
Compurtrs & Srrucrurrr Vol. 22. No. 3. pp. 413-425. 1986 
Printed in Grca~ Britain. 

cxM?-7949M 53.00 l .oa 
C 19% Pergamon Press Ltd. 

A Co CONTINUOUS LINEAR BEAM/BILINEAR PLATE 
FLEXURE ELEMENT 

TARUN KANT? and PRADEEP B. KULKARNI 
Department of Civil Engineering. Indian Institute of Technology, Bombay 400 076, India 

(Received 27 September 1984) 

Abstract-Design of a simple Co-continuous beam/plate flexure element based on a shear-deformable 
theory is attempted. Emphasis is placed on development of a low order linear/bilinear element. How- 
ever, past experience shows that such elements become very “stiff’ especially when thickness is 
reduced (conforming to Kirchhoff mode). This phenomenon is called “locking.” Attempts have been 
made in the last several years by a few investigators to overcome this problem. 

The locking problem is resolved here through a new approach. The total strain energy is split into 
bending and shear energies and an antiparameter in the shear energy term is introduced to avoid 
locking. By numerical experimentation on beam and plate problems it is shown that the present ap- 
proach gives good results in the thin limit. It is also shown that the additional/spurious zero energy 
modes do not arise here because reduced/selective integration is avoided. 

NOTATION 

Area in shear for a section = b.r 
Plate dimensions 
Matrix relating strains and nodal displace- 
ments of element 
Matrix relating bending strains and nodal 
displacements 
Matrix relating shear strains and nodal 
displacements 
Elasticity matrix relating moments and 
bending strains 
Elasticity matrix relating shear forces and 
shear strains 
Plate constant = Er3112 (I - y’) 
Young’s modulus 
Shear rigidity 
Element length 
Stiffness matrix 
Element stiffness matrix 
Bending stiffness matrix 
Curvatures, bending strains 
Shear stiffness matrix 
Shear correction factor 
Length of the beam 
Moments 
Shape functions 
Matrix of shape functions 
A free parameter used in the formulation 
Concentrated load 
Shear forces 
Uniformly distributed load, UDL 
thickness 
Displacement along X axis 
Strain energy 
Bending strain energy 
Shear strain energy 
Displacement along Y axis 
Displacement along 2 axis 
Strain vector 
Bending strain vector 
Shear strain vector 
Stress vector 
Nodal displacement vector for element 

t With whom correspondence should be addressed. 

Displacement vector at any point in the 
element 
Rotations about Y and X axes 
Shear strains 
Poisson’s ratio 
Antiparameter used in the present 
formulation 

INTRODUCTION 

The early displacement based finite element for- 
mulations for flexure problems relying on the 
“Kirchhoff hypothesis” (for beams, plates, etc.) 
were plagued with difficulties because of the re- 
quirement of slope continuity between adjacent ele- 
ment, i.e. C’ continuity in shape functions. The 
main assumption in Kirchhoffs hypothesis is that 
the transverse normals to the reference middle 
plane remain so during bending, implying trans- 
verse shear strain becomes zero. Thus bending ro- 
tation becomes a first. derivative of the transverse 
displacement w and hence requires the transverse 
displacement field C’ continuous. Both compatible 
and incompatible and complicated higher order C’ 
continuous elements have been derived in the 
past[l-61. 

In recent years Co continuous elements based on 
shear deformable theories which use independent 
interpolation of slopes and displacements have 
been developed. This is mainly due to the ease in 
the development and the formulation of computer 
programmes. In the last 10 years or so a number of 
elements have been developed using a shear de- 
formable theory such as that of Mindlin[7-111. 

The recent trend has been towards using linear/ 
bilinear elements, i.e. 2-noded beam/4-noded plate 
elements. However, such shear flexible elements 
using low order (linear/bilinear) interpolation for all 
components of nodal displacement vector become 
very stiff especially when the thickness is reduced; 
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THEORETICAL FORMULATION 

