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Abstract. A finite element method based on Mindlin’s theory is employed in the prediction of the dynamic
transient response of multilayered composite sandwich plates. Numerical convergence and stability of 4-noded
linear, 8-noded serendipity, and 9-noded Lagrangian elements are established using an explicit time integration
technique. A special mass matrix diagonalization scheme is adopted which conserves the total mass of the
element and includes the effects due to rotary inertia terms. The parametric effects of the time step, finite
element mesh, lamination scheme, and orthotropy on the transient response are investigated. Numerical results
for deflections and stresses are presented under various boundary conditions and loadings. The results presented
herein should be of interest to composite-structure designers, experimentalists, and numerical analysists in
verifying their results.

Introduction

The high strength and stiffness versus weight obtainable in sandwich panels has led to a
wide variety of applications. Most structures, whether they are used in land, sea, or air, are
subjected to dynamic loads during their operation. There exists a need for assessing the
transient response of laminated plates. However, transient analyses of composite sandwich
plates of finite dimensions have not received adequate consideration.

A large amount of literature has been devoted to the development of theories for conven-
tional sandwich structures and to the study of their static and dynamic behaviours by analytical
and numerical methods. A detailed historical review is given in the books by Plantema [19] and
Allen [2] and in two papers by Habip [4,5]. The pioneer workers are Reissner [22-24], who also
studied the finite deflection problem, and Yu [27-30], who published a series of papers on
vibrations of sandwich plates including viscous damping and large deflections. Exact elasticity
solutions for some particular sandwich plate bending problems were obtained by Pagano [17].
Many researchers have adopted the versatile finite element method in analysing conventional
sandwich and laminated plates (e.g. see [1,15] for sandwich plates and [6,10,16,18] for
laminated plates). Khatua and Cheung [11,12] successfully solved a variety of linear problems
for multilayer plates and shells using non-conforming rectangular and triangular plate and shell
finite elements. All of these studies were confined to either static analyses or free-vibration
analyses.

In the present paper, transient response of layered, composite sandwich plates is investigated
using a shear deformable finite element. The present study is the first to consider the transient
response of sandwich plates of arbitrary construction and finite dimensions.
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Theory and formulation

A multilayered sandwich plate, as shown in Fig. 1, having n stiff faces and »n — 1 soft cores
is considered. The displacement field of such a plate can be assumed to be

u(x, y, z, t)=ug(x, y, t) +20.(x, y, t),

v(x, y, z, 1) =v(x, y, 1) +20,(x, y, 1),

w(x’ Vs Z, t)=W0(x’ Vs t)’ (1)
where ¢ is the time and u, v, and w are the displacements in the x, y, and z directions,
respectively, of any generic point in the plate space. The variables u,, vy, and w, are the
associated midplane displacements; and the parameters 6, and 6, are the rotations of the
normals to the midplane in the x-z and y-z planes due to membrane-flexural deformations.

The strain expressions derived from the displacement model of equation (1) are:

€, =&t ZXx» ey=ey0+zxy;

ny=exy0+ZXxy; sz=¢y; sz=¢x; (2)
in which

du, O0vy Ouy Ay,
[exos €05 Exyol = [F;’ DR + % 1
[ |- 06, 96, a6, + a6,
Xor Xys Xayl = dx ’ oy’ dy ax |’
ow, Iw,

[¢*’¢y]=[0x+W’oy+ W]' (3)
The stress—strain relations for a typical layer L with reference to the material axes (1-2-3) are
given by

[ o, | £ Ch Cp 0 |F [ g |L
o =|Cn G O &1,
| T12 0 0 Cy; | Y12
-Tzs]L_[aCM 0 ]L[Yﬂ-L 4
| T13 1o aCs Y3 “

Fig. 1. Multilayer arrangement.
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in which (6}, 65, 75, 733, Ty3) are the stress and (&, €5, Y15, Y23, Y13) are the linear strain
components referred to the material axes (1-2-3) as shown in Fig. 1, and C,;’s are the plane
stress reduced elastic constants of the Lth lamina and these are related to the engineering
elastic constants [9]. The coefficient a has been given various values by different authors; e.g.,
a = 2/3 according to Timoshenko [25], Reissner [21] assumes a value of a = 5/6, and Mindlin
[14] uses a = m%/12, which is very close to the value used by Reissner. Unless otherwise stated,
the value used throughout this work is Reissner’s value of a = 5/6 for stiff face layers and
unity for core material.

