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ABSTRACT 

A higher-order theory which satisfies zero transverse shear stress conditions 
on the bounding planes of a generally laminated fibre-reinforced composite 
plate subjected to transverse loads is developed. The displacement model 
accounts for non-linear distribution of inplane displacement components 
through the plate thickness and the theory requires no shear correction 
coefficients. A C O continuous displacement finite element formulation is 
presented and the coupled membrane-flexure behaviour of  laminated plates 
is investigated. The nodal unknowns are the three displacements, two 
rotations and two higher-order functions as the generalized degrees of  
freedom. The simple isoparametric formulation developed here is capable of  
evaluating transverse shears and transverse normal stress accurately by using 
the equilibrium equations. The accuracy of the nine-noded Lagrangian 
quadrilateral element is then established by comparing the present results 
with the closed-form, three-dimensional elasticity and other finite element 
available solutions. 

1 I N T R O D U C T I O N  

It has long been recognized that classical plate theory must be modified to 
include certain higher-order effects like warping of the cross-section. The 
first generalization of the classical theory was given by Reissner 1 and 
Mindlin. 2 Since then, there have been many further generalizations. 
Perhaps  the first higher-order theory, based upon the principle of  stationary 
potential  energy,  resulting in eleven second-order partial differential 
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equations to determine the eleven functions in the assumed displacement 
model, was given by Lo et al. 3"4 A sub-set of the displacement model used in 
Ref. 3, which neglects the strain energy due to transverse normal stress, has 
been adopted by Levinson, 5 Murthy 6 and Reddy. 7 Later, Reddy and co- 
workers presented the displacement 8 and the mixed 9 finite element models 
of the theory developed earlier. 7 In these, 7-9 Reddy has modified the dis- 
placement model of Lo et al., by neglecting the transverse normal stress 
effect and satisfyilag the zero transverse shear stress conditions on the 
bounding planes of the plate, thereby expressing the three displacements of 
a point in plate space in terms of only five physical midplane displacement 
quantities. With this, the displacement model adopted by Reddy gives rise 
to second-order derivatives of transverse displacement in the energy 
expression, and hence displacement based finite element formulation 
requires C ~ continuous shape functions which are computationally 
inefficient and are not amenable to the popular and widely used isopara- 
metric formulation in present day finite element technology. 

The aim of the present work is to develop a simple isoparametric finite 
element formulation. The formulation presented here differs from that of 
Reddy and co-workers ~'~ in three ways: 

(i) Only a part of the conditions for vanishing of the transverse shear 
stresses on the top and bottom bounding planes of the plate as given 
by eqn (3) is introduced in the assumed displacement model given by 
eqn (1). 

(ii) The remaining conditions given by eqn (4) are introduced later in the 
shear rigidity matrix as given by eqn (18). 

(iii) The general isoparametric displacement finite element formulation 
is developed. 

The validity of the formulation is established by comparing the present 
numerical results with other finite element, 9 closed-form 1° and three- 
dimensional elasticity" solutions. 

2 THEORY 

The development of the present higher-order shear deformation theory 
begins with the assumption of the displacement field in the following form 
(Fig. 1) 

u(x ,y ,  z) = Uo(X,y) + zOx(x,y) + Z2Uo*(X,y) + z30*x (x,y) 

v(x ,y ,  z) = Vo(X,y) + zOy(x,y) +zZv*o(X,y) + z30~(x,y) 

w(x,  y , z )  = Wo(X, y) (1) 
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Fig. 1. Geometry of a four-layer symmetric laminate. 

where  Uo, Vo and Wo denote the displacements of a point (x,y)  on the 
midplane and 0~ and Oy are the rotations of normals to midplane about the y 
and x axes respectively. The parameters Uo*, Vo*, 0x* and 0~' are the corres- 
ponding higher-order terms in the Taylor's series expansion and are also 
defined at the midplane. 12,13 The condition that the transverse shear stresses 
vanish on the plate's top and bottom faces is equivalent to the requirement  
that the corresponding strains be zero on these surfaces. The transverse 
shear  strains are given by 

Ov Ow Ow o 
= q'- = Oy + 2zv* 2 * - -  + 3 z  Oy 4 - - -  

Yyz Oz Oy Oy 

Ou Ow Ow o 
Yxz = - -  + = O~ + 2ZU*o + 3z 20*x + - -  

Oz Ox Ox 
(2) 

