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Introduction 

Any two-dimensional plate theory is an approximation of the real three-dimen- 

sional elasticity problem. The classical laminated plate theory is based on 

the Kirchhoff hypothesis and ignores the effects of transverse shear deforma- 

tion, normal stress, normal strain and nonlinear in-plane normal strain dis- 

tribution through the plate thickness [ 1,2]. Two types of composite plates 

are generally identified in practice: (i) 'fibre reinforced laminates' in 

which layers of composite materials with high ratios of Young's-to-shear 

modulii are bonded together and (2) 'sandwiches' in which layers of isotropic 

materials with some layers having significantly lower elastic modulii than 

others, are bonded together. The effects of shear deformation are signific- 

ant in these situations and thus the classical theory is inadequate. Exact 

elasticity solutions for flexure of some standard composite and sandwich 

plate problems have been obtained by Pagano [ 3] and Pagano and Hatfield [4]. 

Whitney [5] and Mau [6] have presented first-order laminate theories in which 

transverse shear strain is assumed constant through the thickness. This re- 

quired, however, use of a transverse shear correction factor which generally 

varied with the lamination scheme. 

Theories based on realistic displacement models which give rise to nonlinear 

distributions of in-plane normal strains and transverse shear strains have 

been developed by Murthy[ 7], Reddy [ 8], Phan and Reddy[ 9] and more recently 

by Ren and Hinton[ i0 ]. Lo, Christensen and Wu[ll], Kant, Owen and Zienkie- 

wicz[ 12 ], Kant [ 13] and Pandya and Kant [ 14] have, in addition, included the 

effects of transverse normal strain and stress in their theories. These 
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(Refs. 11-14) however, do not satisfy the conditions of zero transverse shear 

stresses on top and bottom bounding planes of the plate. In this paper, a 

novel idea of incorporating these conditions in the shear rigidity matrix 

instead of the displacement model is being presented for the first time. In 

addition this formulation gives a C ° finite element displacement model. 

Numerical results from the various theories for displacements and stress dis- 

tributions through the plate thickness are compared and evaluated. 

Theory 

The development of the present theory starts with the assumption of the dis- 

placement field in the following form: 

U(x,y,z) : Zex(X,y) + zSex*(X'Y) 

V(x,y,z) : ze (x,y) + zSe (x,y) 
Y Y 

W(x,y,z) : w(x,y) + z2w*(x,y) ... (i) 
* * 

in which, the various terms have the usual meaning except the terms @ , 8 
x y 

and w which are the corresponding higher-order terms in the Taylor's series 

expansion and are defined at the reference plane[ 12-14 ]. 

By substitution of these relations into the strain-displacement equations of 

the classical theory of elasticity, the following relationships are obtained: 

~'X 

~y 

E z 

%xy 

yz 

%xz 

ii ; l 
x X ~ xy 

zK + z3K ~ + 
Y Y 

ZKz ', ~x + z2*; j ... (2a) 

in which, 

2(9 %(9 2(9 ] t 
t ~Sx y x y 

[Kx, y, xy] : 

[ * * * ] t ~8 x ~8 %8X + 2W* and 
Kx,Ky,Kxy,Kz : ~ ' Y , ~---~ % ' 

] [ _ . ] • * t ~w+@ x, %w+8 i ~-~ +38 , -- +38* 
,~ ~ x ' ~ y  = ~-~ ~ y  y , x %y y 

t 

... (2b) 

where, t represents transpos~ of an array. 

The stress-strain relationship for the L th lamina of the composite laminate 

with reference to fibre axes (1-2-3) have the following compacted form: 

(3- 1 : C ~i ... (3a) 
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in which, 

~i = 

~l: 

[ °-l' 6-2' ~3' ':12' <23' ~:13] t 
[~1' ~2' h '  i12' ~23' ~13] t (3b) 

and C is the standard stiffness matrix [ 14] with reference to fibre axes 

(see Figure i). 