Following the usual transformation rule of stresses/ strains between the layer (material) and
the plate coordinate systems [9], the stress—strain relations for the Lth layer in the plate
coordinate, (x, y, z) are written in a compacted form as

o = Qs, (5)
in which o= (o,, 0y Teyr Ty sz)T and e=(e,, €y Yeys Yyzs ym)T are the stress and strain
vectors with respect to the plate axes, and

0= 0, 0 i, j=1,2,3

0 0, I,m=4,5
are the transformed reduced elastic constants in the plate axes of the Lth layer.

The constitutive relations involving membrane forces, bending moments and shear forces are
defined as:

(6)

N, N,, N,, . Oys Oy, Ty
L+1
M, My, My, | = ¥ [ z0,, 20, 27, | d2. )
L=1"h
Qx: Qy Tezs Tyz

Upon integration, these expressions are rewritten in a matrix form which defines the stress-re-
sultant /strain relations of the sandwich plate and is given by, 6 = DE,

N n Qinl Qinz 0 -

1_‘! = E Q,H, Q;H, 0 X 1 (8a)
el Ty T H L e
where
T T,
N= [NX’ Ny’ ny] ; & = [exo’ Eyo0 EXYO] ’
T
M= [Mx, My, Mxy] ; X = [xx, Xy xxy]T; (8b)
T T
0=[0..9,] ; ¢=[¢. 9] -
In the above relations, » is the number of layers and
H=(h,, —h)/i, i=1,2,3. (8c)

Finite element formulation

In the C° finite element theory, the continuum displacement vector within the element is
discretized such that

NN
a(x, y, t)= EM(x, y)a(t), (9a)
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in which the term N,(x, y) is the shape function associated with node i, NN is the number of
nodes in the element, and a,(¢) is the value of the displacement vector a(x, y, t) corre-
sponding to node i.

With the generalized displacement vector a(x, y, t) at all points within the element, the
generalized strain vector &(x, y, ¢) at any point is expressed as follows:

NN
#x, y,1)= .ngi(xv y)a;(1), (9b)
where
€= (£,01 £,01 £xy0> Xox» Xy» Xxy> Pus %)T, (9¢)
a;= (uq,;, Vo;» Woi» Ois 0y,) . (9d)

B, is the strain—displacement matrix and is given as follows:
By, = B3; = By, = Bgs = B;3 = 0N, /3x,
By, = By = Bss = Bgy = Bg3 = ON,/0y,
B;,= Bgs = N,.

With finite elements for the space discretization, the dynamic problem (in the absence of
damping) gives rise to a set of ordinary differential equations of the form

Mii(t) + Ka(t) =P(t), (10)

in which the dots denote differentiation with respect to time, ¢, a(z) is the nodal displacement
vector, M is the mass matrix, and P(z) is the vector of nodal forces which varies with time, 1.
The elements of the stiffness matrix K can readily be computed using the standard relation,

K, = ZK Zf BTDB|J|d£dn. (11)

The mass matrix M in equation (10) is given by

NE
M=) M= Z NTmN d4, (12a)
e=1 Area
where
I, 0
Il
m= I,
12
0 I,
and
5 fhiegs oy o
L=y f (1, 22)p*" dz. (12b)
L=1"h,

in which I;, I, are normal inertia and rotary inertias respectively; p" is the material density of
the Lth layer.
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The time integration scheme

As previously mentioned, the integration in time of equation (10) is performed using the
explicit central difference time integration scheme. This scheme can be written as

a"*'=M"[(At)(~Ka" + P") — Ma""" + 2Ma"], (13a)

where superscripts n — 1, n, n+ 1 stand for three successive time stages and At 1s tne time step
length. The main advantage of this approach is that if M is diagonal, the computation at each
time step is trivial. Unfortunately, for the quadrilateral isoparametric plate elements used in the
spatial discretization, M is not diagonal and a special mass lumping scheme is used to bring
about the diagonalization of M

A diagonal mass matrix that is more sophisticated than a lumped mass matrix can be
derived from a consistent mass matrix and is discussed elsewhere [7].

