
Finite Elements in Analysis and Design 6 (1989) 307-318 307 
Elsevier Science Publishers B.V., Amsterdam --  Printed in the Netherlands 

T R A N S I E N T  DYNAMICS OF C O M P O S I T E  S A N D W I C H  PLATES 
U S I N G  4-, 8-, 9 -NODED I S O P A R A M E T R I C  QUADRILATERAL E L E M E N T S  

T. K A N T  and M A L L I K A R J U N A  

Department of Civil Engineering, Indian Institute of Technology, Powai, Bombay 400 076, India 

Received February 1988 
Revised January 1989 

Abstract. A finite element method based on Mindlin's theory is employed in the prediction of the dynamic 
transient response of multilayered composite sandwich plates. Numerical convergence and stability of 4-noded 
hnear, 8-noded serendipity, and 9-noded Lagrangian elements are established using an explicit time integration 
technique. A special mass matrix diagonalization scheme is adopted which conserves the total mass of the 
element and includes the effects due to rotary inertia terms. The parametric effects of the time step, finite 
element mesh, lamination scheme, and orthotropy on the transient response are investigated. Numerical results 
for deflections and stresses are presented under various boundary conditions and loadings. The results presented 
herein should be of interest to composite-structure designers, experimentalists, and numerical analysists in 
verifying their results. 

Introduction 

The high strength and stiffness versus weight obtainable in sandwich panels has led to a 
wide variety of applications. Most structures, whether they are used in land, sea, or air, are 
subjected to dynamic loads during their operation. There exists a need for assessing the 
transient response of laminated plates. However, transient analyses of composite sandwich 
plates of finite dimensions have not received adequate consideration. 

A large amount  of literature has been devoted to the development of theories for conven- 
tional sandwich structures and to the study of their static and dynamic behaviours by analytical 
and numerical methods. A detailed historical review is given in the books by Plantema [19] and 
Allen [2] and in two papers by Habip  [4,5]. The pioneer workers are Reissner [22-24], who also 
studied the finite deflection problem, and Yu [27-30], who published a series of papers on 
vibrations of sandwich plates including viscous damping and large deflections. Exact elasticity 
solutions for some particular sandwich plate bending problems were obtained by Pagano [17]. 
Many researchers have adopted the versatile finite element method in analysing conventional 
sandwich and laminated plates (e.g. see [1,15] for sandwich plates and [6,10,16,18] for 
laminated plates). Khatua  and Cheung [11,12] successfully solved a variety of linear problems 
for multilayer plates and shells using non-conforming rectangular and triangular plate and shell 
finite elements. All of these studies were confined to either static analyses or free-vibration 
analyses. 

In the present paper, transient response of layered, composite sandwich plates is investigated 
using a shear deformable finite element. The present study is the first to consider the transient 
response of sandwich plates of arbitrary construction and finite dimensions. 

0168-874X/89/$3.50 © 1989, Elsevier Science Pubhshers B.V. 



in which 

Theory and formulation 

A multilayered sandwich plate, as shown in Fig. 1, having n stiff faces and n - 1 soft cores 
is considered. The displacement field of such a plate can be assumed to be 

u(x, y, z, t )= Uo(X, y, t )+ zOx(x, y, t), 
o(x, y, z, t )= Vo(X, y, t )+  zOy(x, y, t), 

w(x, y, z, t )= Wo(X, y, t), (1) 
where t is the time and u, v, and w are the displacements in the x, y, and z directions, 
respectively, of any generic point in the plate space. The variables u 0, %, and w 0 are the 
associated midplane displacements; and the parameters 0 x and Oy are the rotations of the 
normals to the midplane in the x - z  and y - z  planes due to membrane-flexural deformations. 

