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Recently developed shear deformation theory is used to analyze vibrations of laminated 
composite and sandwich plates in conjunction with a C” isoparametric finite element 
formulation. The present theory is based on a higher order displacement model and the 
three-dimensional Hooke’s laws for plate material, giving rise to a more realistic representa- 
tion of the cross-sectional deformation. The theory does not require the usual shear 
correction coefficients generally associated with Reissner-Mindlin theories. A special mass 
lumping procedure is used in the dynamic equilibrium equations. The numerical examples 
presented are compared with 3-D elasticity/analytical and Mindlin’s plate solutions, and 
it is demonstrated that the present model predicts the frequencies more accurately when 
compared with the first order shear deformation theories and classical plate theories. 

1. INTRODUCTION 

Multilayered composites have found wide use in many weight-sensitive structures such 
as aircraft and missile structural components, where high strength-to-weight and stiffness- 
to-weight ratios are required. A laminate is a multilayered composite made up of several 
individual layers (laminae), in each of which the fibres are oriented in a predetermined 
direction to provide efficiently the required strength and stiffness parameters. The finite 
element formulation provides a convenient method of solution for such laminated com- 
posites having complex geometry and arbitrary loading. In classical thin plate theory one 
assumes that the transverse normals to the mid-surface remain straight and normal to it 
during deformation, implying that the transverse shear deformation effects are negligible. 
As a result the free vibration frequencies calculated by using the thin plate theory are 
higher than those obtained by the Mindlin plate theory [l], in which transverse shear 
and rotary inertia effects are included; the deviation increases with increasing mode 
numbers. A reliable prediction of the response characteristics of composite and sandwich 
plates requires the use of shear deformable theories. 

A great variety of shear deformation theories have been proposed to date and some 
are reviewed in reference [2]. They range from the first such theory by Stavsky [3] for 
laminated isotropic plates, through the theory of Yang, Norris and Stavsky [4] for 
laminated anisotropic plates, to various effective stiffness theories such as those discussed 
by Sun and Whitney [5], the Whitney and Sun higher order theory [6], and the 3-D 
elasticity theory approach of Srinivas et aL [7,8] and Noor [9]. It has been shown by 
various investigators [2,5-81 that the Yang-Norris-Stavsky (YNS) theory was adequate 
for predicting the flexural vibration response of laminated anisotropic plates in the first 
few modes. Whitney and Pagan0 [lo] employed the YNS theory to study the free vibration 
of antisymmetric angle-ply plate strips (see also references [ 11,121). Bert and Chen [ 131 
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presented a closed form solution for the free vibration of simply supported rectangular 
plates of antisymmetric angle-ply laminates. In the finite element vibration analysis, only 
limited investigations of laminated anisotropic plates can be found in the literature [ 14-181. 

In recent years many refined plate theories have been presented to improve the 
predictions of laminate static [ 19-241 and dynamic [25-311 behaviour. The present paper 
attempts to provide a refined higher order plate model with a simple Co finite element 
formulation for free vibration of anisotropic laminated plates. 

2. GOVERNING EQUATIONS 

The elasticity solutions indicate that the transverse shear stresses vary parabolically 
through the plate thickness. This requires the use of a displacement field in which the 
in-plane displacements are expanded as cubic functions of the thickness co-ordinate. The 
consideration of normal stress in the thickness direction requires the transverse displace- 
ment also to be expanded as a function of the thickness co-ordinate. The polynomial 
expansion for transverse displacement is truncated at one order lower than the expansion 
for in-plane displacements such that the contributions to the transverse shear strains from 
in-plane displacements are of the same order in the thickness co-ordinate as that from 
the transverse displacement. The displacement field, which satisfies the above criteria is 
of the form 

u(x, y, 5 t) = uo(x, Y, t) + Z&(& Y, t) + r*r&x, Y, t) + z’e,*(x, Y, t), 

v(x, y, z, t) = uo(x, y, 2) + z$(x, Y, r) + z*~o*(x, Y, t) + z3e,*(x, Y, t), 

44 y, 5 1) = wok Y, f) + zm, Y, t) + z2wa*(x, Y, t), (1) 

where t is the time, u, u, w are the displacements of a generic point in the x, y, z directions 
respectively, uo, uo, w, are the associated mid-plane displacements, 0, and 0, are the 
rotations of the transverse normal in the x-z and y-z planes, u;, u,*, wg, t9,*, 0: and 8, 
are the corresponding higher order terms in the Taylor series expansion. 

