly in surge) and High frequency ‘SPRINGING’ of tethers  

STATIC OFFSET :    

 
Fig. 17.10.  TLP Offset 

 

DYNAMIC OFFSET 

This is also called as SET DOWN EFFECT : 

 

 
 

static dynamic 

Curved position@ static 
equilibrium (tension in tethers 
introduced) 

weight Static offset 

wind 

waves 

current 

Tendons assumed as mass less springs 
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This is due to wave drag and inertia. In this additional tether tension is introduced. Forces 

/motion in tethers should be calculated with respect to above equilibrium position. 

 

TO OBTAIN ‘B’ FOR FREELY FLOATING STRUCTURES : 

 

w
vk  where 

A
Bv

2
  and 

A
Cw   

 Obtain ‘k’ (5% to 25%for most offshore structures) 

For maxk ,  wwd
225.01 w94.0  

Hence undamped ω damped ‘ω’ 

Experimentally, record time histories of ‘z’ of the scale model as below:  

 

 
 











1

ln
i

i

z
z

  

We have seen , 
d

k



 2  
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2
k

k










  
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0z  
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0z =initial displacement 
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21

2
k
k




    ------ Since   is known , k can be found out. 

If k is assumed small: 

 Record it  vs iz  

 We have,  tk
i ezz  0  

    Hence  ii tkzz  0lnln  

  Since izln , 0ln z , it  are known , k can be found out by using least square fit to it , iz .  
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NOTATIONS 
 
a  -  Wave Amplitude = H/2 

aj  -  Amplitude of jth wave 

A  -  Height of the Highest Crest in the Given Record Above 

 SWL 

b  -  Distance between Two Orthogonals after Refraction 

b1,b2,a1,a2 -  Functioning of H,T,d 

bn,an  -  Unknown functions of H,T,d 

b0  -  Distance Between Two Orthogonals in Deep Water 

B  -  Height of the Second Highest Crest Above SWL 

Bij  -  Unknown function of kd 

c  -  Celerity 

C  -  Depth of the Lowest Trough below SWL/Wave Speed in  

Intermediate Water depth 

Cg  -  Group Velocity 

Ci  -  Unknown Function of kd 

C0  -  Wave Celerity in Deep water 

Cs  -  Wave Celerity in Shallow water 

d  -  Water Depth 

db  -  Depth of Water at the Breaking Point 

D  -  d/dx / Depth of the Second Lowest Trough below SWL 

E  -  Total Energy Per Unit Plan Area 

f  -  Coriolis Parameter 

F  -  Fetch of Wind 

FFT  -  Fast Fourier * Transform 

H  -  Wave Height / Individual Wave Heights 

H1  -  A+C 

H10  -  Average Wave Height of 10% of Largest Waves in a  

Random 

H2  -  B+D 

Hi  -  Height of ith Wave of Random Wave Series / Incident 
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 Wave Height 

Hm  -  Mean Wave Height 

Hney  -  Maximum Wave Height 

H0  -  Wave Height in Deep Water 

Hrms  -  Root Means Square Wave Height 

Hs  -  Significant Wave Height / Mean Significant Wave Height 

His  -  Midpoint Hs value corresponding to ith row of (Hs , Tz) 

Hs  -  Class Width of Hs in the (Hs , Tz) Scatter diagram 

kj  -  Wave number of jth Wave 

K  -  Wave number 

K’  -  Modified Wave number 

Kr  -  Refraction Coefficient 

Ks  -  Shoaling Coefficient 

L  -  Wave Length 

L0  -  Deep Water Wave Length 

m  -  Seabed slope 

mi  -  Ith Moment of Spectrum 

M  -  Order of Expansion in Stream Function Theory / Number 

 of Linear Waves added together 

M*  -  Corresponds to Limiting Value of Hs at the Site Say Due to 

N  -  Total Number Of Observed J Value 

Nz  -  Total number of Zero up-crosses in the Record 

P  -  Wave Power 

 P  -  Normal Pressure ( = 760 mm of mercury) at Hurricane  

Center 

P()  -  Cumulative Distribution Function of () 

P(H)LT  -  Long Term Distribution of Individual Wave Height 

R  -  Radius of Maximum Wind during Cyclone 

)(R   -  Auto Correction Function 

RL  -  Correction factor 

Rp  -  Run up 
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Rs  -  Run up produced by a Regular Significant Wave of Height  

Hs 

s  -  Source Function 

S  -  d+z/d  

 S  -  Total Set up at Shoe 

)( fS   -  Spectral Density Function 

)( jS   -  Spectral Density Fraction corresponding to the Frequency 

 Wj 

Sb  -  Set down at the Breaking Zone 

Sds  -  Wave Energy Dissipation Due to Bottom Friction and 

Sin  -  Wind Energy Input 

Sud  -  Wave Energy Input transferred from One Wave Frequency 

t  -  Time instant 

tmin  -  Minimum Deviation of Wind blow for particular Hs x Ts for 

T  -  Wave period 

Ti  -  Period of ith Wave of Random Wave Series 

Ts  -  Significant Wave Period 

Tz  -  Average Zero Crossing Period 

Tzj  -  Tz value corresponding to the jth Column of (Hs , Tz) 

u  -  Wind Speed 

u, v, w  -  The component of Fluid Velocity Along x,y,z Directions 

U10  -  Wind Speed at the height of 10 m above Ground Level 

UC  -  Corrected Wind Speed 

UF  -  Wind Speed along the forward direction of hurricane 

UL  -  Wind Speed over Land 

Umax  -  Maximum Gradient Wind Speed at 10 m above MSL 

UR  -  Wind Speed at Radius Corresponding to Maximum Wind 

Uw  -  Characteristic Wind Speed 

w  -  Angular Speed of Earth Rotation 

wx,wy,wz -  Rotation of Fluid element about x,y,z axis 
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Wi  -  )5.0()5.0( sissis HHPHHP   Obtained from the 

Wij  -  Total Number of Occurrences of Hs values in the (i,j)  

Interval 

W  -  Energy in the Interval df 

X  -  (x-ct)/L 

X,Z,T  -  Unknown functions of x, z and t 

   -  Angle of Crelkine of refracted Wave 

 ,   -  Philip’s Conton 

0   -  Angle of Crediline of Incident Wave 

   -  Spectral Width Panel 

   -  Velocity Potential 

i   -  Function of ith Order of Stokes Waves Theory 

   -  Specific Weight of Sea Water 

   -  Surface Elevations 

)(t   -  Sea Surface Elevation at Time t 

)(  t  -  Sea Surface Elevation at Time )( t  

),( tx   -  Sea Surface Elevation at x Distance from Reference Origin 

j   -  jth value of the Sea Surface Elevation 

k   -  Complex Conjugate of k  

r   -  Surface Elevation of Reflecting Wave 

   -  Fluid Mass Density 

   -  Stream Function 

   -  Circular Wave Frequency  

 j  -  Angular Wave Frequency of jth Wave 

 k  -  Circular Frequency of kth wave 

   -  Frequency Step 

   -  Particle Displacement Along x direction 

   -  Particle Displacement Along y direction 

   -  Phase Angle / Log Nz 
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   -  Angle of Reflection of Bed slope 

 j  -  Phase of jth wave 

   -  Time Lag 

   -  Surf Similarity 

   -  Complex Velocity Potential of Transmitted Wave 

 
 
 
 