The strain expressions derived from the displacement model of equation (1) are: 
e x = Ex0 -F ZXx ; ~y = Ey 0 "q- ZXy ; 

Y~y = e~yO + zxx,; 7yz = ~y; 7= = *x; (2) 
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The stress-strain relations for a typical layer L with reference to the material axes ( 1 - 2 - 3 )  are 
given by 
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Fig. 1. M u l t i l a y e r  a r r a n g e m e n t .  
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in which ( a l ,  02, "/'12, "/'23, "/'13) a r e  the stress and (ea, •2, "~12, )t23, Y13) a r e  the linear strain 
components referred to the material axes (1 -2 -3 )  as shown in Fig. 1, and Cifs are the plane 
stress reduced elastic constants of the Lth  lamina and these are related to the engineering 
elastic constants [9]. The coefficient a has been given various values by different authors; e.g., 
a = 2 /3  according to Timoshenko [25], Reissner [21] assumes a value of a = 5 /6 ,  and Mindlin 
[14] uses et = ,~2/12, which is very close to the value used by Reissner. Unless otherwise stated, 
the value used throughout this work is Reissner's value of a = 5 / 6  for stiff face layers and 
unity for core material. 

Following the usual transformation rule of stresses/strains between the layer (material) and 
the plate coordinate systems [9], the stress-strain relations for the Lth  layer in the plate 
coordinate, (x, y, z) are written in a compacted form as 

o = Q e ,  (5) 

in which o = (ox, Oy, ~y, Tyz, q'xz) T a n d  e = (ex, Ey, "~xy, "Yyz, "Yxz) T are the stress and strain 
vectors with respect to the plate axes, and 

0] /6, 
Qtm l, m = 4, 5 

are the transformed reduced elastic constants in the plate axes of the Lth  layer. 
The constitutive relations involving membrane forces, bending moments and shear forces are 

1 r ox, oy,,~y 1 
M~, My, Mxy.= E f'+l[zo~, zoe, Z,xyl~z 

defined as: 

(7) 

Upon integration, these expressions are rewritten in a matrix form which defines the stress-re- 
sul tant /  strain relations of the sandwich plate and is given by, 6 = D~, [':i °ll  l 

L= I -0" Q,~ H 1 

where 

N-- [Nx, N~, N~y] T 

M= [Mx, My, Mxy]T; 

Q--[e~ ey]T; 

E T. 
e 0 = [eXo , ey o, xy o] , 

X = [Xx, Xy, Xxy]a'; 

, =  [~x,,y]T 

In the above relations, n is the number of layers and 

H i = ( h t + l i  --hiL)/i, i = 1 , 2 , 3 .  

(8a) 

(8b) 

(8c) 

Finite element formulation 

In the C o finite element theory, the continuum displacement vector within the element is 
discretized such that 

N N  

a(x,  y, t )= ~_, Ni(x, y )a i ( t  ), (9a) 
i=1 
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in which the term N~(x, y) is the shape function associated with node i, NN is the number of 
nodes in the element, and ai(t) is the value of the displacement vector a(x, y, t) corre- 
sponding to node i. 

With the generalized displacement vector a(x, y, t) at all points within the dement, the 
generalized strain vector k(x, y, t) at any point is expressed as follows: 

NN 

~(x, y, t )=  ~, Bi(x, y )a i ( t  ), (9b) 
i=1 

where 

~ =  (Ex0,  Ey0, I~xyO, Xx ,  Xy ,  Xxy,  ~x, t~y) T,  ( 9 c )  

a , =  (u0,, Vo,, Wo,, Ox,, 0y,) T. (9d) 

B~ is the strain-displacement matrix and is given as follows: 

B l l  = B32 = B44 = B65 = B73 = ~ N / / / ~ x ,  

B22 = B31 = B55 = B64 = B83 = ~ N i / ~ y  , 

B74 = B85 = ]Vi. 

With finite dements for the space discretization, the dynamic problem (in the absence of 
damping) gives rise to a set of ordinary differential equations of the form 

Mii( t ) + Ka( t ) = e (  t ), (10) 

in which the dots denote differentiation with respect to time, t, a(t) is the nodal displacement 
vector, M is the mass matrix, and P(t) is the vector of nodal forces which varies with time, t. 
The elements of the stiffness matrix K can readily be computed using the standard relation, 

NE NE 
r + l  r + l  T 

Kij = E Kiej = ~., I ] Bi DB:. [ J[  d~ dr .  (11) 
e = l  e = l a - - 1  " - -1  

The mass matrix M in equation (10) is given by 

NE NE 

M =  ~, M e= Y" "Afrea NTmN dA'  (12a) 
e = l  e = l  

where 

and 

m= [110 11 

11 

0 
12 

12 

?/ 

11, 12= ~ fhL+'(1, Z2)p Ldz .  (12b) 
L = I  aht. 