After the mass matrix is diagonalised, equation (13a) can be rewritten as

artl= [(At)z/M,-i] [—- Y K,a;+ P’ —a" 1+2a", (13b)
j=1

where m denotes the number of nodal variables. If values of a® and 4° are prescribed as initial
conditions, a special starting algorithm can be written by noting that

a®=(a'—a™")2A¢ (13¢)

and eliminating a~' from equation (13b) leads to the expression

NN
aj= (Atz/szi)[_ )» Kijal(')+Pi0 +a+a) At (13d)
i=1

Numerical results and discussion

In the present study the four-node linear, the eight-node serpendipity, and the nine-node
Lagrangian quadrilateral isoparametric elements were employed. Since the element accounts
for the transverse shear strains, reduced integration was employed to evaluate the shear terms
numerically. That is, the 3 X 3 Gauss rule was used to integrate the bending and the inertia
terms and the 2 X2 Gauss rule was used to integrate the shear energy terms. All the
computations were carried on a CYBER 180,/840 Computer in single precision. Due to the
biaxial symmetry of the problems discussed, only one quadrant of the plate was analysed
except for angle-ply laminates, which are analysed as full plates. In all of the numerical
examples presented herein, zero initial conditions were assumed.

The following three sets of data were used in obtaining the numerical results:

a=b=25cm, ¢=10N/cm’
Data 1.
Face sheets [3]
E, =1.308 X 10" N/cm?, E,=1.06 X 10® N/cm?,
G, =G;3;=6X10° N/cm?, G,;=3.9%x10° N/cm?,
p=1.58 X107°N s?/cm*, »=0.28.



312 T. Kani, Mallikarjuna / Transient dynamics of composite sandwich plates
Core [2]
G, =1.722x10* N/cm?,  G;3=15.206 X 10* N /cm?,
p=1.009 X 10"¢ N s?/cm*.
Data 2 [20]
E,=2.1x10° N/cm?, E,/E, =125, Gy, =Gy = G3=05E,,
p=8x%10"° Ns*/cm*, »=0.25.
Data 3

Face sheets [8]

E,=E,=6.895x10° N/em?,  »=0.33,
G,,=G,, =G, =2.592x10° N/cm?,
p=2.821x10"° N s?/cm®.

Core [8]

p=1242%x10"% N s?/cm*,

Case 1. G, =5.17x10* N/cn?, G,,=1.344 X 10° N /cm?,
Case I: G, ,=517x10° N/cn?, G,, =1.344 X 10* N /cm??,
Case III:  G,,=5.17x10%> N/cn?, G,,=1.344 X 10* N /cm’.

v, = (E,/E,) vy ; directions 1 and x are coincident.

q(t) q(t)
q a, {
|
t L -t
to
—a; — TIME TIME
Qp=TON/cm 2
Wy (b) LOADING CONDITIONS
T D LN P T O PO
(a) GEOMETR v
— A
yu°=w°=9,:0 Ugs Vozws, =20 :%:0
Sk ;
uo =0 :vo =0 Uo=0 u°_=8
Ox=0 HWo =0 8,0 \viro:o
0=
II 8y=0 ,ex =0
! g :
! X 9y-° X
Vo = Byz0 Vo z8y= 0
(¢) siMPLY SUPPORTED (d) CLAMPED BOUNDARY
BOUNDARY CONDITIONS CONDITIONS