The strains associated with the displacements in equation (1) are 

e, = au,/a~ + z ae,/ax + Z* at&ax + 23 ae:/ax, 

Ed = au,/aY + z ae,/aY + Z* au:/aY + z3 ae;/aY, &, = 8,+2zwo*, 

rx,=(auo/aY+auo/ax)+z(ae,/aY+ae,/ax)+z2(aus/aY+auo*/ax) 

+ z3(ae,*/aY +ae,*/ax), 

yyZ = (ey+awo/aY)+~(2~,*+aeZ/aY)+z*(3ey*+awg/aY), 

yx,=(ex+a~o/a~)+~(2~~+aeZ/a~)+~2(3e,*+a~~/ax). (2) 

The stress-strain relation for the Lth lamina in the laminate co-ordinates (x, y, z) are 
written in a compacted form as 

a=(?&. (3a) 

The transformed reduced stiffness matrix 0 with reference to plate axes (x, y, z) is obtained 
from the stiffness matrix C with reference to fibre axes (1,2,3) by using the coordinate 
transformation matrix _T from the relation [32], 

0 = _T_‘C[ PIT Ob) 
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in which 

(3~ d) 

u = [cc, ay, UZI, Txy, Tyz, %lT, E = [Cc, Ey, -%, ‘Yxy, Yyz, YxzlT, (3e, f9 

these latter being the stress and strain vectors respectively with reference to the plate axes 
(x, y, z) (see Figure 1). 

(1.2.3) Lamina reference axes 

___________ 
aminate mid-lane 

(x, y, z) Laminate reference axes 

Figure 1. Laminate geometry with positive set of lamina/laminate reference axes, displacement components, 
and Bbre orientation. 

Integration of equations (3) through the plate thickness with strain terms given by 
equations (2) gives the plate constitutive relations. The integrated stress quantities obtained 
in this manner are defined as follows: [ 1, z, z2, z’] dz, (44 

EN, WI = j, jhh’*’ [a;, zuzl ds [ 2 2 g] = ji, jhh”’ [ ;] 11 , z, z*] dz. 
L L 

(4b, c) 



4 T. KANT AND MALLIKARJUNA 

After integration, these can be written in matrix form as 

N 
N* 

-s-w 

M 
M* ____ 
Q 

_Q* 

where 

= (5a, b) 

N = 1% Ny, W=, N*=[N:, Ny*, N$, Xl=, M = IIMc, 4, NJ=, 

M* = [M:, M,*, M:y, WI=, Q = [ Qx, OrI=, Q* = [Sx, Sy, Q:, @I’, 
Eo = [a&)/ax, au,/ay, auo/ay +auo/ax]T, E: =[at&ax, at$/ay, au:/ay+at.g/ax, e,JT, 

x = [ae,/ax, ae,/ay, ae,/ay + ae,/ax]‘, X* = [ae:/ax, ae;/ay, ae$/ay + ae,*/ax, 2wo*lT, 

cp= [e,+aw,/ax, ey+aWo/ayjT, 

cp*=[2~,*+ae,/ax,2u,*+ae,/ay,3e,*+aw,*/ax,3eSF+a~t/ay]~. 

The rigidity matrices Q,,, DC, Q, and Q, are given in Appendix A. 

(5c) 

3. EQUATIONS OF MOTION AND ELEMENT MATRICES 

Hamilton’s principle and Lagrange’s equations form the cornerstone of variational 
principles in mechanics. Here the time t is the independent variable and the integrand 
of the functional to be minimized is KE - I7 for a conservative force field where KE and 
II are kinetic and potential energies, respectively. The integral 5: (KE -II) dt will have 
a stationary value when the variation of the integral is zero: i.e., 

s 
I 

“(ICE-II)dt=O. (6a) 
II 

This constitutes Hamilton’s principle. As might be expected on physical grounds, the 
solution of the variational problem of equation (6) represents a true minimum. 

