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ABSTRACT

A higher-order theory which satisfies zero transverse shear stress conditions
on the bounding planes of a generally laminated fibre-reinforced composite
plate subjected to transverse loads is developed. The displacement model
accounts for non-linear distribution of inplane displacement components
through the plate thickness and the theory requires no shear correction
coefficients. A C° continuous displacement finite element formulation is
presented and the coupled membrane-flexure behaviour of laminated plates
is investigated. The nodal unknowns are the three displacements, two
rotations and two higher-order functions as the generalized degrees of
freedom. The simple isoparametric formulation developed here is capable of
evaluating transverse shears and transverse normal stress accurately by using
the equilibrium equations. The accuracy of the nine-noded Lagrangian
quadrilateral element is then established by comparing the present results
with the closed-form, three-dimensional elasticity and other finite element
available solutions.

1 INTRODUCTION

It has long been recognized that classical plate theory must be modified to

include certain higher-order effects like warping of the cross-section. The

first generalization of the classical theory was given by Reissner' and

Mindlin.? Since then, there have been many further generalizations.

Perhaps the first higher-order theory, based upon the principle of stationary

potential energy, resulting in eleven second-order partial differential
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equations to determine the eleven functions in the assumed displacement
model, was given by Lo er al.’* A sub-set of the displacement model used in
Ref. 3, which neglects the strain energy due to transverse normal stress, has
been adopted by Levinson,” Murthy® and Reddy.” Later, Reddy and co-
workers presented the displacement® and the mixed’ finite element models
of the theory developed earlier.” In these,”” Reddy has modified the dis-
placement model of Lo er al., by neglecting the transverse normal stress
effect and satisfying the zero transverse shear stress conditions on the
bounding planes of the plate, thereby expressing the three displacements of
a point in plate space in terms of only five physical midplane displacement
quantities. With this, the displacement model adopted by Reddy gives rise
to second-order derivatives of transverse displacement in the energy
expression, and hence displacement based finite element formulation
requires C' continuous shape functions which are computationally
inefficient and are not amenable to the popular and widely used isopara-
metric formulation in present day finite element technology.

The aim of the present work is to develop a simple isoparametric finite
element formulation. The formulation presented here differs from that of
Reddy and co-workers™ in three ways:

(1) Only a part of the conditions for vanishing of the transverse shear
stresses on the top and bottom bounding planes of the plate as given
by eqn (3) is introduced in the assumed displacement model given by
eqn (1).

(i) The remaining conditions given by eqn (4) are introduced later in the
shear rigidity matrix as given by eqn (18).

(iti) The general isoparametric displacement finite element formulation
is developed.

The validity of the formulation is established by comparing the present
numerical results with other finite element,” closed-form" and three-
dimensional elasticity'' solutions.

2 THEORY

The development of the present higher-order shear deformation theory
begins with the assumption of the displacement field in the following form

(Fig. 1)
u(x,y,2) = u(x,y) +20,(x,y) + ud (x,y) + 220} (x,y)
v(x,y,2) = vo(x,y) +260,(x,¥) + ZvI(x,y) + 2 0F (x,y)
w(x,y,z) = we(x,y) €8]



A higher-order theory for unsymmetrically laminated composite plates

A
Z,W, / 23 1
1 // / +0
/
4 [FIBER DIRECTION
/s
/7

y4
-T_ L _ L §=0° { =
v 90° £ X, Ug

90° 3 ©y ’
[ ]
a

Fig. 1. Geometry of a four-layer symmetric laminate.
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where u,, v, and w, denote the displacements of a point (x,y) on the
midplane and 6, and 6, are the rotations of normals to midplane about the y
and x axes respectively. The parameters ul, v3, 67 and 6; are the corres-
ponding higher-order terms in the Taylor’s series expansion and are also
defined at the midplane.'>" The condition that the transverse shear stresses
vanish on the plate’s top and bottom faces is equivalent to the requirement
that the corresponding strains be zero on these surfaces The transverse
shear strains are given by
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Equating y,.(x, y, £h/2) and y,.(x, y, £h/2) to zero, we obtain
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Introduction of condition (3) in eqn (1) yields a compact displacement form:

u =

VvV =

u, +26,+7°0*
Vo +20,+2°6)

w=w,

)
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Murthy® and more recently Reddy and co-workers™ have used conditions

(4) to eliminate 67 and ¢ from eqn (5) and have obtained a modified
displacement model

Cwtzlo A(EY (g 1 2o
B RGNS T ax

w=w (6)

In the present formulation, we proceed with the displacement field given by
eqn (5) and conditions (4) are introduced later in the shear rigidity matrix.
The strains associated with the displacements in eqn (5) are:

€ = €+ 2k, + 2k}
€ = €,+zk, + 7k}
e, =0

Yoy = €qo T2k + 2 kY,

Ve = &, + b}

Yo = G+ 20 BF 7
where
ou, av, du, ov,
(0] = 3 € b GX (o]
€ e y ~ dy  ax
00, a0 00, 96
kx = » kv = _y, vy = !
dx : ay ay dx
k* = a;o: k* = a6y k* = 96: ﬁ
. S T A R
ow, ow,
=0,+ , b, = 6, +
) Y3 ¢ ox

¢y = 367, &F = 307 ®)



A higher-order theory for unsymmetrically laminated composite plates 219

The constitutive equations for the L™ layer can be written as

g, L Cy Cp 0 t € L
o, = | Cp Cn 0 €
T12 0 0 Cy Y2
!Tzs}[' Cyu 0 L {'}’23]L
T13 0 Css Y13 C)]

where (o1, 02, 712, 723, T13) are the stress and (e, €, Y12, ¥, y13) are the linear
strain components referred to as the lamina co-ordinates (1, 2, 3), as shown
in Fig. 1, and C;s are the plane stress reduced elastic constants of the L"
lamina. The following relations hold between these and the engineering
elastic constants:

E v E E
Cu = — , Cp = —2 , Cp = 2
l—vpvy 1=vpvy 1-vyvy
Cy = Gy, Cu =Gy, Css = Gys (10)

The stress—strain relations for the L™ lamina in the laminate co-ordinates
(x, y, 2) are written as

Ty L On O Qs L € L
gy = | On O On €,
Txy Q1 Ox O Vxy
Tyz - QM Q45 t sz t
= (11)
Txz Qs QOss Yz
in which

t
o = (o'xv Tys Trys Tyzs sz)
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and
€ = (exv ey?‘y,rys'y,vz")'xz)! (12)

are the stress and linear strain vectors with respect to the laminate axes and
Qs are the plane stress reduced elastic constants in the plate (laminate) axes
of the L™ lamina. The transformation of the stresses/strains between the
lamina and laminate co-ordinate systems follows the usual transformation
rule."

The total potential energy = of the plate is given by

1
™= —f eodv - f d'Pda (13)
2 v A

in which A is the mid-surface area of the plate, V is the plate volume, P is the
equivalent load vector corresponding to the seven degrees of freedom and d
is defined as

d = (umvovwo’oxaeyvejva:)t (14)

The expressions for the strain components given by eqn (7) are substituted
in eqn (13). The functional given by eqn (13) is then minimized while
carrying out explicit integration through the plate thickness. This leads to
the following thirteen stress resultants for the n-layered laminate.

N, o,
n hy
N, = Z I o, rdz
L=1 Ja
Ny Ty
M, | Mz o
{ n hi
M, ' M? = Zf o, >zi2')dz
! L=1 a1y
M, : M3 Txy
Q. | O e
! < kL -
| = ) I [112%dz
! L=1 Ja 4y (15)
o o Ty
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After integration, these relations are written in a matrix form which defines
the stress resultant/strain relations of the laminate and is given by

(N) [a i B 0] (]

—— __...._!__————-r_. —_— - ——

M B | Dy ! 0 k

| I

<M*p = ! | < k*

. S R - -

Q l ! ¢

0 : 0 [} Ds
Q) L b ] Let) (16)
in which

N = {IVx’}V)"IVer}l € = {EXO’GYO’EX,VO}[

M = {Mx’ 1‘4}"1‘41)!}t k = {kx’k)"kx)’}‘
M* :{M:’M;’M:y}t K* ={k:’k;’kry}t

Q ={0..0,} ¢ = {0, )
Q* ={0r, 0} o = {é75. ¢} (17)

The superscript t denotes the transpose of a vector/matrix and

OuH,; QnH, Q. H, | L" Layer
= Z OxH, OxH,

Symmetric 0::H,

TOnH, QpH, QuH, QuH, QunH, QpH,|L"Layer
B = Z OpH, Q»nH, QuH, QpH, QpH, QpH,
LQusH, QnH, QOuH, QnsH, QpH, QuH,

[ QuH, QuH, QuH, QuHs QuHs QuHs JL™Layer
Dy = Z OxH, 0 H, O H; 0OxH; O H;
OnH; QuHs QnHs  QuHs

Q11H7 Q12H7 Q13H7

Symmetric 0»H, QOnH,;

L QO H;
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T QOssH  QuH 0 0 L™ Layer
OuH 0 0

m:ﬁl OsH*  QuH®

: | Symmetric QuH* (18)
where

Hi=(u=hi).  Ho= 5081

H, :%(hi~hi+1), H, =%(hi—hi+1)
(19)

Ho=gi—hi).  Hy= 0L )

4 . K
H: Hl_H}XF)’ H = HS_H:;X—[

The shear rigidity matrix Dy in eqn (18) is evolved by incorporating an
alternate form of the conditions (4), viz.

