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Abstract-A finite element formulation for flexure of a generally orthotropic plate based on a higher-order 
displacement model and a three-dimensional state of stress and strain is presented here. This higher-order 
theory incorporates linear variation of transverse normal strain/stress and parabolic variation of 
transverse shear strains through the thickness of the plate. The nine-noded quadrilateral from the family 
of two-dimensional Co continuous isoparametric Lagrangian elements is then developed as a generally 
orthotropic higher-order element. The performance of this element is evaluated on square plates with 
different support conditions and under uniformly distributed and central point loads. The numerical 
results of the present formulation are compared with thin plate, elasticity and Mindlin/Reissner solutions. 
The effect of degree of orthotropy on the maximum bending moment location is examined for different 
loading and boundary conditions. The effect of directional orthotropy on the location of the maximum 
values for the various stress-resultants is also studied. 

INTRODUCTION 

It is an established fact that the classical thin plate 
theory [1,2] based on the so-called Kirchhoff hypoth- 
esis is computationally inefficient from the point of 
view of simple finite element formulations [3,4]. Be- 
sides, it is based on simplifying assumptions, the most 
important of which are the neglect of the transverse 
shear deformations and the transverse normal stress. 
The errors in such a theory naturally increase as the 
plate thickness increases. In addition, due to neglect 
of transverse shear deformations and transverse nor- 
mal stress, one cannot take into account all of the 
nine stiffness coefficients in the constitutive relation 
of a general orthotropic material. Consequently, the 
errors increase as the magnitude of inplane stiffness 
increases relative to the transverse stiffness of the 
material in general. For instance, in plates with a a/h 
ratio less than 10 and a high degree of orthotropy 
involving a large ratio of EJE,,, Ashton and 
Whitney [5] have reported enormous discrepancy in 
the results of the classical thin plate theory. 

Reissner [6] and Mindlin [7] were the first to pro- 
vide first-order shear deformable theories based on 
the thin plate assumptions for variation of stresses 
and displacements through the thickness of the plate, 
respectively. Both these theories give rise to a sixth- 
order partial differential system of equilibrium equa- 
tions and permit satisfaction of three boundary con- 
ditions on each edge. Medwadowski [8] extended 
Reissner’s theory (based on assumed stress fields) to 
orthotropic plates. Yang et al. [9], on the other hand, 
extended Mindlin’s theory (based on assumed dis- 
placement fields) to heterogeneous plates. 

The foregoing theories provide a first-order basis 
for the consideration of the effects of the transverse 
shear deformations on the behaviour of isotropic, 

orthotropic and heterogeneous plates and these also 
yield a Co continuous finite element formulation for 
the numerical analysis but have certain limitations: 
the transverse shearing strains (and thereby stresses) 
are assumed constant through the plate thickness and 
a fictitious shear correction coefficient is introduced; 
the classical contradiction whereby both the trans- 
verse normal stress (a,) and the transverse normal 
strain (Ed) are neglected, remains unresolved. Lo et 
al. [lo, 111 and Reissner [12] presented a theory for 
plates based on an assumed higher-order displace- 
ment field. Kant [13] derived an isotropic version of 
the complete governing equations of such a theory in 
a systematic manner based on the minimuln potential 
energy principle and has also compared it with 
Mindlin theory through extensive numerical studies. 
Kant et al. [14] also presented, for the first time, a Co 
finite element formulation of this higher-order 
theory. Specifically, the in-plane and the transverse 
displacements are expanded in the powers of the 
thickness coordinate (z) by Taylor series and the 
truncations are effected at the third and the second 
degrees respectively. The theory thus incorporates: (i) 
quadratic variation of the transverse shearing strains 
(7, and yYL) through the plate thickness, making the 
introduction of a shear correction coefficient redun- 
dant; (ii) linear variation of the transverse normal 
strain (cz) through the plate thickness; and (iii) con- 
sideration of the three-dimensional Hooke’s law. 
Motivation for the present study comes from these 
works in the form of an extension for generally 
orthotropic plates. 

Recently Phan and Reddy [15] presented a finite 
element formulation of a plate theory based on an 
assumed displacement field of Levinson [16] and 
Murthy [17] in which in-plane displacements are ex- 
panded as cubic functions of the thickness co- 
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ordinate while the transverse deflection is kept only 
a function of x and y (independent of thickness 
coordinate) as assumed in the case of classical and 
Mindlin/Reissner plate theory. The additional four 
higher-order functions used in the definition of the 
in-plane displacements are eliminated and expressed 
in terms of the usual physical lower-order displace- 
ment functions of the classical/Reissner/Mindlin 
theory by conditioning that the transverse shear 
stresses are zero on the bounding planes of the plate. 
Implicit in this development is the use of only a 
partial constitutive relation which ignores the con- 
tributions and effects of transverse normal stress 
(a,)/strain (6;). The resulting formulation is also seen 
to contain second-order derivatives, as in the classical 
plate theory, of the transverse deflection (w) in the 
energy expression and consequently the displacement 
based finite element formulation requires the use of 
computationally inefficient C’ continuous shape 
functions. 