From Hamilton’s principle one can derive Lagrange’s equations. If di represents R 
independent degrees of freedom of a dynamical system, then in general 

KE = KE(d,, d,) and I7 = lI(d,), r=1,2 ,..., R. (6b) 

The Lagrangian function F of equation (6a) is then given by 

I=( t, d,, i,) = KE(d,, i,) - II( (64 

The Lagrange equations for a conservative system are then 

r=l,2 ,..., R. (7) 

The energies KE and I7 are often easy to express, so that equation (7) is useful for 
obtaining the equation of motion for actual physical systems. 

Since primary interest here is in the free vibration analysis, the potential energy due 
to the applied loads is zero. With the finite element method for the discretization of space, 



UNSYMMETRICALLY LAMINATED PLATES 5 

Lagrange’s equations of motion, when placed in matrix form, become 

Mii+Kd=O, (8) 

where K and M are the global stiffness and mass matrices respectively, obtained by the 
assembly of the corresponding element matrices, and d is the second derivative of the 
displacements of the structure with respect to time. 

The matrix equation (8) governing free vibration may be expressed as 

KJ - ti2&G = 0, (9) 

where 4 is a set of constant values at the nodes and is called the modal vector, and w is 
the natural frequency of free vibration of the system. Equation (9) can be solved, after 
imposing the boundary conditions of the problem, by any standard eigenvalue program. 
For the purpose of evaluation, relation (9) is converted into the standard eigenvalue format. 

(K-A&f)d=O, h=C02, (IO) 

and the subspace iteration method [33] is used here to obtain the eigenvalues A and the 
associated eigenvectors 4. 

4. ELEMENT MASS MATRIX 

A special mass matrix diagonalization scheme that is more sophisticated than a lumped 
mass matrix is used here. The details of the scheme are discussed elsewhere [34]. The 
element mass matrix &f’ is given by 

M’= NTmNd(Area), N=rN,~2,...,NwvI, (IN b) 
JA 

in which NiV is the number of nodes per element, and 

Q j 12 j 

, (114 

in which I,, I2 and Z, I4 are normal inertia, rotary inertia and higher order inertias, 
respectively. 

They are given by 

[ 1, z2, z4, z6]p= dz, (IId) 

where p L is the material density of the Lth layer. 
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5. ELEMENT STIFFNESS MATRIX 

The domain R is decomposed into a set of finite elements. The restriction of the 
Lagrangian functional F to the finite element R, is denoted by Fe: i.e., 

NE 

F= C Fe(uo, 00, wo, &, ey, %, ~$9 dt, wit, @:, e:>, 
e=l 

(12) 

where NE denotes the total number of finite elements in the mesh. In Co finite element 
theory, the continuum displacement vector within the element is discretized such that 

6~ y Nisi, (13) 
i=l 

in which NN is the number of nodes in an element, Ni is the simple isoparametric 
interpolating (shape) function associated with node i in terms of the normalized co- 
ordinates [ and n, and 6i is the generalized displacement vector corresponding to the 
ith node of an element. The generalized strain L at any point within an element can be 
expressed by the relationship 

E = NxN BiSi, 
i=l 

(144 

where 

_ 
E= 

[ 

au, au, au0 au, atc$ av$ au: at$ -- -- 

ax' ay ‘TiJ-+dx’ ax ’ ay ’ ay -+z, 

ae ae ae, ae ae,* ae* 
0 -X-I-+-Y-2 
” ax ’ ay ’ ay ax ’ ax ’ ay ’ 
ae* ae* 
L+-Y 2wo*, e,+z, ey+~,2t4$+~, ay ax ’ 

aw$ T 
2v:+$, 3e:+%, 3e;+ay , 

1 
(14b) 

6i=[uOi, Uoi, wOi, hi, eyi, &, U&i, u&9 W,*,, Ci, 051’. 

