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Abstract. A simple C o isoparametric finite element formulation based on a set of higher-order displacement 
models for the analysis of symmetric and asymmetric multilayered composite and sandwich beams subjected to 
sinusoidal loading is presented. These theories do not require the usual shear correction coefficients which are 
generally associated with the Timoshenko theory. The four-noded Lagrangian cubic element with kinematic 
models having four, five and six degrees of freedom per node is used. A computer algorithm is developed which 
incorporates realistic prediction of transverse interlaminar stresses from equilibrium equations. By comparing 
the results obtained with the elasticity solution and the CPT (classical laminated plate theory) it is shown that 
the present higher-order theories give a much better approximation to the behaviour of laminated composite 
beams, both thick and thin. In addition numerical results for unsymmetric sandwich beams are presented which 
may serve as benchmark for future investigations. 

Introduction 

Laminated composite structures offer the advantages of high strength-to-weight ratio and 
the possibility of optimum design through the variation of fiber orientation, stacking pattern 
and choice of fiber and matrix material. They evidence the behaviour of isotropic, orthotropic 
or anisotropic materials depending upon the particular configuration. But the presence of free 
edges in composite structures often gives rise to a complex three-dimensional stress field with 
steep gradients. This phenomenon has been studied both experimentally and analytically to a 
considerable depth during the last two decades. It is believed that delamination occurring near 
the free edges is due to the steep interlaminar stress gradients in the free edge region. However, 
much controversy still exists regarding the nature and magnitude of the interlaminar free edge 
stresses. Thus, in this paper an attempt has been made to evaluate accurately the interlaminar 
stresses in composite and sandwich beams. 

Analysis of a beam in the past has been done by many investigators using the theories of 
Euler-BernouUi [12] and Timoshenko [10]. In case of deep beams with low l / h  ratios where 
shear effects can not be neglected Euler-Bernoulli theory leads to serious discrepancies. 
Further, it is computationally inefficient from the point of view of simple finite element 
formulations. 

Timoshenko [10] improved this theory by incorporating effects of transverse shear strain into 
the governing equation system. The resulting transverse shear distribution was constant through 
the beam thickness and thus a shear correction coefficient, which is somewhat arbitrary, was 
introduced to correct the strain energy of deformation. Many investigators have worked on 
Timoshenko's theory [1,5,6] and some of them have given new expressions for shear correction 
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coefficients for different cross-sections of the beam. But in the case of composite beams, the 
discrepancy between the results of Timoshenko's theory and the elasticity theory is seen to be 
large, even after refining the values of shear coefficients. 

A second-order beam theory similar to Timoshenko's beam theory has been given by 
Stephen and Levinson [9]. This theory, however, contains two coefficients, one of which 
depends on cross-sectional warping, while the other, although similar in form, also includes 
terms dependent on the transverse direct stress. Levinson [3,4] has developed a new fourth-order 
beam theory, which requires two boundary conditions at each end of the beam. Here, 
transverse shear deformation and cross-sectional warping are taken into account and thus, 
shear correction coefficients are not used. This displacement hypothesis, however, is too poor to 
adequately describe the two-dimensional displacement pattern. Rychter [8] has improved the 
consistency and accuracy of Levinson's theory by imbedding in it the two-dimensional linear 
theory of elasticity. 

The main aim of the present work is to develop refined theories which can accurately 
evaluate the interlaminar stresses by using C O finite element discretization. These theories 
include all the secondary effects such as transverse shear stress, transverse shear stain, 
transverse normal stress and strain and their variation across the beam thickness [2]. 

Theory and formulations 

A set of theoretical models are developed based on the following kinematic assumptions. 
These are designated as hOST1, hOST2, etc. (see Fig. 1) 
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Fig. 1. Laminate geometry with positive set of lamina/laminate reference axes and displacement components. 
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HOSTI  

, ( x ,  z)  = Uo(X) + , ¢ ( x ) ,  

w(x, 2) = Wo(~) + 2Oz(~), (1) 

HOST2 

u(x, 2) = Uo(X) + ~¢(~) + :uS(~) ,  
w(~ ,  2) = Wo(X) + 2 o , ( : ) .  (2) 

HOSt3 

u(x, 2) = Uo(X) + 2 ¢ 0 , )  + : o r ( x ) ,  

w(x, ~) -- Wo(~) + ~ ¢ ( x ) ,  (3) 

HOST4 

u(x ,  z)  = Uo(X ) + ZOx(X ) + : u ~ '  ( x )  + :Ox*(X), 

w(x,  z) = Wo(X ) + zOz(x ). (4) 

where the parameters u and w define the displacements of any point (x,  z) in the beam 
domain in the x- and z-directions respectively. The parameters u0, w0, Ox, Oz, u~' and 0* are 
the appropriate one-dimensional terms in the Taylor series and are defined along the x-axis at 
Z ~ 0 .  