Equating •yz(X, y ,  +_h/2) and yx~(X, y ,  +_h/2) to zero, we obtain 

* * o ( 3 )  Y o = U o = 

and 4(+0wo) 4(0wo) 
0~ - 3h 2 0 y  Oy ; 0 " -  3h 2 0 x + ~  (4) 

In t roduct ion of condition (3) in eqn (1) yields a compact displacement form: 

u = Uo+ZOx+z30 * 

v = V o + Z O y + z 3 0 t  

w = Wo ( 5 )  
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Murthy 6 and more recently Reddy and co-workers 7-~ have used conditions 
(4) to eliminate 0x* and 0* from eqn (5) and have obtained a modified 
displacement model 

z 

w = Wo (6) 

In the present  formulation, we proceed with the displacement field given by 
eqn (5) and conditions (4) are introduced later in the shear rigidity matrix. 

The strains associated with the displacements in eqn (5) are: 

Ex = Exo + zkx+  zak * 

Ey = ~'yo -~- z k y  + Z 3 k* 

E z ~ 0 

. = + Z  k x y  "Yxv Exy ° + Z k x y  3 , 

"Yyz ~- ,by ~- Z 2 ,b3, *~ 

vx~ = 6x + z: ,b *~ (7) 

w h e r e  

Ex ° - -  
OU o c)V o Ott o OV o 

OX ' ~-yo Oy ' e~yo Oy + Ox 

OOx OOy OOx OOy 
k x -  , k y -  , k x ~ , - - - 4  

Ox Oy Oy c?x 

Ox '  " Oy '  k ' y -  O---y40x 

~y = Oy + OWo 
ay ' `b~ = Ox 

,by = 3Or*, ,b~* = 3¢* 

OW o 
+ - -  

Ox 

(8) 
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The constitutive equations for the L 'h layer can be written as 

/I)L Icll el2 0 
0"2 C12 C22 0 

7"12 0 0 C33 

EIIL 
E2 

"Y12 

T23 0 Y23 

"?13 C55 ")/13 (9) 

where  (O"1, 0"2, T12, '/'23, 7"13) are the stress and (el, e2, y12, y23, y13) are the linear 
strain components  referred to as the lamina co-ordinates (1, 2, 3), as shown 
in Fig. 1, and Cijs are the plane stress reduced elastic constants of  the L 'h 
lamina. The following relations hold between these and the engineering 
elastic constants: 

El 1)12 E 2 E 2 
C I  1 - ~. C12 - , C22 - 

1 - -  /212 1-'21 1 - -  V12/"21 1 - -  /)12/"21 

C33 = G12, C44 = G23, (755 = GI3 (lo) 
The stress-strain relations for the L 'h lamina in the laminate co-ordinates 
(x, y, z) are written as 

/0-x / L Qll 
0-y = 012 

7xy 013 { y}L I0. 
7"xz Q45 

Q12 QI3 L, (.} 
Q22 Q23 / Ey 

Q23 Q33 ] yxr 

Q45] L (YYZ} L 
Q55 J yxz 

(11) 

in which 

o-=  (0-x,%,rxy,'ry~,rxz)' 
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and 

IE ~- ( e x , if.y, ")/ xy , ")/ y z ' "Y xz ) t (12) 

are the stress and linear strain vectors with respect to the laminate axes and 
Qijs are the plane stress reduced elastic constants in the plate (laminate) axes 
of the L th lamina. The transformation of the stresses/strains between the 
lamina and laminate co-ordinate systems follows the usual transformation 
rule. 14 

The total potential energy rr of the plate is given by 

L 77" = ~ E t ( r d V  - d t p d A  (13) 

in which A is the mid-surface area of the plate, V is the plate volume, P is the 
equivalent load vector corresponding to the seven degrees of freedom and d 
is defined as 

d = (Uo, Vo,wo,Ox,O.O*,O*~) ' (14) 

The expressions for the strain components given by eqn (7) are substituted 
in eqn (13). The functional given by eqn (13) is then minimized while 
carrying out explicit integration through the plate thickness. This leads to 
the following thirteen stress resultants for the n-layered laminate. 