The following presents a brief account of the 2- 
noded beam element and the 4-noded plate element: 
(see Fig. 1): 
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i.e. when the system conforms to the Kirchhoff 
mode. This phenomenon, called “locking,” arises 
from linear/bilinear element discretization. The 
trouble occurs due to the existence of spurious 
shear energy which turns out to be of the order (hl 
r)’ of flexural energy, h and r being effective ele- 
ment size and thickness, respectively, and as t + 
0, h/t + p. This situation poses an enormous prob- 
lem in numerical analysis. Thus, the spurious shear 
energy in the discrete model causes the “shear- 
locking” phenomenon, which is a numerical prob- 
lem. Attempts have been made in the last several 
years by a few investigators to overcome this prob- 
lem. Remedial measures suggested to date to re- 
move such difficulties are: 

nodal displacement vector, 

sp = (11’1. 81, w21 WT. (I) 

shape functions, 

N, = (1 - .r/lh); Nz = x/h. (2) 

displacement vector, 6 = N8,, (3) 

strain vector, 

E = (x, cl# = (de/&, dw/dr + 0)‘. (4) 
1. Use of the discrete Kirchhoff procedure, in 

which the element matrix equation is stabilized 
by tying together the two independent degrees 
of freedom w, 8 at discrete points such that 
tL, = dwldr,. Since this method is complicated 
to implement, it is not widely used. 

2. Use of selective/reduced integration proce- 
dure, in which the shear energy term is under- 
integrated[7, 8, 12-141. This technique is 
viewed by many analysts as mere tricks rather 
than methods. “Heuristic” justification of 
these procedures has recently been pro- 
vided[l5]. Although this technique is effective, 
it creates unwanted spurious zero energy 
modes other than the rigid body modes. This 
poses many problems, e.g. use of these ele- 
ments gives oscillatory results in the case of 
corner supported plates. 

Recently a stabilization matrix with a free pa- 
rameter has been developed by Belytschko et 
a1.[16, 171 for the Hughes et a/.[71 element and also 
for the Mukhopadhyay and Dinker element[B]. This 
“stabilization” matrix is developed by combining 
reduced and fully integrated stiffness matrices. Al- 
though this method is effective, the efficiency of 
the original element is lost and the choice of free 
parameter requires ones judgement. 

Here, we introduce an antiparameter a such that 

4 = a (dw/dr + 6). (5) 

The strain energy expression I/ is written as 
follows: 

u = Ubending + Ushcar 

&GA, (z2 (dnyldr + 0)’ dr. (6) 

For a rectangular beam cross section, 

k = 516; A, = b t; G = El2 (1 + $, (7) 

and we set a = p (t/L) intuitively, where p is a free 
parameter, t is thickness and L is the total beam 
length. Finally, we get stiffness matrices 

r0 0 0 01 

Thus a simple, effective and efficient element is 
yet to be developed which could be free from lock- 
ing and spurious zero energy modes so that the ele- 
ment could be safely used for wide (L/r) ranges and 
various boundary conditions. 

K 

and 

l/h 0 - l/h 
0 0 0 

- l/h 0 l/h 

K 
5EI 

- - a’(hlt)’ 
shear - (1 + y) 

In this paper a C” continuous linear beamibioli- 
near plate bending element is developed based on 
a shear deformable theory. Emphasis is given on 
resolving the locking problem by trying out a new 
approach. In this formulation total strain energy is 
split into bending and shear energies and an anti- 
parameter in the shear energy terms is introduced 
to avoid locking. By numerical experimentations on 
beam and plate problems it is shown that the pres- 
ent approach gives good results in the thin limit. 
Since reduced/selective integration is avoided, spu- 
rious zero energy modes do not arise. The patho- 
logical problem of the corner suppported plate is 
solved safely. 

l/h3 - 1/2h’ - l/h3 - 1/2h’ 

X 
- ll2h” 1/3h 1/2h” 1/6h 
- l/h3 112h’ l/h3 l/2/+ ’ (9) 

- 1/2h’ I l6h 1/2h’ 1/3h 1 
If a = p(t/L) is substituted in, say (9), the multiplier 
to the matrix becomes 

5EIl( 1 + y).( hlL)‘.p’. 

By adding the above two matrices, we get, in the 
usual manner, 

K element = Kb + K,. (10) 

(8) 
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(12) suggests that a numerical estimate can be ob- 
tained. In this paper, an estimate for the parameter 
p is obtained to ensure lower-bound monotonic 
convergence to true solution by subjecting this for- 
mulation to numerical experimentation. 

A similar formulation is done for a bilinear plate 
element. For the sake of brevity the details are pre- 
sented in the Appendix 1. 