Further, with present increasing interest in the use 
of composite materials in high technology areas, it 
is important that we predict reliably their failure/ 
fracture mode. Failure phenomenon in composite 
materials is extremely complex. Nevertheless, delami- 
nation mode of the failure is now recognised as the 

zz 

except the terms O:, (3,; and w*, which are the 
corresponding higher-order terms in the Taylor’s 
series expansion, used in the present theory and are 
defined at the reference plane. Thus the generalized 
displacement vector 6 of the reference plane is defined 
as 

6 = {w. O,, Q,., w*, e:, OF)‘. (2) 

The strains, in terms of displacement vector S are 
expressed as 

C =ZK +Z3K* r r 1 

L,=ZK +Z.'K* 1 v 

tl = ZK, 

-3 * 
Yrv==Kr,,+~ Kr, 

yx; = &+Z2$:. (3) 

The generalized strain components vector c is related 
to the generalized displacement components 6 by the 
following matrix relation: 

0 a/ax 0 

0 0 alaY 
0 ajay a/ax 
0 0 0 
0 0 0 
0 0 0 
0 0 0 

a/ax I 0 
a/ay 0 i 

0 0 0 
0 0 0 

0 0 0 
0 0 0 
0 0 0 
0 alax 0 

0 0 w9 
0 a/ay alax 
2 0 0 
0 0 0 
0 0 0 

alax 3 0 
a/a.t 0 3 

most critical one [18]. Initiation and/or growth of this 
failure mode is due to inter-laminar stresses T,:, T,.~, 

and also a:, which is not considered by Phan and 
Reddy [ 151, Levinson [ 161 and Murthy [ 171. 

We believe that the present formulation, though 
cumbersome [17], has the potential to predict all six 
components of the stress tensor accurately and is thus 
worth pursuing. 

HIGHER-ORDER ELEMENT FORMULATION 

The theory is based on the displacement model, 

V(x, y, z) = :e,(xy) + z3B.T(x, y) 

V(X.Y, Z) = z~,(x,.v) +z3e;(x, y) 

W(x, y. z) = w (x, y) + z?wj(x, y), 

in which the various terms have the usual 

(1) 

meaning 

(4) 

The total potential energy n for the present 
theory [14] is given by 

where p: and p; are the transverse distributed loads 
on the positive and negative extreme z planes re- 
spectively and h is the total thickness of the plate. The 
generalized stress component vector 5, which is the 
integral of the physical stress components through 
the thickness of the plate, is given by 

I = (M,, My, M,,, M:, Mt, M:,., 

M,, Q,, Q,, Q:, Q:f’. (6) 

The generalized stress vector I and the generalized 
strain vector < are partitioned as follows: 
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Fig. 1. Positive system of coordinates. 

(8) 
i 

Qssh Qd QssH, Qd, 

D, = Qssh Q& QssH, 
Qs64 Qs& ’ (12) 

Symm. Qss4 I 
(9) 

in which 

H, = h’/12 

For a linear elastic material the constitutive relation 
can be written as 

H2 = h ‘/80 

H3 = h’/#8. 

d, = D& and 6, = D,<,, (10) The coefficients Q,, (i, j = l-6) in terms of nine 

where the elasticity matrices D, and D, for a general 
independent elastic constants are derived as follows. 

orthotropic plate of thickness h are expressed in the 
The three-dimensional strains L are related to 

following manner: 
stresses u by a compliance matrix S with respect to 
the l-2-3 set of co-ordinate axes (see Fig. 1): 

l/E, - v,,lE, -17,3/E, 0 0 0 

-v2,lE2 l/E2 -V23/Ez 0 0 0 

L= -ME3 -v32/E3 l/E, 
0 0 0 

0 0 0 V’S, 0 0 =!StT. (13) 

0 0 0 0 l/G23 0 

0 0 0 0 0 l/G,, 

Db= 

Q,,H, Q&4 Qd4 Q,,Hz Qn4 Q& Q,,H, 
Qd4 Qz.24 Qd4 Q&z Q& Qd4 

QuH, Q& Q& Q& QwH, 
Q,,H, QnH, QJ-4 QI,& 

Qu4 Qu4 QdG 
sm. Q& Qw4 

QJ4 

(11) 