{Nx} 
N ,  = 

Nxy 

My 

Mxy 

Oy 

L÷ I O-y d z  

Txy 

! M~*i'~ 

' My~-= 

Mx*y:) 

hL 

o',, [ z i? ]dz  
L = 1 L+I  Txy 

Q*xt: 
Q~*J 

f Txz t [1 " z2]dz 
L = I 1.+1 

Tyz ) 
05) 
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After  integration, these relations are written in a matrix form which defines 
the stress resultant/strain relations of the laminate and is given by 

N A ', B ', 0 k -  

M B t Da 0 

I 
I 

0 0 ~ Ds 
Q* ' (16) 

in w h i c h  

N :{Nx ,Ny ,Nxy}  t 

M = ( m x ,  my, mxy} t 

M* - { M ; ,  * , t M;, Mxy} 

O = {Qx, Qy}t 

Q* ={Ox,ay} t  

Eo = { •xo, Eyo, Exyo } t 

k = {k~,ky,k~y}t 

k* = {k*,ky,kxy} t 

,t, = {+x,6y} '  
~* * * t = {,t,x ,6y } 

The superscript t denotes the transpose of a vector/matrix and 

(17) 

A = 

QIIH1 QIEH1 QI3HI- 

Q22 HI Qz3 Ht 
L=I 

L_ Symmetric Q33 H1 

t th Layer 

B = 

-Qn H2 

Q12 Hz 
L=I 

-Qa3H2 

QI2Hz Q13Hz QllH4 QI2H4 

Q22Hz Q23H2 QIEH4 QE2H4 

Q23/-/2 Q33 H2 QI3 H4 Q23 H4 

Q13 H4 7 Ltn Layer 

Q23 H4 

Q33 H4 

L=I  

0 . / 4 3  

Symmetric 

QlzH3 Q13H3 QllH5 QI2H5 Qt3H5 

Q22H3 Qz3H3 Q12H5 QzzH5 Q23Hs 

Q33/-/3 Q t3/-/5 Q23 H5 Q33 H5 

QIIH7 Q,2H7 QI3H7 

QzzH7 Qz3H7 

O~3H7 

',L th Layer 
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U S  z 

Q55 H Q45 H 

Q44H 

L =  1 

Symmetric 

0 0 - 

0 0 

Q55 H* Q45 H* 

Q44H* 

L th Layer 

(18) 

where 

Hj = (hL-- hL+l), H2 = ~(hL-hL+l )  

1 3 
. ~  = 5 ( h c  - h[+ ~), 

1 5 
H~ = g(hL - h i + , ) ,  

1 4 
H4 = ~(hL -- h4L+ 1) 

I h7  H7 = ~ ( L - - h ~ . . , )  

(19) 

( ) ( h2) 
4 H* = H5 -- H3 × 5 -  H = H 1 - H 3 × ~-~ , 

The shear rigidity matrix Ds in eqn (18) is evolved by incorporating an 
alternate form of the conditions (4), viz. 

h 2 

4'v +5-4,.,,* = o 

h 2 
+x+G--4 4'~* = o 

(20) 

and the resulting theory becomes consistent in the sense that it satisfies 
zero transverse shear stress conditions on the bounding planes of the plate. 
If the conditions given by eqn (20) are not incorporated, then the resulting 
non-consistent theory does not satisfy the zero transverse shear stress 
conditions on the bounding planes of  the plate. In this case, the shear rigidity 
matrix D* is defined as S 

L =  1 

Q55H1 QasHI Q55H3 Q45H3 ~ L th layer 

Q44 H1 Q45 H3 Q44 H3 

Q55 H5 Q45 H5 

Symmetric Q44 H5 (2 1) 
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The transverse shear stresses ~ and ~yz cannot accurately be given by eqn 
(11) as the continuity condition at the interfaces of any two layers is not 
satisfied for laminated plates. For  this reason, the interlaminar shear and 
normal  stresses L L (~'xz, "1"yz, o-L) between layer (L) and (L + 1) at z = hL+l are 
ob ta ined  by integrating the three equilibrium equations of  elasticity for each 
layer over  the lamina thickness and summing over layers L through n as 
follows: 

