ELASTIC ANALYSIS OF CYLINDRICAL PRESSURE VESSELS WITH VARIOUS END CLOSURES

C. K. Ramesh, Tarun Kant \& V. B. Jadhav
Indian Institute of Technology, Bombay, India

(Received: 15 February, 1974)

ABSTRACT

The well-known problem of the elastic analysis of cylindrical pressure vessels with hemispherical, torispherical and ellipsoidal heads, involving the partial differential equations for the classical theory of thin shells of revolution axisymmetric in character, is attempted here using a step-by-step integration procedure and a segmentation technique. The numerical results are obtained with a generalised computer program for a number of cases and for a given set of values of elastic moduli, Poisson's ratio and thickness/diameter ratio. The results are compared with the known results available in literature and also with the stresses predicted by the ASME Code.

NOTATION

E	Young's modulus
h	thickness of a shell
I	unit matrix
M_{φ}, M_{θ}	resultant bending moments per unit length of a shell
$M_{\varphi \theta}, M_{\theta \varphi}$	resultant twisting moments per unit length of a shell
	extensional rigidity $=E h /\left(1-\gamma^{2}\right)$
D	flexural rigidity $=E h^{3} / 12\left(1-\gamma^{2}\right)$
U	$1 / R_{\varphi}+\gamma \sin \varphi / r$
N	number of segments in the integration path
n	number of variables in the system of differential equations
N_{φ}, N_{θ}	axial stress resultants per unit length of a shell
$N_{\varphi \theta}, N_{\theta \varphi}$	shearing stress resultants per unit length of a shell
$p_{\varphi}, p_{\theta}, p$	components of surface loads
Q_{φ}, Q_{θ}	transverse shear resultants per unit length of a shell
	143

Int. J. Pres. Ves. \& Piping (2) (1974)-(C) Applied Science Publishers Ltd, England, 1974 Printed in Great Britain
r distance of a point on the middle surface from the axis of revolution
$R_{\varphi}, R_{\theta} \quad$ principal radii of curvature of middle surface
$s \quad$ distance measured from an arbitrary origin along the meridional direction
$u, v, w \quad$ displacements of a shell middle surface in the φ, θ and normal directions
$\beta \quad$ critical length factor
$\beta_{\varphi}, \beta_{\theta} \quad$ angle of rotation of normal
$\gamma \quad$ Poisson's ratio
$\varphi, \theta \quad$ co-ordinates of a point of a shell
$\left(A_{j}\right) \quad[(n / 2) \times 1]$ matrix of starting values of unknown variables
$\left(T_{i j}\right) \quad[(n / 2) \times(n / 2)]$ coefficient matrix of known variables
$\left(X_{i j}\right) \quad[(n / 2) \times(n / 2)]$ coefficient matrix of unknown variables

PROBLEM FORMULATION

The traditional method for the analysis and design of cylindrical pressure vessels having different types of end closures is essentially carried out using the wellknown ASME Code ${ }^{1}$ which is based on the classical membrane theory and involves many inconsistencies and consequent inaccuracies in the stresses and displacements, especially at the junctions. In the present study a numerical integration procedure, following Goldberg's ${ }^{2}$ earlier work involving a segmentation technique, is attempted; to each of these segments a Runge-Kutta-Gill algorithm is applied to prevent any loss of accuracy arising out of the length of the curve over which the integration is carried out. A cylindrical pressure vessel having a hemispherical (Fig. 1), torispherical (Fig. 2) or ellipsoidal (Fig. 3) head has been considered for assessing the

Fig. 1. Cylindrical vessel with hemispherical head.

Fig. 2. Cylindrical vessel with torispherical head.

Fig. 3. Cylindrical vessel with ellipsoidal head.
applicability of this segmentation procedure in the context of some known results available from the literature ${ }^{9,10}$ and also from the relevant clauses of the ASME Code. It is presumed that these results may form a reliable basis for the design of a cylindrical pressure vessel having the type of end closure considered here. The general program developed ${ }^{6}$ in FORTRAN IV for the CDC 3600-160A computer system should also prove useful for any iterative type of design that may be required for practical considerations.