By inverting the compliance matrix, the stiffness 
matrix C, relating stresses and strains, is obtained as 

u =s-k =cc (14) 

The coefficients of C matrix are given in Appendix 1. 
Next, the stress vector, strain vector and stiffness 
matrix are transformed from the l-2-3 set of axes to 
the x-y-z set of axes using the relation: 

5 = T-‘C[T-‘I’; = Qf, (1% 
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where 

T= 

Cl 2 0 -2sc 0 0 

s? c? 0 2sc 0 0 1 
001 0 00 

-se 0 c?-_s2 0 0 
(16) 

SC 

0 0 0 0 c-s 

0 0 0 0 s 1’ 1 
(in which c = cos 0 and s = sin 0) is the trans- 
formation matrix, a’ and E are the stresses and strain 
vectors respectively, with respect to the X-Y-Z axes. 
The coefficients of Q matrix are given in Appendix 2. 

The generalized displacement vector 6 and nodal 
displacement vector 6, are related with the aid of 
shape function N, as follows: 

6 = 1 NJ,, (17) 
,=I 

where n = total number of nodes/element. With the 
generalized displacement vector, 6, known at all 
points within the element, the generalized strain 
vector Z at any point is derived with the help of 
eqns (4) and (17) as follows: 

C=L6 =L i N,6,= i BJ,, (18) 
,=I /= I 

where 

B, = LN,. (19) 

The elasticity matrix D is expressed as 

(20) 

where D, and D, matrices are already expressed in 
eqns (11) and (12) respectively. Having obtained the 
D and B matrices as given by eqns (19) and (20), 
respectively, the element stiffness matrix K’ can be 
readily computed by using the standard relation 

K, = s +I fl 

BfDB,dA = LS B;DB,I J]d{ dq. (21) 
Ae -I 

The computation of the element stiffness matrix is 
economised by explicit multiplication of the B,, D 
and B, matrices instead of carrying out the full matrix 
multiplication of the triple product, and due to sym- 
metry of the stiffness matrix only the blocks K, lying 
on one side of the main diagonal are formed [14, 191. 

The formulation for consistent load vector P 
remains the same as given in [14]. 

NUMERICAL EXAMPLES 

For numerical computations of various types of 
examples, a computer program has been developed 

which incorporates present higher-order theory. 
Simultaneously, a computer program based on 
Mindlin’s theory [20] has been executed to support 
the numerical evaluations of the present theory. 

For all the numertcal examples, a quarter plate is 
discretized with four of the nine-noded Lagrangian 
quadrilateral elements. The selective integration 
scheme based on Gauss-Legendre product rules. viz. 
3 x 3 and 2 x 2, has been employed for flexural and 
shear contributions respectively to compute the 
element stiffness matrix. The numerical study consists 
of the following examples. 

Example 1 

In this example, a square orthotropic plate (6’ = 0) 
of side a = 1 and subjected to a transverse um- 
form load p = 1 IS analysed with simply sup- 
ported (IV = 0, = u’ * = (7: = 0) boundary conditions. 
Srinivas and Rao [21] have solved this problem 
assuming the following elastic rigidities: 

G = 0.543103 
PII 

%’ = 0.530172 
Qll 

2 = 0.233 190 
II 

p = 0.010776 
II 

F = 0.098276 
II 

2 = 0.26293 1 
II 

2 = 0.159914 
II 

2 = 0.266810 
II 

and the same are used here; they have also presented 
solutions by Reissner’s and thin plate theories. 

Tables 1-3 compare the deflections, bending mo- 
ments and transverse shear respectively, at the critical 
locations given by Srinivas and Rao with those 
obtained using present higher-order and Mindlin 
finite element formulations. The agreement for 
deflections and moments between the elasticity solu- 
tion given by Srinivas and Rao and the present 
higher-order plate solution is much better compared 
to the Mindlin solution. For the above comparative 
study, the stress values given by Srinivas and Rao 
have been integrated through the thickness of the 
plate to calculate moment and shear stress resultants, 
assuming linear variation of direct stresses and para- 
bolic variation for shear stress through the thickness 
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of the plate. The agreement for transverse shear 
between two finite element solutions is better as 
compared with approximate calculations from shear 
stresses presented by Srinivas and Rao. In Tables 
1-3, some additional results with a/h = 5, 50 and 100 
are also presented. 