These vectors (~'i' ~i ) are transformed to plate axes (x-y-z) using the usual 

co-ordinate transformation matrix T [ 14] as: 
m 

in which, 

~-x : _T O- 1 and ~x~ : _T ~i ... (4a) 

t 
& = [°-x' ~-y' ~,~' ~:xy' ~yz' ~xz] 

t 
~x -- [~x' ~y' ~z' %' ~ yz' ~xz] ... (4b) 

With this, the stress-strain relationship with reference to plate axes is 

given by, 

~x= [~ c Tt]~x oR ~x:2 ~x (5) 

in which, Q is the stiffness matrix with reference to plate axes [ 14 ]. 

The constitutive relations involving bending moments are defined as follows: 

n 
[M x, My, Mxy, Mz]t = ~. 

L=I 

f h L 

hL_l[@-x ' ~-y' ~xy' ~-z] 

t 
z dz 

[ M x , My, xy ] = ~' G- x , 0--y, ~xy] t z 3 dz "'" (6a) 
L=I 

After integration, this may be written in a compact form as, 

in which, 

If n 

= _~ ,.,K . . .  (6b) 

. . , t 
= rM My, M x, My, Mz] L x' Mxy' Mxy' 

Kxy , * * * ~ t K K = K x, Ky, K x, Ky, Kxy, Kz] 

is the number of layers in a laminate and if we set, 

... (6c) 

... (6d) 

"?-.h .?-.L 
HI = 3 ; H2 = ~ 5 ; H3 - 7 (6e) 

then the bending stiffness matrix can be evaluated as follows: 
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n 

L:I 

QIlHI Q12H1 QI4H1 

Q22HI Q24HI 

Q44H1 

Swmetric 

QIIH2 QI2H2 QI4H2 QI3H] 

QI2H2 Q22H2 Q24H2 Q23HI 

QI4H2 Q24H2 Q44H2 Q34HI 

QIIH3 Q12H3 Q14H3 QI3H2 

Q22H3 Q24H3 Q23H2 

Q44H3 Q34H2 

Q33HI 

L th layer 

. . .  ( 6 f )  

The vanishing of the transverse shear stresses on top (z = + h/2} and bottom 

(z = -h/2) surfaces of the plate gives us, 

h 2 . h 2 . 
~y ~y : + %x 0 (7a) +-~- 0 and }x -4- : "'" 

The constitutive relations involving shear forces are given by, 

Q : D ~ . . .  (7b) 

in which, 

i IL Z2xz ' n 2 it (7c) . . t X ' ~yz' z "'" [Qx' Qy'Qx' Qy] = / ' [~xz' Ty z dz 
L=I hL_ 1 

and ! : [~x' ~y '  ~ : '  ~y ] t . . .  (7d) 

By integrating equations (7c) and introducing in it the conditions given by 

equations (7a), the shear rigidity matrix D is obtained in the following --s 

form: _ L th layer 

Q66H4 Q56H4 0 0 

n Q55H4 0 0 

--s L=I Q66H5 Q56H5 

Symmetric Q55H5 ... (7e) 

in which, 

4 : - HlX (7f) .~: (h L-hL_ l) -. Ix~ ; . 5 H 2 T " ' "  

The above theory is used to develop a C ° finite element model of quadrilater 

al elements of the Lagrangian family [12,14]. 
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Numerical Results 

A sy~netrically laminated and a sandwich plate, discretised with four 9-noded 

quadrilateral elements are considered. The selective integration scheme 

namely 3 x 3 for flexure and 2 x 2 for shear contributions has been employed. 

The properties considered for the laminated plate are [ 3,4]: 

E 1 = 25 x106 , E 2 = E 3 = 1 x106, GI2 = GI3 0.5 x106, G23 = 0.2 x106 

~12 = ~23 = ~13 = 0.25 and h i = 0.25 xh, i =1,4 

For sandwich plate, the material properties of face sheets are same as for 

laminated plate with the thickness of each face sheet as 0.i xh and 8 = 0 °. 