The fundamental equilibrium, strain-displacement and stress-strain equations describing the behaviour of a general shell, as derived by Reissner, ${ }^{3}$ have been taken as the starting-point for the derivation of the following system of six first-

Fig. 4. Geometry of general shell surface.
order ordinary differential equations (eqns. (1) to (6)) governing the deformation of the shell of revolution (Figs. 4 and 5) with axisymmetric loading in terms of the six intrinsic variables which occur at the natural boundaries in the meridional direction (notations are given at the front of the paper):

Fig. 5. Shell element.

$$
\begin{align*}
& \frac{\mathrm{d} w}{\mathrm{~d} s}=\frac{1}{R_{\varphi}} u-\beta_{\varphi} \tag{1}\\
& \frac{\mathrm{d} u}{\mathrm{~d} s}=-U w-\gamma \frac{\cos \varphi}{r} u+\frac{1}{K} N_{\varphi} \tag{2}\\
& \frac{\mathrm{d} \beta_{\varphi}}{\mathrm{d} s}=-\gamma \frac{\cos \varphi}{r} \beta_{\varphi}+\frac{1}{D} M_{\varphi} \tag{3}\\
& \frac{\mathrm{d} Q_{\varphi}}{\mathrm{d} s}=K\left(1-\gamma^{2}\right) \frac{\sin \varphi \cos \varphi}{r^{2}} u+K\left(1-\gamma^{2}\right) \frac{\sin ^{2} \varphi}{r^{2}} w \\
&+U N_{\varphi}-\frac{\cos \varphi}{r} Q_{\varphi}-p \tag{4}\\
& \frac{\mathrm{~d} N_{\varphi}}{\mathrm{d} s}=K\left(1-\gamma^{2}\right) \frac{\cos ^{2} \varphi}{r^{2}} u+K\left(1-\gamma^{2}\right) \frac{\sin \varphi \cos \varphi}{r^{2}} w \\
& \frac{\mathrm{~d} M_{\varphi}}{\mathrm{d} s}=D\left(1-\gamma^{2}\right) \frac{\cos ^{2} \varphi}{r^{2}} \beta_{\varphi}-(1-\gamma) \frac{\cos \varphi}{r} M_{\varphi}+Q_{\varphi} \tag{5}
\end{align*}
$$

along with the auxiliary relations:

$$
\begin{align*}
& N_{\theta}=\gamma N_{\varphi}+K\left(1-\gamma^{2}\right) \frac{(w \sin \varphi+u \cos \varphi)}{r} \tag{7}\\
& M_{\theta}=\gamma M_{\varphi}+D\left(1-\gamma^{2}\right) \frac{\cos \varphi}{r} \beta_{\varphi} \tag{8}
\end{align*}
$$

Since the point on the axis of revolution is singular for a closed shell, special provision is made to specify the actual boundary condition at the axis of revolution in the meridional direction. For axisymmetric loads, the following three boundary conditions are applied at the apex of a fictitious aperture at the axis of revolution at both edges:

$$
\begin{equation*}
u=\beta_{\varphi}=Q_{\varphi}=0 \tag{9}
\end{equation*}
$$

SOLUTION AND RESULTS

The numerical integration technique as adopted here for the solution of the firstorder ordinary differential equations (eqns. (1)-(6)), with the boundary conditions defined by eqn. (9), has the following distinct advantages over the other wellknown methods: any general boundary conditions can be tackled and, depending