G-h 
Wl w2 

Ql Q2 

Fig. 1. Z-Noded linear element. 

NUMERICAL EXPERIMENTS 

Using this Kelcmenl, one and two element analyses 
were carried out for a cantilever beam of rectan- 
gular cross section for a tip load Q for which the 
results are 

12(1 + ~1. 5~’ + 3(1 + v) 
sp* + 12(1 + y) 1 (11) 

and 

respectively. 

The new formulation was tested with a few beam 
flexure problems with various load/boundary con- 
ditions such as (1) cantilever beam under tip load, 
(2) cantilever beam under UDL, (3) simply sup- 
ported beam under concentrated load at the centre, 
(4) simply supported beam under UDL, (5) clamped 
beam under concentrated load at the centre and (6) 
clamped beam under UDL. All these problems 
were solved for the tip displacement (cantilever 
problems) or the centre displacements (simply sup- 
ported and clamped beams) for different values of 
the parameterp. The results are presented in Tables 
1-6 and Figs. l-6. 

The idea behind the above analyses was to as- 
sess a theoretical bound for the parameter “p” in 
the limit when the number of elements are increased 
to infinity. However, at the present moment such 
an analytical estimate appears infeasible. But the 
nature of the multipliers appearing in eqns (I 1) and 

Similar experiments were also performed for 
plate flexure problems such as (1) simply supported 
square plate under concentrated load at the centre, 
(2) simply supported square plate under UDL, (3) 
clamped square plate under concentrated load at 
the centre, (4) clamped square plate under UDL and 
(5) comer just supported plate under UDL. 

p 

0 

The results are presented in Tables l- 11 and 
Figs. 3-13. 

Finally the element was checked for spurious 
zero energy modes by finding out the eigenvalues 
of the element stiffness matrix (Table 12). It is seen 
that no extra spurious zero energy modes exist for 
the present element. 

CONCLUSIONS 

Fig. 2. 4-Noded quadrilateral element. 

For each beam/plate problem we can see that 
(Tables 1-I 1, Figs. 3-13) the finite element dis- 
placement solution converges monotonically to the 
correct value for a particular value of parameter p. 
It is thus proposed that p lies in a certain range, 
that is, 6-12 for beams and 9-15 for plates, for 
which the FEM solution gives reasonable answers 
and thus avoids locking. We are also reasonably 
correct in proposing that the choice of p is inde- 
pendent of the (L/t) ratio as well as the nature of 
the boundary conditions and loading conditions. Fi- 
nally it is also confirmed that the present formu- 
lation is free from spurious zero energy modes since 
reduced/selective integration is avoided. This as- 
sertion is proved by our getting an extremely good 
solution for the comer supported plate, which is 
otherwise not possible with a reduced/selective in- 
tegrated element[7, 161. 
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E 
P 
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15 
5 
6 

0 + b z7.0 
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c 0.5 E .4.0x109 

L,.o*3 

2 L 16 32 
NO.OF ELEMENTS 

Fig. 3. Cantilever under tip load (see Table I). 

Table I (see Fig. 3). Tip displacement for a cantilever beam under tip load (L = 10.0. I 
= 0.01, E = 4.0 x 109. y = 0.3) 

P 

Elements 4.0 5.0 6.0 7.0 8.0 9.0 10.0 II.0 12.0 

2 0.460 0.343 0.263 0.206 0.165 0.135 0.112 0.094 0.080 
4 0.794 0.687 0.594 0.513 0.444 0.385 0.336 0.294 0.259 
8 0.971 0.917 0.866 0.816 0.766 0.718 0.672 0.627 0.584 

1.030 1.000 0.977 0.958 0.938 0.917 0.901 0.878 0.853 
I.040 1.020 I.010 1.000 I.010 0.995 0.991 0.964 0.959 

Exact: 1.0. 