Fig. 2. Geometry, loading and boundary conditions.
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Table 1
Convergence of centre deflection and stress for different time steps and meshes with 4-noded elements
Time wyx10® Ar=4ps Ar=5ps At=10ps
10]
(bs) o™ 2X2  3x3  4x4 2x2  3x3  4x4° 2Xx2 3x3° 4x4°
40 wo 0.2340  0.2350 0.2348 0.2339  0.2349 0.2337
o, 51.656 50.548 48.656 51.847 50.621 53.458
80 wo 0.9538  1.0019 1.0259 0.9541 1.0024 0.9569
a, 181.22 20432 21545 181.15  204.90 181.46
120 wo 1.8251 1.8784 1.8843 1.8256 1.8788 1.8302
o, 34514 387.96 404.82 34472 387.03 340.67
160 wo 21375 19669 1.9163 21372 1.9661 2.1345
o, 403.84 420.81 418.09 404.25 42059 404.54
200 wo 16977 1.5661 1.5438 1.6970  1.5666 1.6905
o, 329.63  340.02 346.97 33025 340.51 337.67

Data 1, 5 layers, 0°/90° /core/0°/90°, hg=hgy=0.5, heore =3.0, a/h=5
* Unstable

In order to investigate the numerical convergence and accuracy of the transient behaviour of
the composite sandwich plate, a simply supported plate with a suddenly applied uniform pulse
loading was analysed using Data 1. The plate geometry, a typical finite element mesh,
boundary conditions of the quarter model, and applied loading are shown in Fig. 2. The
estimate of the critical time step is crucial in transient analysis of composite sandwich plates.
Tables 1, 2, and 3 present center deflection and normal stress of 4-, 8-, and 9-noded elements,
respectively, for different meshes and time steps. From these tables it is found that the safe
estimate of the critical time step length given by Leech [13], and Tsui and Tong [26] are valid
only for isotropic plates. The estimate of the critical time step length given by Tsui and Tong
[26] is used with minor modification in this study. It is thus given as

p(1=»?)/E,R i
2+0.83(1 — »)(1+1.5(L,/h))’

At L

Table 2
Convergence of centre deflection and stress for different time steps and meshes with 8-noded elements
Time wox10® At=05ps At=1ps At=2ps
1
CORE 4 Ix2  3x3  4x4 2x2  3x3  4x4 2x2  3x3° 4x4°
40 wo 0.1573  0.2353  0.2487 0.1569 0.2346 0.2489 0.1553
o, 41.851 42349 45.686 41.805 42.382 45.661 41.535
80 wo 1.0532 1.0679 1.0638 1.0536 1.0669 1.0661 1.0556
o, 228.62 22734 22722 228.71 22723 22747 229.07
120 Wo 19578 1.8598 1.8680 1.9578 1.8587 1.8685 1.9574
o, 440.25 430.63 424.65 44020 43032 42453 439.85
160 wg 1.9208 1.8650 1.8917 1.9199 1.8644 1.8943 1.9164
o, 42516 42541 42473 42501 42508 42533 424.37
200 wo 14901 15270 1.5189 14922 1.5289 1.5171 1.5009
o, 34564 357.19 359.18 34586 357.27 359.48 346.97

Data 2, 5 layers, 0°/90° /core/0°/90°, hg=hgy=0.5, hooe =30, a/h=5
2 Unstable
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Table 3
Convergence of centre deflection and stress for different time steps and meshes with 9-noded elements
Time wyx10® Ar=05ps Ar=1ps At=2ps
(bs) o 2x2  3x3  4x4 Ix2  3x3  4x4 2x2  3x3  4x4>
40 wo 02344 02343 0.2346 02344 02343 0.2345 0.2343  0.2343
o, 45419 45093 45510 45418 45.099 45.487 45412  45.142
80 wo 1.0779 1.0784 1.0798 1.0780 1.0785 1.0800 1.0784 1.0791
a, 236.14 23472 23454 236.24 234777 23459 236.65 235.09
120 wo 1.8508 1.8531 1.8473 1.8507 1.8531 1.8471 1.8505 1.8530
a, 42506 422.86 418.83 42498 422.83 41878 42505 42281
160 wo 1.8947 1.8925 1.8923 1.8946 1.8926 1.8922 1.8944 1.8931
o, 424.74 42296 42224 42453 42291 421.99 423.61 422.50
200 wo 1.5279 1.5192 1.5247 1.5281 15192 1.5248 1.5286 1.5197
o 368.00 364.94 366.39 368.02 36493 366.25 367.57 364.96