The properties of the middle core material are [3] : 

= ~ = 0.04xi06, E 3 = 0.5 x106 , GI3 = G23 = 0.06 x106 , 

GI2 = 0"016xi06' ~12 = ~23 = 913 = 0.25, thickness=O.8xh and 8 = 0 ° 

The deflection and stresses presented are non-dimensionalised using the 

following multiplying factors: 

i00 h3~ h 2 h 

ml = 4 ; m2 = 2 ; m3 - 
Po a Po a Po a 

The stresses presented using finite element technique are at the nearest 

gauss points. The transverse shear stresses presented using present/Mindlin 

theory are obtained from equilibrium equations. Results of the analysis are 

presented in Table 1 and Figure 2. 

Conclusions 

A novel approach to satisfy the zero transverse shear stress conditions on 

top and bottom faces of the plate is presented. This theory includes the 

effect of transverse normal stress, does not require arbitrary shear correc- 

tion factors for transverse shear stiffnesses and results in parabolic varia- 

tion of transverse shear strains/stresses through the plate thickness. The 

numerical results obtained using finite element technique proves the validity 

of the present theory for flexure of laminated as well as sandwich plates. 
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TABLE i 

Deflection and Stresses in a Square Simply Supported (w = 8 t = w = @ = O) 

Four Layer Cross-ply and Sandwich Plate (a/h = iO) under Sinusoidal Transverse Load {po ) 

w x m I ~xl x m 2 O~x 2 x m 2 ~y x m 2 ~xy x m 2 ~xz x m 3 Ty z x m 3 
a a Source a a O) a a h a a 4h a a h * (0, O, ) (O, ~, O) (5' O, O) (3'3' C~,~,3) (~'3'iU) C~,~,~) 

Symmetrically laminated plate (O/90/90/~) 

Present consistent higher-order 0.7070 0.5358 0.3893 0.02605 0.2732 0.1696 
theory 

Higher-order theory [ 14] 0.7185 0.5676 0.3948 0.02228 0.2702 0.1715 
Mindlin theory 0.6615 0.5065 0.3653 0.02415 0.2819 0.1600 
Higher-order shear deformation 0.7294 0.5226 0.5667 0.02510 0.2574 0.1534 
theory [9] 

3-O Elasticity [4] 0.7370 0.5590 0.4010 0.02750 0.3010 0.1960 
Claasical plate theory [1,4] 0.4512 0.5390 0.2690 0.0213 0.5390 0.1380 

Sandwich plate 

Present conaistent higher-order 2.0179 1.1140 0.7461 0.1077 0.06640 0.2690 0.04320 
theory 

Higher-order theory 2.0816 1.1680 0.6900 0.Iiii 0.06890 0.2676 0.04440 
mlndlln theory 1.5571 1.0620 0.8595 0.08057 0.05530 0.2779 0.03640 
3-D Elasticity [3] 1.1520 0.6290 0.1099 0.07170 0.3000 0.052}0 
Classical plate theory [ 1,3 ] 1.0970 0.8780 0.0543 0.04330 0.3240 0.02950 

z = h/4 for 18~inated plate 
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Fig. 1 - Plate and Fibre Axes 
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PRESENT CONSISTENT HIGHER-ORDER THEORY-USING EQUIUBRIUM EQUATIONS 

PRESENT CONSISTENT HIGHER-ORDER THEORY-USING CONSTITUTIVE RELATIONS, 

. . . . . . .  HIGHER-ORDER THEORY [12] -USING EQUILIBRIUM EQUATIONS 

. . . . . . .  HIGHER-OROER THEONY [12} -USING CONSTITUTIVE RELATIONS. 
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Fig. 2 - Transverse Shear Stresses 