TABLE 1
parameters of various heads

Type of head	Data used	Remarks
1. Hemispherical	(a) $E=3 \times 10^{7}, \gamma=0.3$	Results reported in Table 2
	(b) $E=3 \times 10^{7}, \gamma=0 \cdot 3$ $D / T=40 \cdot 0,1^{\circ}$ aperture at apex	
	(c) $E=3 \times 10^{7}, \gamma=0.3$	
	$D / T=100 \cdot 0,0 \cdot 1{ }^{\circ}$ aperture at apex	
2. Torispherical	(a) $\begin{aligned} & E=65,000, \gamma=0.485 \\ & D / T=44.5, B / T=13.02 \end{aligned}$	Results reported in Table 3
	$L / T=31 \cdot 5, \varphi=30^{\circ}$	
	$0 \cdot 1{ }^{\circ}$ aperture at apex	
	(b) $E=3 \times 10^{7}, \gamma=0.3$	
	$D / T=100 \cdot 0, B / T=-25.00$	
	$L / T=75.00, \varphi=30^{\circ}$	
	$0 \cdot 1{ }^{\circ}$ aperture at apex	
	(c) $E=3 \times 10^{7}, \gamma=0.3, D / T=200$	
	$B / T=25.00, L / T=175, \varphi=30^{\circ}$	
	$0 \cdot 1^{\circ}$ aperture at apex	
3. Ellipsoidal	(a) $D / T=40 \cdot 0$	Results reported in Table 4
	Major axis/Minor axis $=2.0$	
	$0 \cdot 1{ }^{\circ}$ aperture at apex	
	(b) $D / T=80 \cdot 0$	
	Major axis/Minor axis $=\mathbf{2 . 0}$	
	$0 \cdot 1^{\circ}$ aperture at apex	
	(c) $D / T=100 \cdot 0$	
	Major axis/Minor axis $=2.0$	
	$0 \cdot 1^{\circ}$ aperture at apex	

upon the accuracy required, the step size in the integration process can be altered. Furthermore, the geometrical and material properties may be varied arbitrarily along the path of integration with any type of distributed or concentrated loading. For brevity, all the details of the segmentation technique and the use of the Runge-Kutta-Gill algorithm to each segment will not be highlighted here. A general program called PRESANLY involving maximum matrix size of 3×3 without any need for a large core memory size as required for other methods is made available; no trial runs are required as long as the length of each segment is less than the critical length of the shell. The input data to the program consist of number of variables and segments, segment length of each segment, number of increments in each segment, and angles which each segment makes with the axis of revolution, material and geometric properties. Maximum compilation and execution times for the various cases mentioned in Table 1 are 58 and 33 s respectively on the CDC 3600 computer.

DISCUSSION AND CONCLUSIONS

The discrete values of the meridional and circumferential stresses at the outer and and the inner fibres, the normal displacement and the shear in the shell for various
degrees of location in the end closure and also at various points in the cylinder portion are presented for hemispherical, torispherical and ellipsoidal heads in Tables 2, 3 and 4 respectively. The results obtained are compared with known numerical results available in literature obtained by various other numerical methods for hemispherical and torispherical heads and are tabulated in Tables 5 and 6. Comparison with the ASME Code has been summarised in Table 7. The

TABLE 2
STress distribution in cylindrical pressure vessel with hemispherical head* ($0 \cdot 1^{\circ}$ aperture at apex and $D / T=40$)

Location	$\begin{gathered} W \\ \left(\times 10^{-6} \mathrm{in}\right) \end{gathered}$	$\frac{Q}{\left(\times 10^{-3} \mathrm{lb}\right)}$	Meridional stress ($16 /$ in 2)		Circumferential stress (lb/in ${ }^{2}$)	
			Outer	Inner	Outer	Inner
1°	9.6960	0.75203	9.987	10.025	10.233	$10 \cdot 271$
Apex	9.708	-	9.9948	10.001	9.9948	$10.001 \dagger$
30°	9.0474	1.9656	10.008	9.993	10.034	10.038
60°	7.0180	--25.994	9.9224	10.0474	9.7624	9.7624
90°	8.0018	$434 \cdot 30$	10.008	9.994	15.005	15.001
Junction	7.999	-	10.007	9.9933	14.996	$14.992 \dagger$
3 in	$10 \cdot 419$	-20.133	12.911	7.091	19.498	17.752
20 in	11.324	1.8975	9.987	10.015	19.986	19.986
40 in	$11 \cdot 333$	-0.11488	9.999	10.003	20.000	20.000
End	11.33		9.9999	10.00	20.00	$20.00 \dagger$
Peak stress in cylinder			-	-	20.616	
Peak stress in cylinder			-	-	20.627	- \dagger

* See Fig. 1.
\dagger Results obtained by Kalnin's method given in reference 4, p. 442.