Data 2, 5 layers, 0°/90°/core/0°/90°, hg=hgy=0.5, heore =3.0, a/h =5

2 Unstable.

where R = E, /E,, L, is the smallest distance between adjacent nodes in any element used. The
solution obtained by using a four-node element with Az =4 ps, and eight- and nine-node

elements with At =1 ps is found suitable for all cases.

Table 4

Comparison of transverse deflections wg X103 (cm) obtained in the present study with those obtained by the classical
plate theory (CPT) and closed-form solution (CFS) [20] for a composite square plate (Data 2, a /h = 5) under suddenly

applied sinusoidal pulse load

Lamination scheme ? Layers
1 2 3 4 5 6 7 8
CP, R=25 Present 0.3582 0.4606 0.3399 0.2951 0.2929 0.2815 0.2825 0.2776
(85) (98) (83) an an (75) (75) 5)
CFS 0.3566 0.4604 0.3386 0.2947 0.2924 0.2809 0.2817 0.2765
(90) (100) (85) (80) (80) (80) (80) (80)
CPT 0.1272 0.3153 0.1272 0.1493 0.1272 0.1366 0.1272 0.1325
(55) (85) (55) (60) (55) (55) (55) (55)
CP, R=40 Present 0.3243 0.3833 0.2993 0.2448 0.2473 0.2352 0.2376 0.2323
(82) (89) (78 (70) (70) 68) 69) (68)
CFS 0.3233 0.3824 0.2985 0.2438 0.2473 0.2352 0.2376 0.2323
(85) (90) (80) 75) 5) (70) 70) (70)
AP, R=125 Present 0.3394 0.2283 0.2205 0.2180
(84) 67) (66) (66)
CFS 0.3387 0.2277 0.2196 0.2170
(85) (70) (70) (70)
AP, R=40 Present 0.2830 0.1986 0.1932 0.1915
(76) (63) (62) (62)
CFS 0.2826 0.1977 0.1922 0.1885
(80) (65) (65) (65)

Values between parentheses denote the time (in ps) at which the maximum centre deflection occurred

* CP = cross-ply (0°/90°/0°/...); AP = angle-ply (45°/—45°/45°/...); R=E,/E,; qo=10 N/cm?. Boundary

conditions used for angle-ply laminates are the same as given in [20]
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Fig. 3. Effect of shear and side—thickness ratio on the transient response of a three-layer clamped, square plate
subjected to suddenly applied pulse loading (Data 3, At =2 ps).

In order to validate the present element, a problem for which the analytical solution exists is
solved. The problem consists of a simply supported square plate (with Data 2) subjected to a
suddenly applied sinusoidally distributed pulse loading. A comparison of the effect of layers,
shear deformation, lamination scheme, and orthotropy on the center transverse deflection
obtained by the present element and by the closed-form solution [20] is shown in Table 4. It is
seen that classical plate theory predicts significantly lower values of the deflection and the
period. Since the present finite element solution is in excellent agreement with the exact
solution, the 2 X 2 mesh with a nine-noded Lagrangian element was used in all of the problems
to be discussed.

The effect of shear modulii of core materials and side-thickness ratio on the transient
response of a three-layer clamped, square plate subjected to a suddenly applied uniform pulse
loading (Data 3) is shown in Fig. 3. Although the effect of transverse shear modulii (G,, and
G,,) of core material is not prominent, the deflection and period decrease with increasing
thickness of the plate. The effect of plate thickness on the amplitude and period of the
deflection is clear.