Here only derivations for HOST4 are presented. Other theoretical models become special 
cases of HOST4. The variations in the case of HOST1, 2 and 3 are given concisely in the 
Appendix. By substituting eqn. (4) into the strain-displacement relations of three-dimensional 
elasticity [11], the following relations are obtained: 

3 . 
~'x -~ ~'xO + ZKx + Z2Cx*O + Z K x , 

£z = CzO, 

~,xz = ~, + 2,,,,z + z%*, (5) 

where, 

. . [OUo aOx Ou3' OO~* ] 
[~xO, Kx, CxO, K x , q O ] =  Ox' Ox' Ox ' Ox'Oz , 

[ ~w0 OOz ] 
[~, rxz, ~* ] = 0x + --~-,  2u~ + -~ - ,  30* , (6) 

Each lamina in the laminate is assumed to be in a two-dimensional state of stress, so that the 
constitutive relation for a typical lamina L can be written as 

"r~z GJD%J 
where 

El vI2E2 E2 
= , C12 = , C22 = , (8) 

C l l  1 - v12v12 1 - -  P121,,12 1 - -  lt12P12 

and o x, o z, %z are the stress and Cx, %, Yxz are the strain components referred to the 
lamina/laminate coordinates (x-z).  
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The total potential energy H of the beam can be written as, 

I I =  ½ fz~T6 d x - -  f f f  Tpo dx ,  

in which 

6 = [N x, N,, Nx*, M x, M : ,  Q, Q*,  S] T, 

= [~xO' CzO' ExO' ICx' ICx' qJ' ~*' ICxz] T' 

. T a = [Uo, Wo, oz, u¢,  o; ] , 
. T 

Po = [ P~o, P,o, mxo, m,o, P*o, mxo ] • 

The stress-resultants in eqn. (10) are defined as follows: 

N~ 0 0 = ~+' o~ [1, Z, g z, g 3] dz. 

Qx S Q* L=I Txz] 

After integration, these stress-resultants are written in matrix form as follows: 

8 = D ~ ,  

where the form of the matrix D is, [> os], 

/)MB = 

C l l h l  C12hl 

NL C22hl 

symm. 
L=I  

Cllh3 

C12h 3 

Cllh5 

Cllh2 C11h 4 " 

C12h2 C12h4 

Cnh4 Cllho , 

Cllh3 Cllh5 

Cllh7 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

Ghl Gh3 Gh21 NL 

Ds = E Oh.I ,  (15) 
l 

L=I symm. Gh3J 

, i (16) h i = l / i  (hL+ 1 - h L ) ,  i = 1 , 2  . . . . .  7. 

The interlaminar shear and normal stresses (rx,, az) cannot be accurately estimated by eqn. 
(7). This is mainly due to the fact that these stresses have to maintain continuity across the 
interfaces whereas constitutive laws are discontinuous. The three/two-dimensional analysis 
becomes very complex due to thickness variation of constitutive laws and continuity require- 
ments across the interface. Thus, the interlaminar shear and normal stresses for any layer L at 
z is obtained by integrating the two equilibrium equations of two-dimensional elasticity for 
each layer over the lamina thickness and summing over layers 1 to L as follows. 

The equations of equilibrium representing the point wise equilibrium can be written as, 

rij,j = O, i, j = X, Z. (17) 

Substituting the lamina stresses in eqn. (17) and integrating, the following expression for 
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interlaminar shear stress is obtained. 

L fh,+, 8o~ 
I+=,,L+, = - E j,,, - f f  dz + c, .  (18) 

i=1  

A second-order differential equation is obtained for interlaminar normal stress in terms of 
in-plane stress after eliminating the interlaminar shear stress from eqn. (17). 

02o+ :Ox 
aZ 2 aX 2 . (19) 

The following equation is obtained for interlaminar normal stress after integrating eqn. (19) 
twice, 

'+ : ,+ , (  fO Ox ) 
o?[+=h++, = ,=rE Sh, ~Jz~x 2 dz d z + z C 2 +  C3. (20) 

Thus, it is seen that interlaminar stresses can be obtained by using stress equilibrium 
equations. For  calculating in-plane stresses and stains, displacement-based finite dement  
models can be used. In this manner stresses in the laminate can be evaluated. However, in eqn. 
(18) for interlaminar shear stress, it is seen that the values obtained may not in general satisfy 
beam boundary conditions at z = + h/2,  as only one constant of integration is present. 