TABLE 3
Stress distribution in cylindrical pressure vessel with torispherical head* $\left(0 \cdot 1^{\circ}\right.$ aperture at apex, $\left.D / T=44 \cdot 5, B / T=13 \cdot 02, L / T=31 \cdot 5, \varphi=30^{\circ}\right)$

Location	$\begin{gathered} W \\ \left(\times 10^{-2} \mathrm{in}\right) \end{gathered}$	$\frac{Q}{\left(\times 10^{-2} \mathrm{lb}\right)}$	Meridional stress ($1 \mathrm{~b} / \mathrm{in}^{2}$)		Circumferential stress (lb/in ${ }^{2}$)	
			Outer	Inner	Outer	Inner
10	9.9266	1.4721	$16 \cdot 398$	16.764	17.029	17.397
Apex	8		16.976	13.9285	16.976	$13.9285 \dagger$
30°	3.3811	-76.162	13.326	15.528	7.81	$5 \cdot 39$
60	-0.90108	0.090625	$5 \cdot 615$	18.059	-1.594	$4 \cdot 520$
90	$2 \cdot 4233$	82.565	11.498	$10 \cdot 640$	12.656	12.288
Junction	-	-	$10 \cdot 435$	11.9705	12.393	$13.060 \dagger$
3 in	$4 \cdot 7068$	-0.92313	17.485	6.753	22.230	16.056
20 in	5.7614	0.062357	11.029	11.209	22.178	22.266
40 in	5.7703	-0.016829	11.116	$11 \cdot 122$	$22 \cdot 50$	22.250
	-	-	10.6355	10.0125	20.4255	$21.760 \dagger$
Maximum stress in head			22.235	-	--	— \dagger
Maximum stress in head			19.580	-	-	-_
Maximum stress in cylinder			-	-	$24 \cdot 24$	-
Maximum stress in cylinder			-	-	23.585	- \dagger

[^0]torispherical head which had been analysed fulfils the 6% requirement of the Code. For hemispherical heads, both maximum meridional and circumferential stresses are within the limits of the Code requirements, but for torispherical heads, in two cases, the meridional (tensile) stresses exceed by an average of 33% the stresses predicted by the Code. The presence of high compressive stresses in the circumferential direction which may lead to buckling are not specified in the Code. Again, in the case of ellipsoidal heads, the stresses predicted by the Code are conservative

TABLE 4
STRESS DISTRIBUTION in CYLINDRICAL PRESSURE VESSEL WITH ELLIPSOIDAL HEAD* ($0 \cdot 1^{\circ}$ aperture at apex, $\mathrm{Maj} / \mathrm{Min}=2 \cdot 0, D / T=40$)

Location	$\begin{gathered} W \\ \times 10^{-5} \text { in } \end{gathered}$	$\begin{gathered} Q \\ \times 10^{-2} l b \end{gathered}$	Meridional stress (lb/in²)		Circumferential stress (lb/in ${ }^{2}$)	
			Outer	Inner	Outer	Inner
$1{ }^{\circ}$	4.4574	-1.2245	25.447	$12 \cdot 839$	26.343	14.233
Apex			$24 \cdot 40$	15.20	25.60	$14.60 \dagger$
30°	1.2813	-39.086	13.190	$15 \cdot 716$	3.9770	-0.4612
60°	-0.51306	-28.132	-6.073	27.959	-10.952	-0.5416
90°	-0.071397	$186 \cdot 48$	4.890	$16 \cdot 140$	0.0961	3.7713
Junction			$4 \cdot 80$	15.60		$4 \cdot 20 \dagger$
3 in	0.73004	11.263	18.848	1.182	16.644	11.346
20 in	$1 \cdot 1301$	0.71902	9.945	10.085	19.935	19.985
40 in	$1 \cdot 1330$	-0.00015253	10.014	10.015	20.000	20.000
-	-	-	10.00	10.00	20.00	$20.00 \dagger$

* See Fig. 3.
\dagger Results obtained from graphs given in reference 9.