Table 2 (see Fig. 4).Tip displacement for a cantilever beam under UDL tL = 10.0. I = 
0.01, E = I.5 x 109. y = 0.3) 

P 

Elements 4.0 5.0 6.0 7.0 8.0 9.0 10.0 II.0 12.0 

2 0.503 0.375 0.286 0.224 0.179 0.146 0.121 0.102 0.087 

: 0.991 0.822 0.708 0.930 0.876 0.610 0.825 0.526 0.454 0.774 0.394 0.724 0.343 0.677 0.631 0.301 0.265 0.589 
I6 1.046 I.013 0.985 0.963 0.942 0.924 0.898 0.878 0.856 
32 1.063 1.032 I.017 1.005 0.995 0.988 0.978 0.972 0.967 

Exact: 1.0. 
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/-i-i- ‘EXACT. SOLN ~1.0 

_ _ 
A b.6.0 L .lO‘O 
i , b.7.0 t rc301 

E .l.Sx109 

u zo.3 

1 1 I I I I 
2 4 a I6 3.7 

NO-OF ELEMEPJTS 

Fig, 4. Cantiiever under UDL (see Table 21, 

A bZ6.0 
t =o-at 

+ b = 7.0 E s2.5 x108 
D b :3~o r, zo.3 

X b s9.0 

I 1 1 f I 1 
2 4 8 16 

. 

NO.OF ELEMENTS 
32 

Fig. 5. Simply supported beam under concentrated load at centre (see Table 3). 
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Table 3 (see Fig. 5). Centre displacement for a simply supported beam under 
concentrated load at centre (L = 10.0, t = 0.01, E = 2.5 x 10’. y = 0.3) 

P 

Elements 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 

2 0.524 0.375 0.280 0,216 0.171 0.139 0.114 0.0959 0.0815 
4 0.905 0.749 0.631 0.537 0.460 0.396 0.343 0.300 0.263 
8 1.110 1.000 0.921 0.854 0.794 0.739 0.687 0.639 0.594 

16 1.170 1.090 I .040 1.000 0.971 0.943 0.917 0.891 0.866 
32 I.190 1.120 I .070 I.050 t ,030 1.010 l.O@J 0.988 0.977 

Exact: 1 .O. 

Table 4 (see Fig. 6). Centre displacement for a simply supported beam under UDL (I!, = 
10.0, r = 0.01, E = I.5625 x 10s, y = 0.3) 

P 

Elements 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 

2 0.419 0.300 0.224 0.173 0.137 0.111 0:092 0.077 0.065 
4 0.838 0.700 0.592 0.505 0.433 0.374 0.32s 0.283 0.249 
8 I.059 0.966 0.895 0.834 0.777 0.724 0.675 0.628 0.584 

16 1.130 1.063 1.020 0.987 0.969 0.933 0.908 0.884 0.859 
32 1.149 1.091 1.056 1.034 1.018 1.007 0.997 0.987 0.976 

Exact: 1.0. 

I. f 10-o 

o bz8.o t 50.01 

x b-9.0 E .1.5625x10* 

0 10.3 

1 I I I I I 
2 4 6 16 

NO. OF ELEMENTS 
32 

Fig. 6. Simply supported beam under UDL (see Table 41. 
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. 
II 

5 1.0 
. EXACT SOLN..l.O 

I.0 

+ b ~7.0 L z IO.0 

A b =8.o t .o*ot 
o b z9.o E .6.25x107 

l b -10.0 2, z 0.3 

x b -11 .o 

T b :v.o’ 

LI I I 
2 

I 
4 8 I 16 * 

NO. OF ELEMENTS 
32 

Fig. 7. Clamped beam under concentratei load at centre (see Table 5). 

Table 5 (see Fig. 7). Centre displacement for a clamped beam under concentrated load at 
centre (L = 10.0, t = 0.01. E = 6.25 x IO’, y = 0.3) 

P 

Elements 4.0 5.0 6.0 7.0 8.0 9.0 10.0 II.0 12.0 

2 0.780 0.499 0.347 0.255 0.195 0.154 0.125 0.103 0.0867 

: 1.350 1.650 0.999 I .330 0.782 I.140 0.633 1.010 0.524 0.905 0.440 0.821 0.375 0.750 0.322 0.687 0.280 0.631 
16 I .750 I.450 1.290 I.180 I.110 I.050 1.000 0.958 0.921 
32 I .770 1.490 1.330 1.240 I.170 I.130 I .090 1.060 1.040 

Exact: 1.0. 