,rxLz = - -  
z=hL+ 1 L=I L+I \ OX Oy 

ILI ~ fh hL (Oo'L~-OTLy)H z Z = -- 
z = h L +  1 L = I  L + I  \ OY Ox 

Or L = - -  

z = h L + l  L = 1 L + ~  3x Oy 

3 FINITE E L E M E N T  F O R M U L A T I O N  

We follow the standard finite element technique in which the total solution 
domain  is discretized into N E  sub-domains (elements) such that 

NE 
~-(d) = ~ 7re(d) (23) 

e = l  

where  7r and rr e are the total potential of  the system and the element 
respectively. The element potential can be expressed in terms of  internal 
strain energy U e and the external work done W e for an element e as, 

~-e(d) = U ~ - W ~ (24) 

in which d is the vector of  unknown displacement variables in the problem 
and is defined by eqn (14). If the same interpolation function is used to 
define all the components  of  the generalized displacement vector d, we can 
write 

NN 
d = F N,d, (25) 

i=1 

where Ni is the interpolating (shape) function associated with node i, di is the 
value of  d corresponding to node i and N N  is the number  of  nodes in the 
element .  
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The extensional strains ~ ,  the bending curvatures (k ,k*)  and the 
transverse shear strains (~b,~b*) can be written in terms of  the nodal 
displacements  d by referring to eqn (8). The result can be written in matrix 
form as follows: 

~o = LEd 

(26) 

The  subscripts E, B and S refer to extension, bending and shear respectively 
and the vector  of  element nodal displacements is given by eqn (14). The 
matrices LE, LB and Ls attain the following form 

t E 

a 0 
ax 

0 
0 - -  

ay 

o a 

ay ax 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

L B = 

0 0 - -  0 0 0 
8x 

a 
0 0 0 - -  0 0 

ay 

a a 
0 0 0 0 

ay 8x  

0 0 0 0 - -  0 
8x 

0 0 0 t) 0 a 
ay 

a a 
0 0 0 0 

ay ax - 
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t S = 

0 
0 0 ~ 1 0 0 0 

Ox 

(9 
0 0 - -  0 1 0 0 

Oy 

0 0 0 0 0 3 0 

0 0 0 0 0 0 3 (27) 

With the generalized displacement vector d known at all points within the 
e lement ,  the generalized strain vectors at any point are determined with the 
aid of  eqns (27) and (25), as follows: 

NN NN 

Eo = LE d = LE E Nidi = ~ B,~ di = BE a 
i = l  i = l  

= L n d  = LB N i d  i : B iad  i = B a a  
k *  i = l  i = l  

= Ls d = Ls Ni di = B,s di = Bs a 
* i = 1  i = 1  

(28) 

where  

NN 

BiE = L E N i  , BE = ~ B,~ 
i = 1  

BiB = LBNi 
NN 

, BB = Y~ B,B 
i = 1  

NN 

B~s = L s N i  , Bs = ~ B,s 
i = 1  

and 

t t a = {dl,d2 . . . . .  d~vN} t (29) 

For  the elastostatic analysis, the internal strain energy of an e lement  due 
to extension,  bending and shear can be determined by integrating the 
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products  of inplane stress resultants and extensional strains, moment  stress 
resultants and bending curvatures and shear stress resultants and shear 
strains over the area of an element. 

1 I lk/, i.lt U~ = 2  fa Ct°N+ k* {M,M*}+ 6* [Q,Q*} dA (30) 

Implement ing  the stress resultants given by eqn (16) in the strain energy 
expression (30) gives 

t U e ~A¢o+ 
k* 

, tkl Bt¢o + etoB 
k* 

k 
+ 

k* 

t 

DB 
k*j 

+ • Ds * dA (31 ) 

Substituting eqn (28) for extension, bending and shear strains into eqn (31) 
leads to the internal strain energy expression in terms of the nodal displace- 
ments  as follows: 

U ~ = -~ { a tB~ABEa+atB tBBtB~a+ 

a t B~ BBa a + a t B~ DB Br~ a + 

atBtsDsBsa } dA (32) 

Expression (32) can be written in concise form as 

ue 1 t = ~[a Kea] (33) 

where  K ° is the stiffness matrix for an element e and includes extension, 
bending and the transverse shear effects and is given by 

g e  = J'A { B~ABE + B~BtBE + B~BBs + B~DB BB + B~Dsns} dA (34) 