in which I 1, I 2 are normal inertia and rotary inertias respectively; 0 L is the material density of 
the Lth layer. 
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The time integration scheme 

As previously mentioned, the integration in time of equation (10) is performed using the 
explicit central difference time integration scheme. This scheme can be written as 

an+X= M - l [ (  A t ) 2 ( _ i ( a  n + p n )  _ M a n - 1  + 2 M a n ] ,  (13a) 

where superscripts n - 1, n, n + 1 stand for three successive time stages and At ~ me time step 
length. The main advantage of this approach is that if M is diagonal, the computation at each 
time step is trivial. Unfortunately, for the quadrilateral isoparametric plate elements used in the 
spatial discretization, M is not diagonal and a special mass lumping scheme is used to bring 
about the diagonalization of M 

A diagonal mass matrix that is more sophisticated than a lumped mass matrix can be 
derived from a consistent mass matrix and is discussed elsewhere [7]. 

After the mass matrix is diagonalised, equation (13a) can be rewritten as 

a r  ÷ '  = ( A t ) / M .  - / q j a j  + U - - '  + 2 a L  (13b) 

where m denotes the number of nodal variables. If values of a ° and d ° are prescribed as initial 
conditions, a special starting algorithm can be written by noting that 

d o = ( a  1 - a - 1 ) / 2 A t  (13c) 

and eliminating a -~ from equation (13b) leads to the expression 

' - K i j a  ° + + a °  + a i = ( A t 2 / 2 M i i  .= P i  0 a ° A t .  (13d) 

Numerical results and discussion 

In the present study the four-node linear, the eight-node serpendipity, and the nine-node 
Lagrangian quadrilateral isoparametric dements  were employed. Since the element accounts 
for the transverse shear strains, reduced integration was employed to evaluate the shear terms 
numerically. That is, the 3 x 3 Gauss rule was used to integrate the bending and the inertia 
terms and the 2 x 2 Gauss rule was used to integrate the shear energy terms. All the 
computations were carried on a CYBER 180/840 Computer  in single precision. Due to the 
biaxial symmetry of the problems discussed, only one quadrant  of the plate was analysed 
except for angle-ply laminates, which are analysed as full plates. In all of the numerical 
examples presented herein, zero initial conditions were assumed. 

The following three sets of data were used in obtaining the numerical results: 

a = b = 25 cm, q = 10 N / c m  2 

D a t a  1. 

Face sheets [3] 

E a = 1.308 × 107 N / c m  2, 

G12 = G13 = 6 × 105 N / c m  2, 

0 = 1.58 X 10-5N s2/cm 4, 

E 2 -- 1.06 × 106 N / c m  2, 

G23 = 3.9 × 105 N / c m  2, 

v = 0.28. 
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Core [2] 

G23 = 1.722 × 104 N / c m  2, 

p = 1.009 X 10 -6  N s 2 / c m  4. 

Data 2 [20] 

E 2 = 2.1 × 10 6 N / c m  2, 

p = 8 X 10 -6  N s 2 / c m  4, 

Data 3 
Face sheets [8] 

E~ = Ey = 6.895 × 106 N / c m  2, 

G~y = Gy~ = Gx~ = 2.592 X 106 N / c m  2, 

p = 2.821 X 10 -5 N sZ/cm 4. 

Core [8] 

p = 1.242 X 10 -6 N s2/cm 4, 

Case I: 

Case I: 

Case III: 
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G13 = 5.206 × 104 N / c m  2, 

1, -- 0.33, 

E 1 / E  2 = 25, 

v = 0.25. 

Gy= = 5.17 X 10 4 N / c m  2, 

Gy= = 5.17 X 103 N / c m  2, 

Gyz = 5.17 X 102 N / c m  2, 

u12 = (E l /E2)  /)21; directions 1 and x are coincident. 