This problem does not arise in the case of o z, as here two constants of integration, obtained 
by integrating twice, can be determined by substituting two boundary conditions at + = + h/2.  
Equation (18) is substituted in the second equilibrium equation to get the continuity of oz 
across the thickness. Equation (20) is solved as a boundary value problem instead of an initial 
value problem as in eqn. (18). However, this requires the use of at least a cubic element, so that 
the third derivative of displacements can be determined. For  this reason, a four-noded cubic 
element is used here in the numerical study. 

Finite element formulation 

We follow the standard finite element technique, in which the total solution domain 13 is 
subdivided into NE  sub-domains (elements) 131, 132 . . . . .  13t,+E such that, 

NE 

/ - / (d)  = Y'. H e ( d ) ,  (21) 
e ~ l  

in which H and/- /e  are the total potential energies of the system and the element, respectively. 
We further express 

l'~e(d) ~- U e -  W e, (22) 

where U e and W e are the internal strain energy and the external work done, respectively, for 
the element e. In C O finite element theory, the continuum displacement vector within the 
element is discretized such that 

NN 

d =  ~_, N t ( x ) d  i, (23) 
i ~ l  

where N/(x) is the interpolating function associated with node i, N N  is the number of nodes in 
an element and di is the generalized displacement vector corresponding to the i th node of an 
element. 
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Knowing the generalized displacement vector d at all points within the element, the 
generalized strain at any point given by eqn. (6) can be expressed in matrix form as follows 
[12]: 

NN 

i = E Bidi. (24) 
i=1 

The matrix B i has a dimension of (8 × 6) in which the non-zero elements are 

B1,1 = B3, 5 = B4, 3 = Bs, 6 = B6, 2 = B8, 4 = ~Ni/ax , 

B2, 4 = Br. 3 -- N/, ns, 5 -- 2N/, n7, 6 = 3N/. (25) 

Upon evaluating matrices D and Bi as given by eqns. (13) and (25), respectively, the element 
stiffness matrix can be computed by using the standard relation [12]: 

e f + l  t 
KiJ = "]-1 BiDBjl J I d~. (26) 

The computation of the dement  stiffness matrix K e is economised by explicit multiplication 
of the matrices B~, D and Bj instead of carrying out the full matrix multiplication of the triple 
product. In addition, due to symmetry of the stiffness matrix, only blocks Kij lying on one side 
of the main diagonal are formed. The integral is evaluated by a selective integration technique 
with four and three Gauss quadrature rules for membrane-flexure and shear parts, respectively, 
as follows. 

g 

K~j = ~ WaBtDBjl J I, (27) 
a = l  

where W a is the weighting coefficient, g is the number of numerical quadrature points and I J I 
is the Jacobian conversion. 

The consistent load vector p~ due to a uniformly distributed transverse load q can be written 
as  

r + l  t 
Pi = ' ]_  1 N / P 0  1 J ]  d~. ( 2 8 )  

The integral of eqn. (28) is evaluated numerically using the four-point Gauss quadrature 
rule. The result is 

g 

P, = E W,N~t( 0, q, O, qh/2 ,  0, 0) I J I- (29) 
a = l  

In the consistent load vector, the sinusoidal transverse load can be obtained by using the 
following substitution in eqn. Eq. (29) 

q = qo s in(mqrx/ l )  (30) 

where l is the beam dimension, x is the Gauss point coordinate and m is the usual harmonic 
number. 

Numerical results and discussions 

A number of computer programs incorporating the present higher-order theories are 
developed for the analysis of symmetric and unsymmetric laminated composite and sandwich 
beams. All the computations were carried out on a CYBER 180/840 computer in single 
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precision with a word length of 16 significant digits. The following material properties have 
been considered to simulate a high modulus graphite/epoxy composite: 

Ett = 25 × 10 6 psi, 

Gtt = 0.50 × 106 psi, 

Boundary conditions: 

E t -- 1 × 106 psi, 

tit = 0.25. 

Wo = 0z = 0, at x = 0  and 1, (31) 

where l signifies the direction parallel to the fibers, t is the transverse direction and vtt is the 
Poission's ratio measuring the strain in the transverse direction under uniaxial normal stress in 
the l direction. 