+ r =0
d)y 4 ¢_»' -
(20)

-

h‘.
bt "E‘(b: 0

and the resulting theory becomes consistent in the sense that it satisfies
zero transverse shear stress conditions on the bounding planes of the plate.
If the conditions given by eqn (20) are not incorporated, then the resulting
non-consistent theory does not satisfy the zero transverse shear stress
conditions on the bounding planes of the plate. In this case, the shear rigidity
matrix D{ is defined as

QssH, Qs H, Qss H, Qs H; ] L" layer
D§ = i QuH, QusH, QuH,;
QssHs  QusH;s
Symmetric Q. H; (21)
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The transverse shear stresses 7%, and 7%, cannot accurately be given by eqn
(11) as the continuity condition at the interfaces of any two layers is not
satisfied for laminated plates. For this reason, the interlaminar shear and
normal stresses (7%, 75, o+) between layer (L) and (L + 1) at z = h,,, are
obtained by integrating the three equilibrium equations of elasticity for each
layer over the lamina thickness and summing over layers L through » as
follows:

Lo [dor  arg
z=hL+1 L=1 Ju oy dx ay

L

z AL oo ot
L _ 99y 4 % V4,
T L; J; ( ay | ox )

z=hL+1 L+1

Lot (o | o,
ot - - f RATINLGTI P 22)
- LZ=:1 h 09X ay

T=hL41 L+1

L
Tz

3 FINITE ELEMENT FORMULATION

We follow the standard finite element technique in which the total solution
domain is discretized into NE sub-domains (elements) such that

NE
m(d) = ) #°(d) (23)
e=1
where 7 and #° are the total potential of the system and the element
respectively. The element potential can be expressed in terms of internal
strain energy U° and the external work done W* for an element e as,

7°(d) = U — W* (24)

in which d is the vector of unknown displacement variables in the problem
and is defined by eqn (14). If the same interpolation function is used to
define all the components of the generalized displacement vector d, we can
write

NN
d=) Nd, (25)
i=1
where N, is the interpolating (shape) function associated with node i, d; is the
value of d corresponding to node i and NN is the number of nodes in the
element.
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The extensional strains €,, the bending curvatures (k,k*) and the
transverse shear strains (¢, ¢*) can be written in terms of the nodal
displacements d by referring to eqn (8). The result can be written in matrix
form as follows:

€, = Lgd
{k
= Lpd
o
¢
= Lgd (26)
d)*

The subscripts E, B and S refer to extension, bending and shear respectively
and the vector of element nodal displacements is given by eqn (14). The
matrices Lg, Ly and L; attain the following form

- d _
2 0 0 0o 0o 0 o0
ax

p
Le=10 2 0 0 0 0 o0
dy
PR
2% 9 0 0 0 0
Ldy dx -
~ 5 -
O 0 0 — 0o 0o o
dx
o 0o o0 0o 2 o o
ay
ad
o 0o o 2 2 o o
Ly = dy  ox '
o 0o o o0 o 2 o
ox
a
o o o o o o 2
dy
o o o o o 2 2
L dy  ox
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FOOE—IOOO

0 0O — 0 1 0 0
Lg = ay

0 0O 0 0 0 3 0

0O 0 0 0 0 0 3 @7)

With the generalized displacement vector d known at all points within the
element, the generalized strain vectors at any point are determined with the
aid of eqns (27) and (25), as follows:

NN NN
€, = Lgd = Lg Z Nd; = Z Bxd; = Bga

i=1 i=1

k NN NN
=Lgd=Ls ) Nd, = ) Bgd =Bza

i=1 i=1

¢ NN NN
=Ld=Ls ), Nd = ) Bsd =Bsa 28)
¢* i=1 i=1
where
NN
Br =LgN, , Bg = Z Be
i=1
NN
Bz = LgN, , By = Z Bz
i=1
NN
Bs = LsN;, , Bs= Z Bis
i=1
and
a={d,d,... dy" (29)

For the elastostatic analysis, the internal strain energy of an element due
to extension, bending and shear can be determined by integrating the
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v

products of inplane stress resultants and extensional strains, moment stress
resultants and bending curvatures and shear stress resultants and shear
strains over the area of an element.