The non-zero terms in the strain displacement matrix Bi are as follows: 

(14c) 

B,,, = 4.2 = B4,7 = B6,a = &,4 = ho.3 = %I, - -B 13.11 = $5.3 - -B 17,6 = B19.9 = t3Ni/ax, 

B2.2 = B3.1 = Bs.6 = B6.7 = 4.5 = &0,4, B,,,, = B,,,,o = Bl6.3 = B16.6 = B20,9 = aWay, 

B 14.9 = B17.7 = B,6,6 = 2N, &.6=B15,4=B16,5=1Vi, BI~,,o=~o,II=~N,* 

(1W 

It can be observed that for a symmetric laminate the submatrices Q,,, and Dc vanish 
in equations (5a) indicating that there will not be any coupling between membrane and 
bending stress resultants. Upon evaluating the matrices D and B as given by equations 
(5) and (14), respectively, the element stiffness matrix can be readily computed by using 
the standard relation, 

+1 +1 
K;= 

I I 
BTQB” IJI de dq, (1% 

-1 -1 

where IJI is the determinant of the Jacobian matrix. 
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The computation of the element stiffness matrix is economized by explicit multiplication 
of the By, D and Bj matrices instead of carrying out the full matrix multiplication of the 
triple product. Due to symmetry of the stiffness matrix, only blocks lying on one side of 
the main diagonal are formed [35]. 

6. DISCUSSION OF THE NUMERICAL RESULTS 

Numerical computations were carried out for the free undamped transverse vibration 
analysis of laminated anisotropic plates. The effects of material anisotropy, transverse 
shear deformation, the ratio of span-to-thickness, coupling between stretching and bend- 
ing and the number of laminae in the laminate on the frequencies .are investigated. For 
all the numerical examples, a full plate was discretized with a 4 x 4 mesh of the nine-noded 
Lagrangian quadrilateral elements. The selective integration scheme based on Gauss 
quadrature rules, viz., 3 x 3 for membrane, coupling, flexure and inertia terms and 2 x 2 
for shear term contributions, was employed. All the computations were carried out on 
CYBER 180/840 computer in single precision. The boundary conditions used for the 
simply supported plates are of two types, viz., (a) cross-ply boundary condition (WSSl), 

v~~w,~~,~~,~o,*~w,*~~~~~ at x = 0, a, 

u,=w,=e,=e,=u,*=w,*=e,*=o at y=O, b; 

(b) angle-play boundary conditions (WSS2) 

u,=w,=e,=e,=u,*=w,*=e~=o at x = 0, a, 

v~~w,~~,~~,~vo*~w,*~~~~O at y = 0, b. 

For a clamped plate (WCC), all the 11 degrees of freedom 

(uO, uo, wo, OX, e,, e,, u,*, u,*, w,*, e,*, 0;) 

are restrained at x = 0, a and y = 0, b. 
In order to establish the versatility of the present higher order shear deformation theory 

in its ability to model both thick and thin composite and sandwich plates, two computer 
programs PHOSTl 1 (Program for Higher Order Shear deformation Theory with 11 degrees 
of freedom) and PHOST6 (Program for Higher Order Shear deformation Theory with 
six degrees of freedom) were developed separately. PHOST6 was developed particularly 
to analyze only symmetric laminates. The preliminary results of isotropic, orthotropic and 
symmetric laminates were presented in reference [36]. In addition to the PHOSTll and 
PHOST6 programs, the PFOSTS (Program for First Order Shear deformation Theory 
with five degrees of freedom, i.e., Mindlin-Reissner theory) was also developed to validate 
and verify the present PHOSTll particularly for composite-sandwich plates. 

A bidirectional square laminate as shown in Figure 1 was considered for numerical 
evaluations. The material elastic characteristics of the individual layers were taken to be 
those of high fibrous composites (typical graphite/epoxy) as characterized by Material 
1 given in Table 1. The values of E2 and p are arbitrary because of the non-dimensionaliz- 
ation used (set to unity here). Table 2 shows the effects of degree of orthotropy of the 
individual layers on the fundamental frequency of simply supported square multilayered 
composite plates with a/h = 5. The ratio of E,/ E2 was varied between 3 and 40 and the 
number of layers were varied between 2 and 10. The present PHOSTl 1 results are compared 
with the available 3-D elasticity solution [9]. The agreement is seen to be excellent. It is 
seen that the fundamental frequency increases with the increase in number of layers 
and/or increase of degree of orthotropy. For antisymmetrically laminated plates, as the 
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PHOSTl 1 

Present 
PFOSTS 
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Reddy [26] 
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TABLE 1 