TABLE 5
COMPARISON OF STRESSES IN CYLINDRICAL PRESSURE VESSEL WITH HEMISPHERICAL HEAD ($D / T=40$, length of cylinder $=40 \mathrm{in}$, internal pressure $=1 \mathrm{lb} / \mathrm{in}^{2}$)

	Finite* difference CEGB program	Finite* element Bettis program	Numerical* integration Yale program	Authors' program
Outside stress at apex (lb/in ${ }^{2}$)	9.9947	9.27	9.9949	9.987
Inside stress at apex ($\mathrm{lb} / \mathrm{in}^{2}$)	10.002	9.77	10.001	10.025
Normal displacement ($\times 10^{-6} \mathrm{in}$)	-	9.3076	9.708	9.6960
Outside meridional stress at junction (lb/in ${ }^{2}$)	10.014	$9 \cdot 35$	10.007	10.008
Inside meridional stress at junction ($\mathrm{l} / \mathrm{in}^{2}$)	9.9862	9.68	9.9933	9.9940
Outside circumferential stress at junction ($\mathrm{lb} / \mathrm{in}^{2}$)	14.998	14.10	14.996	15.005
Inside circumferential stress at junction (lb/in ${ }^{2}$)	14.990	14.88	14.992	15.001
Normal displacement at junction ($\times 10^{-6} \mathrm{in}$)	7.996	7.857	7.999	8.0018
Rotation at junction ($\times 10^{-7} \mathrm{rad}$)	9.626	9.30	9.599	9.5827
Outside meridional stress at end ($\mathrm{lb} / \mathrm{in}^{2}$)	10.00	9.27	9.9999	9.999
Inside meridional stress at end ($\mathrm{lb} / \mathrm{in}^{2}$)	10.00	9.75	10.00	$10 \cdot 003$
Outside circumferential stress at end ($\mathrm{lb} / \mathrm{in}^{2}$)	19.999	19.07	20.00	20.00
Inside circumferential stress at end ($\mathrm{lb} / \mathrm{in}^{2}$)	19.999	20.22	20.00	20.00
Normal displacement at end ($\times 10^{-6} \mathrm{in}$)	11.33	11.28	11.33	11.333
Peak stress (circumferential outside) ($\mathrm{lb} / \mathrm{in}^{2}$)	20.624	20.24	$20 \cdot 629$	20.63
Location, in from junction	6.5	9.2	6.44	

[^1]and the deviation in the calculated stresses is about 30%. The high compressive stresses in the region of 65° are not recognised by the Code. The Code does not state whether the stress is meridional or circumferential, or whether it is tensile or compressive. In most cases the Code attempts to predict only the direct (membrane) stresses due to internal pressure. The stress magnification factor (K) in the ASME Code formula apparently underestimates the stresses in the case of torispherical and ellipsoidal heads.

The comparison of the three heads for $D / T=100$ (Figs. 6 and 7) indicates that the circumferential (outer) compressive stresses in the ellipsoidal head are two and a half times greater than the torispherical heads. The meridional (outer) stresses in the torispherical head are tensile, whereas a small portion of the ellipsoidal

TABLE 6
STRESS INDEX FOR TORISPHERICAL HEAD
(Stress index $I=$ Stress $/(P D / 2 T), D / T=44 \cdot 50$)

Stress index	Test results	Bettis program (finite element)	$\%$ error	CEGB program (finite diff.)	$\%$ error	Authors' results	$\%$ error
$I_{\varphi}=I_{\theta}$ outer at apex	0.763	0.708	-7.1	0.734	-3.8	0.752	-1.44
$I \varphi=I \theta$ inner at apex	0.626	0.732	17.0	0.752	20.0	0.767	22.55
$I \varphi$ inner at junction	0.538	0.314	-41.7	0.485	-9.8	0.478	-11.1
$I \varphi$ outer at junction	0.469	0.634	35.0	0.515	10.0	0.516	10.2
$I \theta$ inner at junction	0.587	0.566	-3.5	0.552	-5.8	0.552	-5.8
$I \theta$ outer at junction	0.557	0.698	25.2	0.567	1.6	0.568	1.7
$I \varphi$ inner at end	0.450	0.489	8.7	0.500	11.0	0.498	10.6
$I \varphi$ outer at end	0.478	0.467	-2.5	0.500	4.2	0.499	4.1
$I \theta$ inner at end	0.978	1.01	3.2	1.00	2.2	1.00	2.2
$I \theta$ outer at end	0.918	0.956	4.0	1.00	8.8	1.00	8.8
I max in head	0.880	0.908	3.1	0.904	2.7	0.980	12.5
I max in cylinder	1.06	1.04	-1.8	1.089	2.8	1.08	2.6