1 k | b\
-1 [¢N+ | {QQﬂjFA (30)
A k* *

Implementing the stress resultants given by eqn (16) in the strain energy
expression (30) gives

! k ! k k| k 1
U = 5 |:€(!,A€0‘+‘ Bt€o+E(tJB + DB {
A k* k* | k* k*J
¢ | ¢
+ { Ds{ } dA (31)
d)*

¢*
Substituting eqn (28) for extension, bending and shear strains into eqn (31)
leads to the internal strain energy expression in terms of the nodal displace-
ments as follows:

U = % J; {a'ByABza+a'B;B'Bea+
a'BLBBga+a'ByDgBga+
a'B{DsBsa ) dA (32)
Expression (32) can be written in concise form as

w:%ww@ (33)

where K¢ is the stiffness matrix for an element e and includes extension,
bending and the transverse shear effects and is given by

K® = f {B:AB: + By B'B + B; BB + By D B + B{DsBs} dA (34)
A

The computation of the element stiffness matrix from eqn (34) is
economized by explicit multiplication of the B;, D and B, matrices instead of
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carrying out the full matrix multiplication of the triple product. In addition,
due to the symmetry of the stiffness matrix, only the blocks K; lying on one
side of the main diagonal are formed. The integral is evaluated using the
Gauss quadrature

1 1
K = J' J' B! DB,|J|dedn
-1 J -1

4
Ki= ) f: W,W,|J|B/DB;, (35)

a=1 b=1

where W, and W, are weighting coefficients, g is the number of numerical
quadrature points in each of the two directions (x and y) and |J| is the
determinant of the standard Jacobian matrix. The subscripts i and j vary

from one to a number of nodes per element. The matrices B, and D are
defined as

;8 A B 0
B; = B ,D=| B Dy O (36)
Bs 0 0 D

and B, is obtained by replacing i by j.

For the problem of bending of laminated anisotropic plates, the applied
external forces F consist of concentrated nodal loads F., each corresponding
to a nodal degree of freedom, a distributed load q acting over the element in
the z direction and a sinusoidally distributed load P,, acting over the
element in the z direction. The total external work done by these forces may
be expressed as follows:

we =% atF°+ % al_[ {qu+Nthn}dA (37)
A

The integral of eqn (37) is evaluated numerically using the Gauss
quadrature. The result is

S W,W,|JIN,{0010000}" {q+Pmnsin1"-:—x-sin"—Zy- (38)
1 b=1

i [T

P =

where a and b are the plate dimensions, x and y are the Gauss point
co-ordinates and m and n are the usual harmonic numbers.
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4 NUMERICAL EXAMPLES AND DISCUSSION

Performance of the present finite element formulation is demonstrated by
comparing results for various laminate geometries with those obtained using
elasticity, closed-form and other finite element formulations. The selective
integration scheme, namely 3 X 3 for membrane and flexure and 2 x 2 for
shear contributions, has been employed. In all the examples considered, the
individual laminae are taken to be of equal thickness and the following set of
material properties is used for each lamina:

E, Gy, Go
Sl 05, 222 05,22 2 02,4, = 025
E, E, E, vz (39)

2

It is assumed that G;; = G, and v,, = (E,/E\)vy,. The simply supported
square plate is discretized with four nine-noded quadrilateral elements in a
quarter plate except for the convergence study. The values of stress
resultants and stresses are at the nearest Gauss points. The deflection,
stresses and stress resultants are presented here in the non-dimensional form
using the following multipliers.

1004’ E, 1
M = ———g——, My = —, M3 = —
qa qa qa
n h 1004
My =—, M5 = —, Mg = 5 (40)
qa q qa

The superscripts e and ¢ used in the various tables that follow, represent
values of stresses obtained from equilibrium and constitutive relations,
respectively.

The following three unsymmetrically laminated simply supported square
plate problems are considered.

4.1 Example 1

This example is considered to bring out the effect of mesh refinement on the
deflection and stress predictions with the present element. The numerical
results are compared with the exact solutions. The following three cases with
different loading conditions and lamination schemes are considered for this
purpose.

(i) A two layer unsymmetric cross-ply (0°/90°) square plate subjected to
sinusoidal transverse load.
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(ii) A two layer unsymmetric cross-ply (0°/90°) square plate subjected to
uniform transverse load.

(iii) An eight layer unsymmetric angle-ply (45°/—45°/. .. 8 layers)
square plate subjected to sinusoidal transverse load.