Material properties 

Description Elastic properties 

Material 1 (non-dimensional E,/ E, = 40, WE,= 1, G,J E2 = G,,/ E2 = 0.6, 
typical graphite/epoxy) G,,/ E2 = 0.5, 42 = Y3 = u13 - - 0.25, p=l 

Material 2 (top and bottom Face sheet: 
stiff layers made of E, = 1-308x 10’ N/cm2, E2 = E3 = 1.06 x lo6 N/cm2 
graphite/epoxy prepreg system G,2 = G,, = 6.0 x lo5 N/cm2, GZ3=3*9x105 N/cm2 
and core is of U.S. p = 1.58 x lo-’ Ns2/cm4, 
commercial aluminium v,2 = I53 = 0.28, v23 = 0.34 
honeycomb l/4 inch cell size, thickness of each top stiff layer = O-025 h 
0.003 inch foil) thickness of each bottom stiff layer = 0.08125 h 

Core: 
G23 = 1*772X lo4 N/cm’, GL3 = 5.206 x lo4 N/cm2 
p = 1.009 x 10m6 Ns2/cm4 
thickness of core = 0.6 h 

TABLE 2 

E$ect of number of layers and degree of orthotropy of individual layers on the fundamental 
frequency of simply supported square multilayered composite plates with a/h = 5,6 = 

w( ph2/E2)l’*, Material 1 ( WSSl) 

No. of 
layers Source 

E,I& 

3 10 20 30 40 

0.2503 1 O-27938 

O-24782 
(-099) 

O-24829 
(-0.80) 

0.27082 
(+8.19) 

O-24868 
(-0.65) 

0.27764 
(-0.62) 

O-2775 1 
(-0.67) 

O-30968 
(+10*84) 

o-27955 
(-0.06) 

0.26182 0.32578 

0.25997 
(-0.70) 

O-26012 
(-0.65) 

0.28676 
(+9*52) 

0.26003 
(-0.68) 

0.32486 
(-0.28) 

0.32889 
(+0*95) 

0.38877 
(+19*33) 

0.32782 
(+0*62) 

0.30698 

o-30737 
(+0*12) 

0.30998 
(+0.98) 

0.35422 
(+15.38) 

0.31284 
(+1*91) 

O-37622 

0.37801 
(+0*47) 

0.38741 
(+2*97) 

0.49907 
(+32.65) 

0.38506 
(+2*35) 

0.32705 

0.33003 
(+0*91) 

0.33771 
(+3.26) 

0.39335 
(+20.27) 

0.34020 
(+4.02) 

040660 

0.41041 
(+0*93) 

0.42462 
(+4*43) 

0.58900 
(+44.86) 

0.42139 
(+364) 

0.34250 

O-34810 
(+1.633) 

0.35995 
(+5*10) 

O-42884 
(+25.21) 

O-36348 
(+6.12) 

o-42719 

0.43240 
(+1*21) 

0.45062 
(+5-48) 

066690 
(+56.11) 

044686 
($4.60) 
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TABLE 2-continued. 

W& 
No. of . 
layers Source 3 10 20 30 40 

6 3-D 
elasticity 
theory [9] 

Present 
PHOSTll 

Present 
PFOSTS 

CPT 

Reddy [26] 

10 3-D 
elasticity 
theory [9] 

Present 
PHOSTll 

Present 
PFOSTS 

CPT 

Reddy [26] 

0.26440 O-33657 

0.26194 0.33423 
(-0.93) (-0.69) 

O-26222 O-33664 
(-0.82) (+0*02) 

O-28966 O-40215 
(+9*55) (+19.48) 

0.26223 O-33621 
(-0.82) (-0.11) 

0.26583 0.34250 

0.2633 1 
(-0.94) 

O-26329 
(-0.96) 

0.29115 
(+9.52) 

O-26337 
(-0.92) 

O-33989 
(-0.76) 

o-34043 
(-0.60) 

040888 
(+19.38) 

0.34050 
(-0.58) 

0.39359 

O-39249 
(-0.27) 

0.39756 
(+l*OO) 

0.52234 
(+32*71) 

0.39672 
(+0*79) 

o-40337 

040069 
(-0.66) 

0.40239 
(-0.24) 

o-53397 
(+32*37) 

040270 
(-0.16) 

0.42783 

0.42766 
(-0.04) 