G12 = G23 = GI3 = 0.5E2, 

Gx~ -- 1.344 × 105 N / c m  2, 

Gx~ = 1.344 x 104 N / c m  2, 

G~ = 1.344 x 103 N / c m  2. 

. . . . . . . . . . .  
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Fig. 2. Geometry, loading and boundary conditions. 

to Pt 



T. Kant, Mallikarjuna / Transient dynamics of composite sandwich plates 313 

Table 1 

Convergence of centre deflection and stress for different t ime steps and  meshes with 4-noded elements 

Time w 0 x l 0 3  A t = 4 ~ s  At = 5  i~s At = 1 0  iLs 

(Ixs) at°P 2 x 2  3 x 3  4 x 4  2 x 2  3 x 3  4 x 4  a 2 x 2  3 x 3  a 4 x 4  a 

40 w 0 0.2340 0.2350 0.2348 0.2339 0.2349 0.2337 
o x 51.656 50.548 48.656 51.847 50.621 53.458 

80 w 0 0.9538 1.0019 1.0259 0.9541 1.0024 0.9569 
ox 181.22 204.32 215.45 181.15 204.90 181.46 

120 w 0 1.8251 1.8784 1.8843 1.8256 1.8788 1.8302 
ax 345.14 387.96 404.82 344.72 387.03 340.67 

160 w 0 2.1375 1.9669 1.9163 2.1372 1.9661 2.1345 
o~ 403.84 420.81 418.09 404.25 420.59 404.54 

200 w 0 1.6977 1.5661 1.5438 1.6970 1.5666 1.6905 
o~ 329.63 340.02 346.97 330.25 340.51 337.67 

Data  1, 5 layers, 0 0 /90  ° / c o r e / 0  ° / 9 0  °, h 0 = hgo = 0.5, hcore = 3.0, a/h  = 5 
a Unstable 

In order to investigate the numerical convergence and accuracy of the transient behaviour of 
the composite sandwich plate, a simply supported plate with a suddenly applied uniform pulse 
loading was analysed using Data 1. The plate geometry, a typical finite element mesh, 
boundary conditions of the quarter model, and applied loading are shown in Fig. 2. The 
estimate of the critical time step is crucial in transient analysis of composite sandwich plates. 
Tables 1, 2, and 3 present center deflection and normal stress of 4-, 8-, and 9-noded elements, 
respectively, for different meshes and time steps. From these tables it is found that the safe 
estimate of the critical time step length given by Leech [13], and Tsui and Tong [26] are valid 
only for isotropic plates. The estimate of the critical time step length given by Tsui and Tong 
[26] is used with minor modification in this study. It is thus given as 

[ p ( l  _ v E ) / E 2 R  ] 1 / 2 ,  

AI~<L, 2+ 0 . 8 3 - ~ - - ~ ) - ' ~ T ~ . 5 ( L J h ) )  2 

Table 2 
Convergence of centre deflection and stress for different time steps and  meshes with 8-noded elements 

~ m e  Wo×10 3 ~ t = 0 . 5 ~ s  A t = l ~ s  A t = 2 ~ s  

(~s) ~op 2 x 2  3 x 3  4 x 4  2 x 2  3 x 3  4 X 4  2 × 2  3 x 3  ~ 4 x 4  ~ 

40 w 0 0.1573 0.2353 0.2487 0.1569 0.2346 0.2489 0.1553 
a x 41.851 42.349 45.686 41.805 42.382 45.661 41.535 

80 w 0 1.0532 1.0679 1.0638 1.0536 1.0669 1.0661 1.0556 
a x 228.62 227.34 227.22 228.71 227.23 227.47 229.07 

120 w o 1.9578 1.8598 1.8680 1.9578 1.8587 1.8685 1.9574 
ax 440.25 430.63 424.65 440.20 430.32 424.53 439.85 

160 w 0 1.9208 1.8650 1.8917 1.9199 1.8644 1.8943 1.9164 
a~ 425.16 425.41 424.73 425.01 425.08 425.33 424.37 

200 w 0 1.4901 1.5270 1.5189 1.4922 1.5289 1.5171 1.5009 
o x 345.64 357.19 359.18 345.86 357.27 359.48 346.97 