Example 2 

A square orthotropic plate (0 = 0) of side CI = 1 is 
analysed for two different loading conditions, viz.: (i) 
transverse uniform pressure p = 1; and (ii) central 
point load P = 1 with three different boundary con- 
ditions, namely, (a) simply supported (S), i.e. 
w = 0, = W* = ~9: = 0, (b) just supported (S*). 
i.e. w = w* = 0, and (c) clamped (C), i.e. w = 6, = 
f$= w* = 0: = 0,* =0 for various degrees of 
orthotropy (l&/E,). The material properties consid- 
ered for this example are listed in Figs 2-7. 

Iyengar and Pandya [22] have presented an elas- 
ticity solution for simply supported plate under uni- 
form pressure with different degree of orthotropy 
and a/h ratios. They have also presented results of 

5 

4 

LoodIng Unilorm~prcssurc 

al h =lOO 

- Htghcr order lhcory 

------ Mfndlln theory 

lsolrop0c propcrlics. 

E -0?092x 10: 3= O-30 A 

,/ ‘so’rop’c 

Orthotropic properl~cs. I- r 

Ambartsumyan’s and Reissner’s theory. Table 4 
compares the deflections at the center of the plate 
obtained by Iyengar and Pandya with those obtained 
using higher-order and Mindlin fimte element formu- 
lations. It can be seen that for E,/E, = 3 and 
a/h = 10, agreement between present higher-order 
element and elasticity solutions is better as compared 
with Mindlin finite element formulation. For 
E,/E,.= 3 with a/h = IO. 5, 2.5, both the finite 
element solutions agree with the elasticity solution. 
But, for E,/E,. = 40 with a/h = IO. 5. 2.5, agreement 
between Mindlin element and elasticity solution is 
better compared to higher order elements. Tables 5 
and 6 compare moments and transverse shear re- 
spectively at the critical locations. Tables 7 and 8 
present two finite element results for deflections and 
moments respectively, for a plate under uniform 
pressure with a/h = 100, E,/E, = I (isotropic), 4, 5, 6, 
10,20,40 and the three different boundary conditions 
stated above. Similar results for deflections and mo- 
ments are presented in Tables 9 and 10 respectively, 
for a plate with central point load. From Table 8. it 

k-=5 
EY 

h=6 
EY 

-2.40 
EY 

Fig. 2 Moment (M,) variation in a simply supported plate under a uniformly dlstrlbuted load 



F
ig

. 
3.

 
M

om
en

t 
(M

,,)
 

va
ri

at
io

n 
in

 a
 j

us
t 

su
pp

or
te

d 
pl

at
e 

un
de

r 
a 

un
if

or
m

ly
 

di
st

ri
bu

te
d 

lo
ad

. 

ls
o

lr
o

p
lc

 
L

o
&

n
g

 
U

n
if

o
rm

 
p

rc
~w

rc
 

O
lh

.lO
O

 
-H

ig
h

er
 

o
rd

er
 

lh
co

ry
 

--
--

M
in

d
lin

 
lh

co
ry

 

IS
O

tr
0p

ic
 

p
ro

p
rr

lic
s~

 

C
o

.1
09

2 
x 

1 8
 ;

3-
0.

3 

O
rt

h
o

lr
o

p
ic

 
p

ro
p

er
ti

es
 

F
&

=0
.4

X
18

,f
y4

Z
’O

W
07

 

tx
~G

~x
r’

0~
6r

lO
~G

~~
-O

~S
~,

O
~ 

E
 

. 
C

 

3 
X

Y
 - 

3x
, 

=3
yz

=o
-2

5 
1 

;;
..

 
G

 
I 

N
. 

. 
30

 
F

ib
er

 
. 

i 
D

ir
cc

ilo
n

 
. . 

0 
0.

25
 

0’
2 

=o
s 

-I
 

s*
(w

.o
 

) 

-4
0 

0.
1 

II
 

02
 

0.
3 

@
4 

0’
5 

- 
yr

o
 (

x/
a 

-0
.4

71
9 

) 
-5

- 

L
o

ad
in

g
 :

 Un
if

o
rm

 
P

re
ss

u
re

 
Q

/h
 =

 1
O

O
 

- 
H

ip
h

cr
 

O
rd

er
 

T
h

eo
ry

 
- 

--
 

M
id

li
n

 
T

h
eo

ry
 

Is
o

tr
o

p
ic

 
P

ro
p

er
ti

es
: 

E
=O

.IO
92

 x
10

6,
 

35
0.

30
 

O
rt

h
o

tm
p

ic
 

P
ro

p
er

ti
eS

 : 
E

x.
04

 
lo

’, 
E

y.
E

zr
O

.1
~1

0~
 

- 
yl

a 
(W

I0
 =

O
-4

71
6)

 

F
ig

. 
4.