Figures 4 and 5 show plots of center deflection and normal stress for a five-layer simply
supported plate (Data 1). From these figures, it is found that the effect of transverse shear
modulii of stiff layers is very significant on the transient behaviour of sandwich plates. The
composite sandwich plate, neglecting transverse shear modulii of stiff layers predicts higher
values of deflection, period, and stresses. The effect of transverse shear modulii of stiff layers
on the transient response of a sandwich plate is clear.

The material properties of Data 2 for facings and core material properties of Data 1 with a
full plate model were used in the following example. To further investigate the effect of the
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Fig. 4. Effect of transverse shear moduli of stiff layers on the transient response of five-layer (0°,/90°/core/90°,/0°)
simply supported plates under suddenly applied pulse loading (Data 1, Ar=2 ps, a/h=10, hy=hgy = 0.125,
heore = 2.0).

angle and material orthotropy on the center transverse deflection and normal stress, a simply
supported plate subjected to a suddenly applied sinusoidal loading was analysed by considering
the full plate model (Fig. 6). The effects on the amplitude and period of the deflections and

w
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~ w
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0 %0 760 35 3% 00 z60 560 640 750 860
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Fig. 5. Center normal stress versus time for five-layer (0°/90°/core/90°,/0°) simply supported plates under pulse

loading (Data 1, At =2 us, a /h =10).
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Fig. 6. Effect of lamination angle and material orthotropy on the solution of five-layer simply supported plates under
suddenly applied sinusoidal loading (Data 1, At =1 us, 4X 4 full plate, hy = 0.5, h_,.. =3.0, a/h=5).

stresses are clearly nonlinear. Since no damping or internal friction is included in the present
model, the solutions do not decay with time.

Conclusions

Numerical results of the transient dynamic analysis of composite sandwich plates based on
Mindlin’s theory are presented. The shear flexible element employed herein is stable and
accurate in predicting the transient response of sandwich plates. The transverse shear rigidity
modulii of stiff layers on the transient response of sandwich plates are significant. All of the
results presented herein for sandwich plates must be validated by an independent investigation.
However, on the basis of the excellent agreement of the present results with analytical results
for generally orthotropic plates, it is fair to say that the element is accurate in predicting the
transient response of composite sandwich plates.

The extension of these analyses to nonlinear (large rotations) transient response of com-
posite sandwich plates is awaiting attention. An accurate prediction of the wave propagation in
composites can be made only if a three-dimensional theory of inhomogeneous plates is used.
The analysis presented here can also be extended to certain shell problems.

Acknowledgement

Partial support of this research by the Aeronautics Research and Development Board,
Ministry of Defence, Government of India through its Grant No. Aero/RD-134,/100/84-
85/362 is gratefully acknowledged.



318 T. Kant, Mallikarjuna / Transient dynamics of composite sandwich plates

References

[1]1 AuMED, K. M., “Static and dynamic analysis of sandwich structures by the method of finite elements”, J. Sound
Vib. 18, pp. 75-91, 1971.

[2] ALLEN, H.C., Analysis and Design of Structural Sandwich Panels, Pergamon Press, London, 1969.

[3] CHirns, D.S. and P.A. LaGACE, “Thick composite plates subjected to lateral loading”, J. Appl. Mech. 54, pp.
611-616, 1987.

[4] Hasrp, LM., “A review of recent Russian work on sandwich construction”, Int. J. Appl. Mech. Sci. 6, pp.
381-390, 1951.

{5] Habrp, L.M., “A survey of modern developments in the analysis of sandwich structures”, Appl. Mech. Rev. 18, pp.
93-98, 1965.

[6] HintoN, E., “The flexural analysis of laminated composites using a parabolic isoparametric plate bending
element”, Int. J. Num. Meth. Eng. 11, pp. 174-179, 1977.

[7] HintoN, E., B-Rock and O.C. ZIENKIEWICZ, “A note on mass lumping and related processes in the finite element
method”, Earthquake Eng. Struct. Dyn. 4, pp. 245-249, 1976.