O-43512 
(+1*70) 

0.61963 
(+44.83) 

o-43419 
(+1.48) 

OMOll 

0.43780 
(-0.52) 

044003 
(-0.02) 

O-63489 
(+44.25) 

044079 
(+0.15) 

0.45091 

o-45141 
(+o*ll) 

046083 
(+2.19) 

0.70359 
(+56.03) 

046005 
(+2*02) 

046498 

0.46295 
(-0.43) 

0.46554 
(t-0.12) 

O-72184 
(+55.24) 

046692 
(+0*41) 

Values in brackets give percentage errors with respect to the elasticity solution [9]. 

number of layers increased from two to four, the accuracy of the classical plate theory 
(CPT) sharply deteriorated. Further increase in the number of layers does not have a 
significant effect on the accuracy. The error in the CPT predictions was mainly due to 
the neglect of transverse shear deformation. The error in the predictions of PHOSTll 
did not exceed 1.6 percent even for the case of highly orthotropic thick laminate with 
E,/E, = 40. The corresponding error estimate for PFOSTS and Reddy’s exact (series) 
solution of a higher order theory [26] were seen to be 5.5 percent and 6-l percent 
respectively. For small degrees of orthotropy (EI/E2 = 3-lo), the difference in the finite 
element results of PHOSTll and PFOSTS and the exact (series) solution of a higher 
order theory of Reddy [26] is almost negligible. 

To study the effect of side-thickness ratio on the non-dimensional fundamental frequen- 
cies (see Table 3), the results were obtained for the following cases with elastic properties 
corresponding to Material 1 given in Table 1: (i) two-layer, equal thickness, antisymmetric 
cross-ply (O”/90”) square laminate; (ii) two-layer, equal thickness, antisymmetric angle-ply 
(45’/ - 45’) square laminate; (iii) eight-layer, equal thickness, antisymmetric angle-ply 
(45O/ - 45”/45” * - -) square laminate. The CPT solution included the rotary inertia effects 
[25]. The results of the present PHOSTll were close to the closed form solution (CFS) 
of a higher order theory [25] but, as seen in Table 2, the present theory gives more 
accurate results than the analytical (series) solution of the third order theory of Reddy 
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[25]. The CPT overestimates the frequencies. The effect of the coupling between bending 
and stretching on the fundamental frequencies of simply-supported cross-ply 
(0°/900/ * - - 90“) and angle-ply (45”/ - 45”/ * . * - 45”) laminates (Material 1) with a/h = 5 
is shown in Table 4. The six-degrees-of-freedom (w,,, OX, e,,, wt, 6:, 0;) solution 
(PHOST6) which included bending action only was obtained by suppressing the in-plane 
displacement degrees of freedom ( uo, v,, O,, u* o , I$). As the a/h ratio increased the effect 
of the coupling between bending and stretching increased for two layers and four layers. 
The percentage errors were as high as 67 percent for cross-ply (O”/900) and 75 percent 
for angle-ply (45”/ - 45”). The percentage error decreased with the increase in number of 
layers. It was thus seen that the coupling between bending and stretching had a significant 
effect on the behaviour of antisymmetric laminates with few laminae. 

Table 5 shows a comparison of non-dimensional frequencies, for a four-layer laminated 
square plate (45”/ -45”/45”/ -45”) with a/h = 10 obtained by various investigators. It 
includes the results of the present PHOSTll and PFOSTS, CFS of Bert and Chen 
[ 131, finite element PFOST results of Reddy [18] and CPT estimates. The predictions of 
the present theories (PHOSTll and PFOSTS) and CPT increased with increasing longi- 
tudinal and transverse wavenumbers (m and n). The results of the present PHOSTll and 
PFOSTS were very close to the CFS [ 131, whereas the PFOST finite element results with 
the 8-noded Serendipity element given by Reddy [ 181 were far away from the CFS [ 131 
for higher modes. The discrepancies observed in Reddy’s results could be due to his 
analyzing angle-ply laminate by discretizing only a quarter and/or a half plate. Since no 
mirror image of the cross-sectional plane of symmetry existed for angle-ply laminates, a 
full plate should be discretized for analysis. 