 
M

om
en

t 
(M

Y
) 

va
ri

at
io

n 
in

 
a 

cl
am

pe
d 

pl
at

e 
un

de
r 

a 
un

if
or

m
ly

 
di

st
ri

bu
te

d 
lo

ad
. 



L
o

ad
in

g
. 

C
e~

fr
al

 
P

o
tr

rl
 

L
o

ad
 

01
 

h
=l

O
O

 

- 
H

ig
h

er
 

O
rd

er
 

T
h

eo
ry

 

--
- 

M
in

d
li

n
 

T
h

eo
ry

 

is
o

tr
o

p
ic

 
o

rc
lp

er
tl

es
 

E
-0

-r
09

2x
10

8 
3 

-0
.3

0 

O
rl

h
o

lr
o

p
lc

 
p

ro
p

er
ile

s 

8 
E

,*
O

4x
lO

, 
E

 Y
 -E

,-
0W

07
 

G
 X

Y
 -

6X
, 

- 
0.

6 
I( 

1O
f 

G
 

-0
 

5x
10

6 
Y

= 

3 
X

Y
 

-3
 

y
z
=
 

?
x
r
'
O
 

25
 

I 
00

 
C

l.2
5 

-I
 

0’
2’

0 
5 

_ 
y/

a(
 

x/
a 

-0
 

L
71

8)
 

Fi
g.

 
5 

M
om

en
t 

(M
,) 

va
ri

at
io

n 
In

 a
 

si
m

pl
y 

su
pp

or
te

d 
pl

at
e 

u
n

d
er

 a
 c

en
tr

al
 

po
m

t 
lo

ad
 

)-
 

j- i- 

-5
 

1 

Fi
g 

6 

L
o

ad
in

g
 

C
en

lr
al

 
P

o
in

l 
L

o
ad

 

o
lh

 
-1

00
 

- 
H

ig
h

er
 

o
rd

er
 

th
eo

ry
 

--
- 

M
ln

dl
in

 
lh

eo
ry

 

ls
o

lr
o

p
~c

 
p

ro
p

er
lr

es
 

E
-0

-1
09

2 
x 

lo
8 

, 
3-

0.
3 

O
rl

h
o

lr
o

p
lc

 
p

ro
p

er
ti

es
 

E
,-

@
4x

 
lO

a,
 

E
y=

 
E

,-
O

q
n

lO
’ 

=x
2=

 
G

n
y 

-0
6x

 
10

6,
 

G
yg

O
-5

x 

*x
v-

$x
2-

i&
-O

 
25

 

10
6 

- 
yf

a 
( 

xl
0 

: 
O

&
71

8)
 

M
om

en
t 

(M
, 

) 
va

rl
at

lo
n 

m
 

a 
lu

st
 

su
pp

or
te

d 
pl

at
e 

un
de

r 
a 

ce
nt

ra
l 

po
m

t 
ba

d 



Refined C? plate bending element 127 

botroplc 

Loading : Cantml Point Load 
a/h I 100 

- Hlghrr Order Theory 
--- Mindlin Theory 

Isotropic Properher 

E~O1092r10*, 9.030 

Orthotropic Properties : 

~~.0.~,108, EY.E~.o~~~xI’ 

GXY :~~~.0.6xlO~, Gyzr0~5x106 

3 
XY 

= gYz = 3,= .025 

-y/a(X/a ~04718) 

Fig. 7. Moment (M,,) variation in a clamped plate under a central point load. 

Table 4. Deflections in simply supported orthotropic (0 = 0’) plate under uniform loading 

[ 1 Ey * wmx 
ph 

at center 

g* c Present higher-order Mindlin Method of initial Ambartsumyan’s Reissner’s 
E, h element element functions [22] theory [22] theory [22] 

10.0 294.12 293.27 293.78 294.81 293.31 
3 5.0 21.27 21.20 21.36 21.56 21.18 

2.5 2.02 2.02 2.12 2.12 2.03 

10.0 158.14 158.19 158.22 158.52 157.82 
10 5.0 13.59 13.68 13.85 13.77 13.58 

2.5 1.65 1.69 1.86 1.75 1.69 

10.0 67.34 67.70 67.82 67.69 67.49 
40 5.0 8.68 8.90 9.20 8.90 8.81 

2.5 1.41 1.52 1.81 1.55 1.51 
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Table 5. Moments in simply supported orthotropic plate (0 = 0”) under uniform loading 

Max(M,, M, or M,)/pa* 
Present htgher-order element Mindlin element 

WE, alh MY Y -M, MY M, -M, 

10.0 0.07192 0.02647 0.03135 0.07157 0.02645 0.03137 
3 5.0 0.07063 0.02785 0.03076 0.06950 0.02778 0.03195 