[8] Iu, V.P, Y.K. CHEUNG and S.L. LAu, “Nonlinear vibration analysis of multilayer beams by incremental finite
elements—I: Theory and numerical formulation”, J. Sound Vib. 100, pp. 359-372, 1985.

[9] Jongs, R M., Mechanics of Composite Materials, McGraw-Hill, New York, 1975.

[10] KanT, T. and N.P. SaHANI, “Fibre reinforced plates—Some studies with a 9-noded Lagrangian/Hetarosis
element”, Trans. 8th Int. Conf. Struct. Mech. Reactor Tech. SMIRT-8, Paper 88 /7, pp. 315-320, 1985.

[11] KHATUA, T.P. and Y.K. CHEUNG, “Triangular element for multilayer sandwich plates”, J. Eng. Mech. Div. ASCE
98, pp. 1225-1238, 1972.

[12] KHATUA, T.P. and Y.K. CHEUNG, “Bending and vibration of multilayer sandwich beams and plates”, Int. J. Num.
Merh. Eng. 14, pp. 942-945, 1979.

[13] LeecH, J.W., “Stability of finite difference equations for transient response of flat plates”, 4144 J. 3 (9), pp.
1772-1773, 1965.

{14] MiNDLIN, R.D., “Influence of rotary inertia and shear on flexural motions of isotropic elastic plates”, J. Appl.
Mech. 18, pp. 31-38, 1951.

[15] MoNFORTON, G.R. and L.A. ScuMITT, “Finite element analysis of sandwich plates and cylindrical shell with
laminated faces”, Proc. Conf. Matrix Method Struct. Mech., Wright Patterson Air Force Base, Ohio, pp. 573-616,
1969.

[16] NooOR, A.K. and M.D. MATHERS, “Anisotropy and shear deformation in laminated composite plates”, 4144 J. 14,
pp- 282-285, 1976.

[17] PacaNo, N.J., “Exact solutions for rectangular bidirectional composites and sandwich plates”, J. Compos. Mater.
4, pp. 20-34, 1970.

[18] PaNDA, S.C. and R. NATARAJ, “Finite element analysis of laminated composite plates”, Int. J. Num. Meth. Eng.
14, pp. 69-79, 1979.

[19) PLANTEMA, F.J., Sandwich Construction, John Wiley, New York, 1966.

[20] RepDY, JN., “On the solutions to forced motion of rectangular composite plates”, J. Appl. Mech. 49, pp.
403-408, 1982.

[21] REISSNER, E., “The effect of transverse shear deformation on the bending of elastic plates”, J. Appl. Mech. 12, pp.
A69-AT7, 1945.

[22] REISSNER, E., “On bending of elastic plates”, Q. Appl. Math. 5, pp. 55-68, 1947.

[23] REISSNER, E., “Finite deflections of sandwich plates”, J. derosp. Sci. 15, pp. 435-440, 1948.

[24] REISSNER, E., “Finite deflections of sandwich plates”, J. derosp. Sci. 17, p. 125, 1950.

[25] - TIMOSHENKO, S., Vibration Problems in Engineering, 2nd edn., Constable, London, 1937.

[26} Tsui, T.Y. and P. ToNG, “Stability of transient solution of moderately thick plates by finite difference methods”,
AIAA J. 9, pp. 2062-2063, 1971.

271 Yu, Y.Y., “A new theory of elastic sandwich plates—One dimensional case”, J. Appl Mech. 26, pp. 414-421,
1959.

[28] Yu, Y.Y., “Forced flexural vibrations of sandwich plates in plane strain”, J. Appl. Mech. 27, pp. 535-540, 1960.

[29] Yu, Y.Y., “Flexural vibrations of elastic sandwich plates”, J. Aerosp. Sci. 27, pp. 272-282, 1960.

[30] Yu, Y.Y., “Simplified vibration analysis of elastic sandwich plates”, J. Aerosp. Sci. 27, pp. 894-900, 1960.