The numerical results for the above three cases showing convergence of
deflection and stresses are given in Tables 1-3 respectively. The converg-
ence of maximum transverse shear stress with the number of elements is
shown graphically for the first case in Fig. 2. The following points are noted
from this study:

—Maximum transverse deflection and inplane stresses predicted with
2 X 2 mesh are reasonably accurate and little further improvement is
observed with mesh refinement.

—An accurate estimation of transverse shear stresses through equili-
brium equations needs a more refined mesh, as is evident from Fig. 2.

4.2 Example 2

This example is selected to establish the accuracy of stress predictions
through the thickness in the present development. The numerical results
are compared with three-dimensional elasticity solutions. A two-layer
unsymmetric cross-ply (0°/90°) square plate under sinusoidal transverse
load is considered for this purpose. The numerical results for a square plate
with side-to-thickness ratios of 4, 10, 50 and 100 are given respectively in
Tables 4-7. The maximum stress resultant and deflection values are given in
Table 8. The variation of maximum transverse deflection with different
side-to-thickness ratios is shown in Fig. 3. The normal stress (o) and the
transverse shear stress variation (r,.) through the plate thickness is shown
graphically in Figs 4 and 5 respectively.

The following important observations are made from the numerical
results presented in Tables 4-8 and Figs 3-5.

—For a thick plate (a/h = 4), errors in the inplane normal stress (o)
computations are higher in comparison with the inplane shear (7,,) and
the transverse shear stress (7..).

—All stress components evaluated are reasonably accurate for
moderately thick-to-thin plates (a/h = 10).

—The results for stress resultants presented in Table 8 should serve as a
bench-mark for future comparative studies. They will also be useful to
designers of composite laminates.

—The curve in Fig. 3 shows the inadequacy of the classical lamination
theory to predict the displacements accurately.
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Fig. 2. Convergence of transverse shear stress (7,,) with the mesh refinement.
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Fig. 3. Effect of plate side-to-thickness ratio (a/h) on the centre deflection (wxmy)of a
simply supported (0°/90°) cross-ply square plate under sinusoidal load.
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Present (From Constitutive Law)
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Fig. 4. Variation of the normal stress (o, X m4) through the laminate thickness for a simply
supported cross-ply (0°/90°) square plate under sinusoidal transverse load (a/h = 10).

—T1t is clear from Fig. 5 that the transverse shear stress variation through
the thickness of plate is correctly given by equilibrium equations. As
anticipated, the maximum value occurs at the level of neutral surface
and the stress is continuous at the interface. But this is not true when
transverse shear stress is computed using stress—strain constitutive
relations.

4.3 Example 3
This example is an extension of Example 2 for an 8 layer unsymmetric

angle-ply (45°/—45°/ . . . 8 layers) square plate under sinusoidal transverse
load. The numerical results for stresses are presented in Tables 9 and 10 and
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Fig. 5. Variation of the transverse shear stress (7., X ms) through the laminate thickness for a
simply supported cross-ply (0°/90°) square plate under sinusoidal transverse load (a/h = 10).

maximum deflection and stress resultant values are given in Table 11. The
variation of maximum transverse deflection with different side-to-thickness
ratios is shown in Fig. 6. The normal stress (o-,) and the transverse shear
stress variation (r,.) through the plate thickness is shown graphically in Figs 7
and 8 respectively. These results should serve as a bench-mark for future
investigations.

5 CONCLUSIONS

A simple C° isoparametric formulation of a higher-order theory which
satisfies the zero transverse shear stress conditions on the top and bottom
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Fig. 6. Effect of plate side-to-thickness ratio (a/h) on the centre deflection (w x m) of a
simply supported (45°/—45° . . . 8 layers) angle-ply square plate under sinusoidal load.
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Fig. 7. Variation of the normal stress (o X m4) through the laminate thickness for a simply
supported angle-ply (45°/—45°/ . . . 8 layers) square plate under sinusoidal transverse load
(a/h = 10).
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Fig. 8. Variation of the transverse shear stress (7x; X ms) through the laminate thickness for a
simply supported angle-ply (45°/—45°/ ... 8 layers) square plate under sinusoidal
transverse load (a/h = 10).

surfaces of a plate is presented. Such an approach is commerecially attractive
due to ease in software development and implementation in an existing
general purpose programme which is usually based on isoparametric
formulation. The nine-noded Lagrangian element of the isoparametric
quadrilateral family developed here is a fairly simple element. The results
obtained here have proved the simplicity and reliability of this element in a
general stress analysis. The displacement model used here is the simplest in
the family of higher-order models and the theory does not require the usual
shear correction coefficient(s) generally associated with first-order shear
deformable theories of Reissner and Mindlin.
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