2.5 0.06725 0.03233 0.02807 0.06280 0.03193 0.03345 

10.0 0.1114 0.01470* 0.01705 0 1114 0.01465’ 0.01707 
10 5.0 0.1054 0.01704* 0.01819 0.1051 0.01705* 0.01912 

2.5 0.09016 0 02589 0.01957 0.08698 0.02523 0.02435 

10.0 0.1341 0.008442* 0.007388 0.1344 0.008347* 0.00739 
40 5.0 0.1261 0.01232; 0.01013 0.1266 0.012222 0.01095 

2.5 0.1036 0.02182 0.01455 0.1001 0.02164 0.01937 

Max. BM values without * occur at center of the plate (nearest G.P) and those with * occur at (0.4718a, 
0.2218a). 

Max. TM occurs at corner of the plate (nearest G.P). 

Table 6. Transverse shear in simply supported orthotropic plate (0 = 0”) under uniform 
loading 

Max(Q, or Q,) at mid-edge/pa 
Present higher-order element Mindlin element 

WE, alh Q, QY Q, QY 
10.0 0.3524 0.2189 0.3522 0.2196 

3 5.0 0.3489 0.2221 0.3481 0.2238 
2.5 0.3376 0.2331 0.3329 0.2387 

10.0 0.4317 0.1377 0.4321 0.1380 
10 5.0 0.4188 0.1518 0.4200 0.1523 

2.5 0.3824 0.1890 0.3802 0.1925 

10.0 0.4748 0.07993 0.4759 0.07964 
40 5.0 0.4594 0.1064 0.4622 0.1058 

2.5 0.4085 0.1620 0.4052 0.1673 

Table 7. Deflections in orthotropic plate (6 = 0”) under uniform loading (u/h = 100) 
\ 

Theory 

Higher-order 

Mindlin 

S 
S* 
C 

s 
S* 
c 

W,, D 
-x 102 

pa4 

1 (Isotropic) 

0.407 
0.418 
0.123 

0.404 
0.418 
0.124 

(w,,E,h3/pa4)x IO2 

4 5 6 10 20 40 

2.436 2.162 1.942 1.375 0.785 0.414 
2.492 2.205 1.977 1.391 0.790 0.414 
0.654 0.558 0.485 0.316 0.165 0.082 

2.422 2.151 I.933 1.372 0.787 0.418 
2.494 2.207 1.979 1.394 0.794 0.418 
0.640 0.546 0.475 0.310 0.163 0.082 
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Table 8. Moments in orthotropic plate (0 = 0’) under uniform loading (u/h = 100) 

EX 

E, 
(Max IU, or M&Ju*) x 10 

Theory 1 (Isotropic) 4 5 6 10 20 40 

Mx 
0.482 

(W&O) 
(499) 

MY 
0.482 

(439) 

(WSl 0) 

Higher-order 

c 

Mx 
0.511 

(4*9) 

MY 
0.511 

(499) 

MX 
0.227 
(4,9) 

MY 
0.227 

(499) 
(w =e,=e,=o) 0.399 

-“x (3,3) 

-MY ;;:;” 

MX 
0.473 

(499) 

(W =:,=o, 
( WS=l 0) 

Mindlin 

(w =e,c=e”=o) 

MY g; 

MI 
0.506 

(499) 

M, 
0.506 

(499) 

Mx 
0.219 

(479) 

M, 
0.219 

(439) 

0.829 0.910 
(499) (499) 
0.222 0.193 

(499) (499) 

0.877 0.960 
(4,9) (499) 
0.233 0.202 

(499) (499) 

0.368 0.391 
(439) (499) 
0.085 0.073 

(439) (2,9) 
0.598 0.627 

(393) (3,3) 
0.194 0.170 

(2,7) (2,7) 

0.818 0.901 
(499) (4?9) 
0.221 0.195 

(4JJ) (498) 
0.219 0.191 
(499) (499) 
0.874 0.958 

(439) (499) 
0.232 0.201 

(499) (499) 

0.344 0.366 
(499) (439) 
0.081 0.082 
(4,9) (2,9) 
0.089 0.084 

(296) (296) 
0.575 0.603 

(3,3) (393) 
0.189 0.166 

0.975 
(4,9) 
0.177 

(2,9) 

1.026 
(439) 
0.185 

(2,9) 

0.407 
(499) 
0.069 

(2,9) 
0.648 

(3,3) 
0.153 

(2,7) 

1.134 
(4,9) 
0.138 

(2,9) 

1.188 
(479) 
0.143 

(2,9) 

t;; 

(2,9) 
0.689 

(373) 
0.111 

(2,7) 