Finally, a comparison of the effects of the mode numbers on the associated frequencies 
of a composite-sandwich plate (O”/45”/90”/core/90”/450/30”/0”) as predicted by the 
present PHOSTll and PFOSTS was made and is shown in Table 6. Two different types 
of boundary conditions were used: simply supported and clamped. The elastic properties 
corresponding to Material 2 as given in Table 2 were used. The effect of the shear moduli 
G,, and G,, of stiff layers were seen to be more pronounced for thicker laminates. For 
a thick sandwich laminate, the difference between the frequencies from the two theories 
(PHOSTl 1 and PFOSTS) increased with increasing mode numbers. While the study 
reported here was concentrated on unsymmetric laminated plates, the theory presented 
and the computer programs developed are valid for general laminates with various edge 
conditions. 

7. CONCLUSION 

A refined higher order theory and the Mindlin-Reissner theory have been used for 
vibration analysis of unsymmetrically laminated square composite and sandwich plates. 
A Co continuous finite element model of the present higher-order theory is validated by 
comparisons with the available 3-D elasticity and closed form solutions. The present 
PHOSTll results are in excellent agreement with the 3-D elasticity solutations. This is 
due to a realistic representation of the cross-sectional deformation and consideration of 
the complete stress-strain law. The present PHOSTll does not require the usual shear 
correction coeflticients generally associated with PFOSTS of Mindlin-Reisner. The sim- 
plifying assumptions made in CPT and PFOSTS are reflected by the high percentage 
error in the results of thick composite-sandwich plates. It is believed that the improved 
shear deformation theory presented here is essential for reliable analyses of sandwich-type 
laminated composite plates. 
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TABLE 6 

Comparison of natural frequencies (0/27r) of a eight-layer 
(O”/450/900/Core/900/45”/30”/0”) square composite-sandwich plate (Material 2) 

a=b=lOOcm) 

Considering Gz3 and G,3 of stiff layers 

Simply supported (WSSZ) Clamped (WCC) 
a/h = 10 a/h = 100 a/h = 10 a/h = 100 

Modal yy y-- 
no. PHOSTll PFOSTS PHOSTll PFOSTS PHOSTll PFOSTS PHOSTll PFOSTS 

464 516 59 59 641 754 103 102 
853 1013 127 127 995 1244 192 192 
943 1154 154 154 997 1382 231 231 
956 1501 211 211 1053 1706 295 296 

1002 1773 264 265 1161 1961 374 378 
1201 1993 321 322 1385 2150 440 444 
1226 2042 326 327 1399 2173 459 462 
1245 2173 387 389 1429 2222 525 531 

Neglecting Gz3 and G,, of stiff layers 

Simply supported (WSS2) Clamped (WCC) 
a/h = 10 a/h = 100 a/h = 10 a/h = 100 

Modal -~----~ 
no. PHOSTll PFOSTS PHOSTll PFOSTS PHOSTll PFOSTS PHOSTll PFOSTS 

1 281 297 57 58 321 332 94 98 
2 431 430 120 123 456 446 168 176 
3 530 579 142 150 580 586 194 216 
4 582 582 192 201 597 595 245 268 
5 603 656 236 243 621 666 302 314 
6 628 673 279 297 641 674 346 374 
7 638 678 282 309 673 680 375 411 
8 665 744 327 357 678 750 396 432 
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APPENDIX A 

The rigidity matrices & Q=, Q, and Qs are as follows. 

‘Q1,Hr &Hi &H* QllH3 QI2& Q14K Q13S Lth layer 

Q&I Qdb Q&b Qd% Qd3 Q&I 

Q&b Q,J% Q2& Q&b Q3.31 
D =i QHHS QI& QMHS Q134 (Al) -In 

L=l 
QzzHs Q&s Qd% 

Q&s Q&3 

Qd$ 

The matrix &)= can be obtained by replacing HI, H3 and H5 by Hz, H4 and H6 respectively 
in the above matrix I?,. Similarly, the matrix & can be obtained by replacing HI, H3 
and Hs by H,, Hs and H, respectively in the above matrix &. 

QaH, Q&I Q6& Q&z Q6t& 
Q&I Q&2 Qd% Qsdb 

In all the above relations, n is the number of layers and 

Hi=(l/i)(hL+,-Hi), ,.. i=l,2 