Table 6 (see Fig. 8). Centre displacement for a clamped beam under UDL (L = 10.0. t = 
0.01. E = 3.125 x IO’. y = 0.3) 

P 

Elements 4.0 5.0 6.0 7.0 8.0 9.0 10.0 I I.0 12.0 

2 0.520 0.333 0.23 I 0.170 0.130 0.103 0.083 0.069 0.058 
4 I .080 0.799 0.626 0.507 0.419 0.352 0.300 0.258 0.224 
8 I.461 I.180 I.011 0.896 0.804 0.731 0.666 0.61 I 0.561 

I6 I .643 1.370 I .206 I.112 I.040 0.986 0.941 0.902 0.867 
32 1.720 1.444 I.291 I .203 I.140 I.091 I .062 I .032 I.010 

Exact: 1.0. 
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d b z6.o 

+ bs7.5 

A b : 8.0 

0 b 5 9.5 
l b .I04 

x b -11.5 

t b :12.5 

L s15.5 

t -_o.ot 

E ~5.125 x10? 

1) :a-3 

Fig. 8. Clamped beam under UDL (see Table 6). 

2 0.510 

4 
< g 5.556 

H 

2 5.006 

25. 

P 2 50x 

: 

0052 

o b i 9.6 
+ p s10.5 

5.TTR. PLATE ANALYSIS 

UNIT LOAD AT CENTRE IP) 
THICKNESS i 1.0 X 16’ 
E = lo.92 x 15’2, 2, i 0.3 

w+p(tla) :. FOf?==;.ic$95 

~(:0:50,6 

a/t = to4 

L I I f t I , 

1 2 3 
c 

4 6 6 
NO.OF ELEMENTS PER SIDE 

Fig. 9. Simply supported plate under concentrated load at centre (see Table 7). 
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Table 7 (see Fig. 9). Centre displacement for a simply 
supported square plate under concentrated load at 

centre (N = 1.0. f = O.OOOI, E = 10.92 x 10rz, y = 
0.3) 

P 

Mesh 9.5 10.0 13.0 

1x1 0.00397 0.0036 0.0018 
2x2 0.0077 l 0.0073 0.0052 
4x4 0.0113 0.0109 0.0089 
6x6 0.0126 0.0123 0.0108 
8x8 0.0132 0.0128 0.0113 

Exact: 0.0116. 

Table 8 (see Fig. 10). Centre displacement for a simply 
supported square plate under UDL (a = 1.0, t = 

O.OGOl, E = 10.92 x IO’*. y = 0.3) 

Mesh 

P 

9.0 9.5 

lxl 0.00108 0.00099 
2x2 0.00254 0.0024 
3x3 0.00329 0.00318 
4x4 0.00367 0.00359 
6x6 0.00401 0.00392 
8x8 0.00414 0.00409 
9x9 0.00417 0.00413 

Exact: 0.~06. 

_ 0.003 
0 

u‘- 

3 
< 0.0025 

ii 
2 

K 0.002 

2 

ii 
i5 0~0015 

p” 

E 

8 0.00 1 

00005 

* p: 9.0 

A b z9.6 

QTR.PlATE ANALYSIS 

UDL .l.O/UNlf AREA,(q) 

THICKNESS i I.0 X 1 fj4 

E =10.92X10’*, G=O.3 

*(-_pft/af :. FOR 

o( z 0.0009 

w .0.00095 

a/t : I04 

I I I I I I I I I 

1 2 3 4 5 6 I e 9 
t 

NO. OF ELEMENTS PER SIDE 

Fig. 10. Simply supported plate under UDL (see Table 8). 
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t 

0.006 

; 0.005 

: 
-T 
f O-00& 
w 

g o.oo3 

In 
8 
k! 0.002 

iii 
ki 

0.001 

B F=r5.0 f-l.0 4 

QTR.PLATE ANALYSIS 

UNIT CONC.LOAD AT CENTRE (P) 

THICKNESS I 1.0 16’ X 

E -10.92 x10 ‘? 2) = 0.3 

ot = p(tla) :. FOR 

DC ~0~0010 
w i 0.0019 

alt:tOL 

1 2 3 L 6 8 
NO.Of ELEMENTS PER SIOE 

Fig. 1 I. Clamped plate under concent~ted load at centre (see Table 9). 