The  computat ion of the element stiffness matrix from eqn (34) is 
economized  by explicit multiplication of the Bi, D and Bj matrices instead of 
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carrying out the full matrix multiplication of the triple product. In addition, 
due to the symmetry of the stiffness matrix, only the blocks K o lying on one 
side of the main diagonal are formed. The integral is evaluated using the 
Gauss quadrature 

K~ = B~DBjIJIde d ,  
l 1 

g~ = ~ ~ WaWblJIBIDBj (35) 
a=l b=l 

where Wa and Wb are weighting coefficients, g is the number of numerical 
quadrature points in each of the two directions (x and y) and I JI is the 
determinant of the standard Jacobian matrix. The subscripts i and j vary 
from one to a number of nodes per element. The matrices Bi and D are 
defined as 

BiE ] 

B i = BiB , D = 

L-i ij I 
A B 0 

B t DB 0 

0 0 Ds 

(36) 

and B/is obtained by replacing i by j. 
For the problem of bending of laminated anisotropic plates, the applied 

external ~forces F consist of concentrated nodal loads F¢, each corresponding 
to a nodal degree of freedom, a distributed load q acting over the element in 
the z direction and a sinusoidally distributed load Pmn acting over the 
element in the z direction. The total external work done by these forces may 
be expressed as follows: 

We = -21 atF¢ + -21 at fA {Ntq+Ntp.,n}dA (37) 

The integral of eqn (37) is evaluated numerically using the Gauss 
quadrature. The result is 

P ~ ~ WaWblJlNi{O010000} t {q+Pm, sin mrcx " nrty } = •sm T (38) 
a=l b=l a 

where a and b are the plate dimensions, x and y are the Gauss point 
co-ordinates and m and n are the usual harmonic numbers. 
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4 N U M E R I C A L  EXAMPLES AND DISCUSSION 

Performance of the present finite element formulation is demonstrated by 
comparing results for various laminate geometries with those obtained using 
elasticity, closed-form and other finite element formulations. The selective 
integration scheme, namely 3 x 3 for membrane and flexure and 2 x 2 for 
shear contributions, has been employed. In all the examples considered, the 
individual laminae are taken to be of equal thickness and the following set of 
material properties is used for each lamina: 

El GI2 G 2 3  
- 25, = 0"5, = 0"2, ul: = 0.25 

E2 E:  E2 (39) 

It is assumed that Gl3 = G , 2  and v21 = (E2 /EOvl2 .  The simply supported 
square plate is discretized with four nine-noded quadrilateral elements in a 
quarter  plate except for the convergence study. The values of stress 
resultants and stresses are at the nearest Gauss points. The deflection, 
stresses and stress resultants are presented here in the non-dimensional form 
using the following multipliers. 

1 0 0 h  3 E 2  1 1 
m l  - m 2 - -  _ m 3 - -  qa  4 ' qa  2 ' qa  

h 2 h lOOh 2 
m 4  = - -  m 5  ---- - - ,  m 6  - ( 4 0 )  q a  2 ' qa  qa  2 

The superscripts e and c used in the various tables that follow, represent 
values of stresses obtained from equilibrium and constitutive relations, 
respectively. 

The following three unsymmetrically laminated simply supported square 
plate problems are considered. 

4.1 Example 1 

This example is considered to bring out the effect of mesh refinement on the 
deflection and stress predictions with the present element. The numerical 
results are compared with the exact solutions. The following three cases with 
different loading conditions and lamination schemes are considered for this 
purpose. 

(i) A two layer unsymmetric cross-ply (00/90 °) square plate subjected to 
sinusoidal transverse load. 



A higher-order theory for unsymmetrically laminated composite plates 229 

(ii) A two layer unsymmetric cross-ply (00/90 °) square plate subjected to 
uniform transverse load. 

(iii) An eight layer unsymmetric angle-ply ( 4 5 ° / - 4 5 ° / . . .  8 layers) 
square plate subjected to sinusoidal transverse load. 

The numerical results for the above three cases showing convergence of 
deflection and stresses are given in Tables 1-3 respectively. The converg- 
ence of maximum transverse shear stress with the number of elements is 
shown graphically for the first case in Fig. 2. The following points are noted 
from this study: 

mMaximum transverse deflection and inplane stresses predicted with 
2 × 2 mesh are reasonably accurate and little further improvement is 
observed with mesh refinement. 