0.966 1.131 
(4,9) (499) 
0.175 0.134 

(296) (296) 
0.161 0.125 
(2,9) (2,9) 
1.026 1.194 

(4,9) (499) 
0.181 0.138 

(2,9) (2,9) 

0.382 0.418 
(499) (439) 

0.079 
(2,9) 

0.069 
(2,9) 

0.624 0.666 
(3,3) (373) 
0.150 0.110 

1.283 1.344 
(4-9) (499) 
0.096 0.066 

(2,9) (2-9) 

1.337 1.399 
(479) (499) 
0.098 0.067 

(2,9) (2,9) 

0.456 0.455 
(499) (498) 
0.050 0.039 

(2,9) (2,9) 
0.708 0.701 

(393) (3,2) 
0.071 0.045 

(2,7) (2,7) 

1.290 1.363 
(439) (499) 

;;z 
(296) 
0.059 0.058 

(2,9) (2,9) 
1.354 I .428 

(4.9) (439) 
0.092 0.061 

(2,9) (2-9) 

0.443 0.452 
(498) (498) 

0.055 0.041 
(2,9) (2,9) 

0.690 0.700 
(393) (3,2) 
0.070 0.044 

(2,7) (2,7) (2,7) (2,7) 

Note: Positions are specified by element No. and G.P. No. respectively within the bracket. 

(2,7) (2,7) 

Table 9. Deflections in orthotropic plate (0 =O’) with a central point load (a/h = 100) 

wmnxD X 102 
E, 7 

E, 
(w,&h’/pd) x 102 

Theory 1 (Isotropic) 4 5 6 10 20 40 

s 1.160 7.087 6.351 5.765 4.260 2.683 1.650 
Higher-order s* 1.187 7.228 6.465 5.859 4.312 2.707 1.664 

c 0.550 3.093 2.706 2.414 1.724 1.071 0.663 

S 1.143 6.981 6.257 5.677 4.190 2.631 1.612 
Mindlin S’ 1.173 7.131 6.372 5.770 4.235 2.645 I.618 

c 0.541 2.993 2.620 2.339 1.677 1.050 0.654 
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Table 10. Moments in orthotropic plate (0 = 0”) with a central point load (a/h = 100) 

(Max M, or Max M,/p) x 10 

Theory 1 (Isotropic) 4 5 6 10 20 40 

s MX 2.441 3.694 4.009 4.269 4.998 5.915 6.911 
M” 2.441 1.404 1.301 1.219 1.009 0.778 0.602 

s* M, 2.483 3.739 4.048 4.302 5.004 5.926 6.856 
M, 2.483 I 421 1.320 I.231 1.002 0.789 0.612 

Higher-order M, 1.886 2.212 2.90 I 3.049 3.464 4.037 4.634 
c MY 1.886 1.036 0.948 0.882 0.717 0.539 0.399 

-M, 1.106 1.982 2.140 2.268 2.623 3.129 3.709 (4,7) 
-M, 1.106 0.376 0.378 0.389 0.404 0.391 0.351 

(4.7) (4.7) (4.7) (4.7) 

S MX 2.384 3.582 3.890 4.145 4.866 5.829 6.811 
M, 2.384 1.370 I .270 1.191 0.986 0.761 0.592 

S* M, 2.467 3.692 3.999 4.252 4.956 5.815 6.791 
M, 2.467 1.411 1 305 I.222 1.010 0.778 0.605 

Mindlin M, 1.831 2.575 2.749 2.894 3 313 3.922 4.569 
c M, 1.831 1.012 0.932 0.870 0.716 0.546 0.406 

-M, 0.996 1.852 2.000 2.121 2.464 2.983 3.608 
-M, 0.996 0.370 0.380 0.397 0.421 0.408 0.359 

(4.7) (4.7) (4,7) (4,7) (4.7) 

Note: Unless otherwise specified by Ele. No. and G.P. No. respectively within the bracket, all max. positive BMs occur 
at centre of plate (nearest G.P.) and max. negative BMs occur at mid-edge (nearest G P.). 

can he seen that for a plate under uniform pressure 
positive moment in the fibre direction (M,) is maxi- 
mum at the center of the plate for all three boundary 
conditions considered except for clamped plate with 
E,/E, = 40. But, positive maximum moment in cross- 
fibre direction (MY) shifts its location beyond a 
certain degree of orthotropy for different boundary 
conditions. From Table 10, it can be seen that this 
kind of differential trend is absent for a plate carrying 
central point load. For this loading case, locations for 
positive maximum moments in both the directions 
and for all the three boundary conditions remain at 
the center of the plate. The peculiar nature of the 
cross-fibre direction moment curves along the plate 
centre line (nearest Gauss point) in the same direction 
with different degree of orthotropy have been 
presented graphically in Figs 2-7. 