0 b .to*o 
A jszr30 
x c :t5.0 

PTR.PlATE ANALYSIS 

UOL =l.O/UNIT AREA =q 

THICKNESS s 1.0 X rdL 

E rtO.9tXtO’~ zt z 0.3 

w=P(t /a) :. FOR 

o( = 0.001 
e: i 0.0013 
oc.0.0015 

1 2 3 L 6 8 
NO.OF ELEMENTS PER SIDE 

Fig. 12. Clamped plate under UDL (see Table 10). 
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QTR.PLATE ANALYStS 

IJOL I l.OfUNlT AREA r q, 

THICKNESS I 1.0 X16” 

E = to.92 X 10’2 21 i 0.3 

uc=p(llo) :.‘FOR 

4 = 0.0009 

4 : 0~00095 

0 It oto& 
a;=o~oo10 

NO. OF ELEMENTS PER SIDE 

Fig. 13. Corner just supported plate under UDL (see Table 11). 

Table 9 (see Fig. I I). Centre displacement for clamped Table 1 I (see Fig, 13). Centre displacement for a comer 
square plate under concentrated load at centre (a = 1.0, just supported square plate under UDL (a = 1.0, t = 

I = 0.0001, E = 10.92 x lot”, y = 0.3f 0.0001, E = IO.92 x lo’:. y = 0.3) 

P P 

Mesh 10.0 IS.0 Mesh 9.0 9.5 10.0 

Ix1 0.00107 0.00039 1x1 0.00305 0.00277 0.00253 
2X2 0.00329 0.0024 2x2 0.0117 0.01 IO 0.0104 
3x3 0.~78 0.00396 3x3 0.0176 0.0167 0.0161 
4x4 0.0057 I 0.00415 4x4 0.0212 0.0205 0.0198 
6X6 0.0067 0.00495 6x6 0.0248 0.0242 0.0237 
8X8 0.00714 0.00556 8X8 0.0264 0.0259 0.0256 

Exact: 0.0056. Exact: 0.026. 

Table 10 (see Fig. 12). Centre displacement for 
clamped square plate under UDL (a = 1 .O, f = 0.0001. 

E = 10.92 x IO’*, y = 0.3) 

P 

Table 12. Eigenvalues of a plate element using present 
formulation (element length = 0.0625. t = 0.0001. E = 

10.92 x 1012, y = 0.3) 

RigidPbod y 9.5 10.0 IS.0 

modes 3 zero 3 zero 3 zero 

Mesh 10.0 13.0 15.0 

I x 1 0.000267 0.000171 0.000119 
2X2 0.000698 0.000498 0.00037 1 
3x3 0.0009~1 o.ooo775 0.~ 
4x4 0.001 If o.oOo963 0.000797 
6x6 0.00133 0.00114 0.00106 
8X8 0.00139 0.00123 0.001 I6 

Exact: 0.00127. 

Elastic modes 0.100 0.110 0.530 
0.490 0.480 0.530 
0.490 0.480 0.700 
0.680 0.690 0.960 
0.820 0.830 0.150 El 
0.140 El 0.140 El 0.100 El 
0.210 E3 0.230 E3 0.530 E3 
0.320 E3 0.350 E3 0.790 E3 
0.320 E3 0.350 E3 0.790 E3 
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APPENDIX 1 

4 Noded Mindlin plate element formulation 

Displacement j7eld 

Bi= F __;__t+$-j$ . (12, 

[ 1 I, 

aaNJax a N; 0 
LaaNildy 0 aNi J 

u = ze,, v = ze,. w = W’. 

Nodal displacement vector 

6, = h, e,Tl, evl, . . . , tt3, e.r4. e+V. 

(1) 
Elasticity relations 

We define stress vector 

(2) u = 0% Qjr = (A%> M,, Mx\1r Q.r. Q.dT (13) 
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such that 

in which 

C” continuous beam/plate flexure element 

Strain energy 

425 

~=DE. 

The total strain energy expression is written as 

(14) 
u = Ub f u, 

D= Db o 
[ 1 0 D, ’ 

1 I 
=- 

2 
d Db ‘% dr d_v + - 

2 
s: D, es dr dy (18) 

(15) 
= $ [S,T KT, S, + ST K: S,], 

where in which 

IY 0 

[ 1 K6 = I( El&, Bb dr dy 
Et’ 

Db = IZ(I - 7’) YI 0 (‘@ and 
1-y 

0 0 - 
2 K: = a2 j-J 8: D, B, dr d_v 

and 
We set a = p (t/a), in which p is a free parameter whose 

D, = kGA, :, ; , [ 1 k = 516. (17) 
estimate is provided based on numerical experimentation, 
t is the plate thickness and a is the plate dimension. 