- - A n  accurate estimation of transverse shear stresses through equili- 
brium equations needs a more refined mesh, as is evident from Fig. 2. 

4.2 Example 2 

This example is selected to establish the accuracy of stress predictions 
through the thickness in the present development. The numerical results 
are compared with three-dimensional elasticity solutions. A two-layer 
unsymmetric cross-ply (00/90 °) square plate under sinusoidal transverse 
load is considered for this purpose. The numerical results for a square plate 
with side-to-thickness ratios of 4, 10, 50 and 100 are given respectively in 
Tables 4-7. The maximum stress resultant and deflection values are given in 
Table 8. The variation of maximum transverse deflection with different 
side-to-thickness ratios is shown in Fig. 3. The normal stress (o'x) and the 
transverse shear stress variation (rx~) through the plate thickness is shown 
graphically in Figs 4 and 5 respectively. 

The following important observations are made from the numerical 
results presented in Tables 4--8 and Figs 3-5. 

m F o r  a thick plate (a/h = 4), errors in the inplane normal stress (o'x) 
computations are higher in comparison with the inplane shear (rxy) and 
the transverse shear stress 0-x~). 

mAl l  stress components evaluated are reasonably accurate for 
moderately thick-to-thin plates (a/h >- 10). 

- -The  results for stress resultants presented in Table 8 should serve as a 
bench-mark for future comparative studies. They will also be useful to 
designers of composite laminates. 

- - T h e  curve in Fig. 3 shows the inadequacy of the classical lamination 
theory to predict the displacements accurately. 
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Fig. 2. Convergence of transverse shear stress (~'xz) with the mesh refinement. 
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Fig. 3. Effect of plate side-to-thickness ratio (a/h) on the centre deflection (w × ml) of a 
simply supported (0°/90 °) cross-ply square plate under sinusoidal load. 
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Fig. 4. Variation of the normal stress (Crx × m4) through the laminate thickness for a simply 
supported cross-ply (00/90 °) square plate under sinusoidal transverse load (a/h = 10). 

- - I t  is clear from Fig. 5 that the transverse shear stress variation through 
the thickness of plate is correctly given by equilibrium equations. As 
anticipated, the maximum value occurs at the level of neutral surface 
and the stress is continuous at the interface. But this is not true when 
transverse shear stress is computed using stress-strain constitutive 
relations. 

4.3 Example 3 

This example is an extension of Example 2 for an 8 layer unsymmetric 
angle-ply ( 4 5 ° / - 4 5 ° / . . .  8 layers) square plate under sinusoidal transverse 
load. The numerical results for stresses are presented in Tables 9 and 10 and 
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Fig. 5. Variation of the transverse shear stress (rxz × ms) through the laminate thickness for a 
simplysupportedcross-ply(O°/90°)squareplateundersinusoidaltransverseload(a/h = 10). 

maximum deflection and stress resultant values are given in Table 11. The 
variation of  maximum transverse deflection with different side-to-thickness 
ratios is shown in Fig. 6. The normal stress (o-x) and the transverse shear 
stress variation (rxz) through the plate thickness is shown graphically in Figs 7 
and 8 respectively. These results should serve as a bench-mark for future 
investigations. 

5 C O N C L U S I O N S  

A simple C o isoparametric formulation of  a higher-order theory which 
satisfies the zero transverse shear stress conditions on the top and bo t tom 
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Fig. 8. Variation of the transverse shear stress (zxz x ms) through the laminate thickness for a 
simply supported angle-ply (45°/-45°/ . . .  8 layers) square plate under sinusoidal 

transverse load (a/h = 10). 

surfaces of a plate is presented. Such an approach is commercially attractive 
due to ease in software development and implementation in an existing 
general purpose programme which is usually based on isoparametric 
formulation. The nine-noded Lagrangian element of the isoparametric 
quadrilateral family developed here is a fairly simple element. The results 
obtained here have proved the simplicity and reliability of this element in a 
general stress analysis. The displacement model used here is the simplest in 
the family of higher-order models and the theory does not require the usual 
shear correction coefficient(s) generally associated with first-order shear 
deformable theories of Reissner and Mindlin. 
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