TABLE 7
COMPARISON WITH ASME CODE

Type of head $\quad D / T$	Stress predicted by ASME Code ($l b /$ in 2)	Maximum stress in the present study	
		Meridional ($1 \mathrm{l} / \mathrm{in}^{2}$)	Circumferential ($\left(b /\right.$ in 2)
Hemispherical 40.0	21.15	12.649 (inner) at 85°	15.005 (outer) at junction
Hemispherical 100.0	50.65	32.321 (inner) at 85°	37.509 (outer) at junction
(44.5	17.75	22.235 (outer) at 20°	-1.755 (outer)at junction
Torispherical $100 \cdot 0$	$39 \cdot 0$	55.063 (outer) at 25°	-13.705 (outer) at 50°
200.0	221.0	212.253 (inner) at 40°	-197.39 (outer) at 50°
(40.0	$20 \cdot 1$	+28.168 (inner) at 65°	-10.95 (outer) at 65°
Ellipsoidal $\quad 80.0$	$40 \cdot 1$	53.249 (inner) at 70°	-29.318 (outer) at 65°
100.0	$50 \cdot 1$	65.217 (inner) at 70°	-39.332 (outer) at 65°

[^2]

Fig. 6. Circumferential stress distribution.

Fig. 7. Meridional stress distribution.
head is under compressive stresses. It is also seen that in the case of torispherical heads, high compressive stresses are induced in the circumferential direction in the region of 45° to 50°, whereas in ellipsoidal heads it is in the region of 60° to 65°. In both cases the head deflects inward from 45° to 90°.

REFERENCES

1. Rules for Construction of Pressure Vessels, Division 1 and Division 2: Alternative Rules, ASME Boiler and Pressure Vessel Code, Section VIII, American Society of Mechanical Engineers, New York, 1971 ed
2. Goldrerg, J. E., Setlur, A. V. \& Alspaugh, D. W. Computer analysis of non-circular cylindrical shells, Conference of the International Association for Shell Structures (IASS), Budapest, 1965.
3. ReISNER,E. A new derivation of the equations for the deformations of elastic shells, American Journal of Mathematics, 63 (1941) p. 177.
4. Kraus, H. Thin elastic shells, Wiley, New York, 1967.
5. Ralston, A. \& Wilf, H. S. Mathematical methods for digital computers, Wiley, New York, 1960.
6. Jadhav, V. B. Elastic analysis of cylindrical pressure vessels with various end closures, M. Tech. Dissertation, Department of Civil Engineering, Indian Institute of Technology, Bombay, 1972.
7. ${ }_{\text {GILL, S. S. S. The stress analysis of pressure vessels and pressure vessel components, Pergamon }}$ Press, Oxford, 1970.
8. Kraus, H. A review and evaluation of computer programs for the analysis of stresses in pressure vessels, Welding Research Council Bulletin No. 108, 1965, p. 11.
9. Kraus, H. Elastic stresses in pressure vessel heads, Welding Research Council Bulletin No. 129, 1968, p. 1.
10. Kraus, h. A comparison of measured and calculated stresses in pressure vessels, Trans. ASME, 89A (1967) p. 341.

[^0]: * See Fig. 2.
 \dagger Results obtained from reference 10.

[^1]: * Results taken from reference 8, p. 23, and also from reference 4, p. 442.

[^2]: + Tensile stress.
 - Compressive stress.