Example 3 

A square orthotropic plate (0 # 0) of side a = 1 
with a/h = 10 is analysed for uniform pressure load 
p = 1 and simply supported boundary conditions 
(w = 8, = IV* = 0: = 0) for various values of fibre 
orientation (0). Hussainy and Srinivas [23] have 
solved this problem assuming the following elastic 
rigidities: 

Orientation 

The elastic rigidities considered in this example are 
the same as above and the additional properties 
required in the present theory due to consideration of 
oz are calculated by assumrng E, = E, and vn = 
vz3 = v,~. They have also presented thin plate results. 

Table 11 compares the deflections and critical 
moments obtained by Hussainy and Srinivas with 
those obtained using higher-order and Mindlin ele- 
ments. The agreement for both deflections as well as 
moments between the elasticity solution and the 
present higher-order element is better compared to 
Mindlin elements. 

This example also includes a study of shifts for 
maximum stress resultant locations with the vari- 
ations in fibre orientation. This is presented sche- 
matically in Figs 8-10 for (M’, QX, QY, M,,), M, and 
My respectively. The material properties considered 
here are: 

E, = 0.4215 x 10”. 

E2 = E, = 0.2169 x 10’. 

G,, = G,, = 0.1001 x 10’. 

G,, = 0.6 x lob, 

v,> = v13 = v,, = 0.2413. 

Property 30 45’ 60‘ 

08, 24870370.0 12389410.0 4832576.0 _,, 

::: 4832576.0 7910705.0 12389410.0 10372566.0 24870362.0 7910701.7 
G12 8394336.0 10856304.0 8394334.3 
G,, 696246.0 800305.0 904365.3 
G,, 904363.0 800305.0 696246.1 

CONCLUSIONS 

A refined higher-order theory has been applied to 

the problem of flexure of generally orthotropic plates. 

The performance of the nine-noded Lagrangian iso- 

parametric element has heen studied in conjunction 
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with the present theory. Examples have been 
presented giving comparisons with thin plate, elas- 
ticity and Mindlin/Reissner solutions. For the exam- 19. 
pies considered, thin plate theory which neglects 
transverse shear terms appears to be inadequate. In 20, 
general, the agreement between results of the elas- 
ticity solution and the present higher-order theory 
was better as compared to Mindlin theory. Qual- 21, 
itatively, this could be due to the better represent- 
ation of the cross-sectional deformation and the 
stress-strain law. Errors in the present results can still 22. 

be reduced by mesh refinement. The results presented 
for the first time in the form of Figs 2-10 should be 
of help to all research workers/practising engineers in 

23, 

this field. 
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APPENDIX 1: ELEMENTS OF C MATRIX 

c 

12 
= Ed”12 + “13vu) 

A = c2, 

Cl3 = 
E3@,3 + 52v23) 

A = c3, 

c 
22 

= E2(’ - ~31~13) 

A 

c,= 
E3(v23 + “,3”21) = c 

A 32 

c 
33 

= .‘53(’ - “12~2,) 

A 

CM = G,2 

C,, = G23 

G = G,,, 

where 

A = t’ - y23v32 - “12”21 - “13”3I 

- “12”23”3I - y13v12v21) 

E3 
“32 = E, “23 

E3 
“31 = E, “I3 

APPENDIX 2: ELEMENTS OF Q MATRIX 

Q,, = C,,c4 + 2(C,2 + 2C,)c2s2 + C22s4 

Q,2 = (C,, + C,, - 4C,)c2s’ 

+ C,,(s4 + c’) = Q2, 

Q,, = c,3C2 + c23s2 = Q3, 

Q,, = (C,, - C,, - 2C,)c3s 

+ (C,, - C,, + 2C,)s3c = Q4, 
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Q,, = QM =O=Q,,=Q,, Qa=Qw=O=Q,,=Qa 

Qz = C,,s’+ 2(& + 2C,)s2c2 + C,,C’ Q, = (C,, + C,, - 2C,, - 2C,)s2c2 

Q2, = C,,s2 + C2,c2 = Qx + C,(c’ + s’) 

Q2, = (C,, - C,, - 2C44b’c Q.,=Qa=O=Qw=Qu 

+ (C,, - C,, + 2C44W3 = Q.2 Q,, = C5,c2 + C&s2 

Qz5 = Qz = 0 = Qn = Qa Qs = CC55 - C&s = Q45 

Q,, = C,, Qti = C55s2 + C,c’. 

Q, = (C,, - G,)sc = Q.3 

c A s. 2812-B 