Data  2, 5 layers, 0 0 / 90  ° / c o r e / 0  ° / 9 0  °,  h0 = hgo = 0.5, hcore = 3.0, a/h  = 5 
a Unstable 
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Table 3 
Convergence of centre deflection and stress for different time steps and meshes with 9-noded elements 

Time w0×103 A t = 0 . 5 ~ s  A t f l ~ s  A t = 2 ~ s  

(~s) ~op 2 × 2  3×3  4 × 4  2 × 2  3×3  4 × 4  2 × 2  3×3  4 × 4  a 

40 w o 0.2344 0.2343 0.2346 0.2344 0.2343 0.2345 0.2343 0.2343 
a~ 45.419 45.093 45.510 45.418 45.099 45.487 45.412 45.142 

80 w 0 1.0779 1.0784 1.0798 1.0780 1.0785 1.0800 1.0784 1.0791 
a x 236.14 234.72 234.54 236.24 234.77 234.59 236.65 235.09 

120 w 0 1.8508 1.8531 1.8473 1.8507 1.8531 1.8471 1.8505 1.8530 
ax 425.06 422.86 418.83 424.98 422.83 418.78 425.05 422.81 

160 w 0 1.8947 1.8925 1.8923 1.8946 1.8926 1.8922 1.8944 1.8931 
o x 424.74 422.96 422.24 424.53 422.91 421.99 423.61 422.50 

200 w 0 1.5279 1.5192 1.5247 1.5281 1.5192 1.5248 1.5286 1.5197 
o x 368.00 364.94 366.39 368.02 364.93 366.25 367.57 364.96 

Data 2, 5 layers, 0 ° /90 ° / co re /0  ° /90 °, h 0 = h90 = 0.5, hcore = 3.0, a / h  = 5 
a Unstable. 

w h e r e  R = E 1 / E  2, L e is t h e  s m a l l e s t  d i s t a n c e  b e t w e e n  a d j a c e n t  n o d e s  i n  a n y  e l e m e n t  used .  T h e  

s o l u t i o n  o b t a i n e d  b y  u s i n g  a f o u r - n o d e  e l e m e n t  w i t h  A t  = 4 ~s,  a n d  e i g h t -  a n d  n i n e - n o d e  

e l e m e n t s  w i t h  At  = 1 ~s  is f o u n d  s u i t a b l e  f o r  a l l  cases .  

Table 4 
Comparison of transverse deflections w 0 x 103 (cm) obtained in the present study with those obtained by the classical 
plate theory (CPT) and closed-form solution (CFS) [20] for a composite square plate (Data 2, a / h  = 5) under suddenly 
applied sinusoidal pulse load 

Lamination scheme " Layers 

1 2 3 4 5 6 7 8 

CP, R = 2 5  Present 0.3582 0.4606 0.3399 0.2951 0.2929 0.2815 0.2825 0.2776 
(85) (98) (83) (77) (77) (75) (75) (75) 

CFS 0.3566 0.4604 0.3386 0.2947 0.2924 0.2809 0.2817 0.2765 
(90) (100) (85) (80) (80) (80) (80) (80) 

CPT 0.1272 0.3153 0.1272 0.1493 0.1272 0.1366 0.1272 0.1325 
(55) (85) (55) (60) (55) (55) (55) (55) 

CP, R f 4 0  Present 0.3243 0.3833 0.2993 0.2448 0.2473 0.2352 0.2376 0.2323 
(82) (89) (78) (70) (70) (68) (69) (68) 

CFS 0.3233 0.3824 0.2985 0.2438 0.2473 0.2352 0.2376 0.2323 
(85) (90) (80) 75) (75) (70) (70) (70) 

AP, R = 2 5  Present 0.3394 0.2283 0.2205 0.2180 
(84) (67) (66) (66) 

CFS 0.3387 0.2277 0.2196 0.2170 
(85) (70) (70) (70) 

AP, R = 40 Present 0.2830 0.1986 0.1932 0.1915 
(76) (63) (62) (62) 

CFS 0.2826 0.1977 0.1922 0.1885 
(80) (65) (65) (65) 

Values between parentheses denote the time (in ~s) at which the maximum centre deflection occurred 
a C P  f f i  cross-ply (0 ° /90 ° / 0  o / . . .  ); AP = angle-ply (45 o / _  45 ° /45 o f . . .  ); R = E 1/E2; q0 = 10 N / c m  2. Boundary 

conditions used for angie-ply laminates are the same as given in [20] 
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Fig. 3. Effect of shear and side-thickness ratio on the transient response of a three-layer clamped, square plate 
subjected to suddenly applied pulse loading (Data 3, At = 2 ixs). 

In order to validate the present element, a problem for which the analytical solution exists is 
solved. The problem consists of a simply supported square plate (with Data 2) subjected to a 
suddenly applied sinusoidally distributed pulse loading. A comparison of the effect of layers, 
shear deformation, lamination scheme, and orthotropy on the center transverse deflection 
obtained by the present clement and by the closed-form solution [20] is shown in Table 4. It is 
seen that classical plate theory predicts significantly lower values of the deflection and the 
period. Since the present finite element solution is in excellent agreement with the exact 
solution, the 2 × 2 mesh with a nine-noded Lagrangian element was used in all of the problems 
to be discussed. 

The effect of shear modulii of core materials and side-thickness ratio on the transient 
response of a three-layer clamped, square plate subjected to a suddenly applied uniform pulse 
loading (Data 3) is shown in Fig. 3. Although the effect of transverse shear modulii (Gy z and 
Gx~ ) of core material is not prominent, the deflection and period decrease with increasing 
thickness of the plate. The effect of plate thickness on the amplitude and period of the 
deflection is clear. 

Figures 4 and 5 show plots of center deflection and normal stress for a five-layer simply 
supported plate (Data 1). From these figures, it is found that the effect of transverse shear 
modulii of stiff layers is very significant on the transient behaviour of sandwich plates. The 
composite sandwich plate, neglecting transverse shear modulii of stiff layers predicts higher 
values of deflection, period, and stresses. The effect of transverse shear modulii of stiff layers 
on the transient response of a sandwich plate is clear. 

The material properties of Data 2 for facings and core material properties of Data 1 with a 
full plate model were used in the following example. To further investigate the effect of the 
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Fig. 4. Effect of transverse shear moduli of stiff layers on the transient response of five-layer (0 ° /90  ° /core/90 ° / 0  o ) 
simply supported plates under suddenly applied pulse loading (Data 1, A t = 2  ~ts, a/h =10, ho=hgo=0.125,  

h core = 2.0). 

angle and material orthotropy on the center transverse deflection and normal stress, a simply 
supported plate subjected to a suddenly applied sinusoidal loading was analysed by considering 
the full plate model (Fig. 6). The effects on the amplitude and period of the deflections and 
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Fig. 5. Center normal stress versus time for five-layer (0 ° /90  ° /core/90 ° / 0  °)  simply supported plates under pulse 
loading (Data 1, At = 2 ~s, a/h =10). 
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Fig. 6. F.ffoct of lamination angle and material orthotropy on the solution of five-layer s i m p l y  supported plates under 
suddenly applied sinusoidal loadLng (Data 1, A t = 1 ~s, 4 × 4 full plate, h e = 0.5, h con= = 3.0, a / h  = 5). 

stresses are clearly nonlinear. Since no damping or internal friction is included in the present 
model, the solutions do not decay with time. 

C o n c l u s i o n s  

Numerical results of the transient dynamic analysis of composite sandwich plates based on 
Mindlin's theory are presented. The shear flexible element employed herein is stable and 
accurate in predicting the transient response of sandwich plates. The transverse shear rigidity 
modulii of stiff layers on the transient response of sandwich plates are significant. All of the 
results presented herein for sandwich plates must be validated by an independent investigation. 
However, on the basis of the excellent agreement of the present results with analytical results 
for generally orthotropic plates, it is fair to say that the element is accurate in predicting the 
transient response of composite sandwich plates. 

The extension of these analyses to nonlinear (large rotations) transient response of com- 
posite sandwich plates is awaiting attention. An accurate prediction of the wave propagation in 
composites can be made only if a three-dimensional theory of inhomogeneous plates is used. 
The analysis presented here can also be extended to certain shell problems. 
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