The following three problems are considered for the comparison of displacements and 
stresses with the elasticity and CPT (classical laminated plate theory) solutions [7]. 
(1) An orthotropic beam with fibers oriented in the x-direction. 
(2) An orthotropic coupled laminate with the t and l directions aligned parallel to x in the top 

and bottom layers respectively, the layers being of equal thickness. 
(3) A symmetric three-ply orthotropic beam with the ! direction coinciding with x in the outer 

layers while t is parallel to x in the central layer, the layers being of equal thickness. 
A shear correction coefficient of 1.2 is used for HOST1, since it does not contain the 

higher-order terms. The following non-dimensionalised quantities are used in connection with 
Figs. 2-5, 

ox(l/2, z) oz(l/2, z) ~'xz(O, z) 
~x , ~ , ~xz = , q q q 

Etu(0, z) lOOEthaw(l/2, 0) (32) 
hq ' q l  4 

Figures 2(a), 3(a) and 4(a) show the relationship between maximum deflection w 0 and l/h 
for the problems considered. The present theories slightly underestimate the values compared 
to elasticity solutions for lower values of l/h for Case 2 and Case 3. As expected for higher 
values of l/h all theories give the same values. The CPT underestimates the deflection and 
gives very poor estimates for relatively low values of l/h. The variation of in-plane stress 
through the beam thickness is shown in Figs. 2(b), 3(b) and 4(b) for l/h = 4. hOST3 and hOST4 
estimate values very close to the elasticity solution compared to models hOST1 and rIOST2, with 
the latter group following the path of CPT. Next the variation of the same for l/h = 10 is 
shown in Figs. 2(d) and 4(d) for Case 1 and Case 2. Here also the results of HOST3 and HOST4 
are close to elasticity solution compared to HOST1 and hOST2, with difference in results 
reducing considerably. 

The distribution of rx~ through the beam thickness is shown in Figs. 2(c), 3(c) and 4(c) for 
the Cases 1, 2 and 3, respectively, for l/h = 4. Here the results of rIOST3 and HOST4 match well 
with the elasticity solution compared to hOST1 and HOST2. But the difference in the results with 
the elasticity solution is more significant in Case 3. Hence, in Fig. 4(e) the distribution of the 
same for l/h = 10 is shown. Here also the results of hOST3 and hOST4 are close to the elasticity 
solution compared to HOST1 and HOST1. 

The variation of o~ along the beam thickness is shown in Figs. 3(d) and 4(d) for Case 2 and 
Case 3 for l/h = 4. The results of the present theories follow the same path as that of the 
elasticity solution. The CPT overestimates the values and follows a different path. 

Next, a simply supported unsymmetric sandwich beam under sinusoidal loading is consid- 
ered. The following material properties are used. 
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Fig. 2a, Variation of displacement w 0 with the l /h  ratio for a unidirectional beam (Case 1). 
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Fig. 2b. Variation of in-plane stress through the thickness for a unidirectional beam (Case 1). 
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Fig. 2c. Variation of interlaminar shear stress through the thickness for a unidirectional beam (Case 1). 
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Fig. 2d. Variation of inplane stress through the thickness for unidirectional beam (Case 1). 
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Fig. 3a. Variation of displacement w 0 with the l /h  ratio for an unsymmetrical beam (Case 2). 
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Fig. 3b. Variation of in-plane stress through the thickness for an unsymmetrical beam (Case 2). 
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Fig. 3d. Variation of interlarninar normal stress through 
the thickness for an unsymmetrical beam (Case 2). 
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E 1 = E 2 = 107 psi, 
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The results for displacement, in-plane stress and interlaminar shear stress for different l / h  
ratios are given in Table 1. The variations of u, "rxz, o x and oz along the beam thickness are 
shown in Figs. 5(a), 5(b), 5(c) and 5(d) for l / h  = 4. Large differences in displacement and 
stresses are obtained for hosT4 compared to HOST1, 2, 3 and Timoshenko theory for thick 
beams ( l / h  <<. 4). The results almost converge to the latter group for relatively thin sandwich 
beams ( l / h  >~ 50). 

C o n c l u s i o n s  

A simple C O isoparametric formulation of a set of higher-order theories (HOST2, HOST3 and 
HOST4) for the analysis of composite and sandwich beams subjected to sinusoidal loading is 
presented. These theories do not require the usual shear correction coefficients (except for 
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Fig. 4a. Variation of displacement w 0 with the l /h  ratio for a symmetrical beam (Case 3). 
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Fig. 4c. Variation of interlaminar shear stress through the thickness for a symmetrical beam (Case 3). 
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hOST1) generally associated with Timoshenko theory. By comparing the results obtained with 
the elasticity solution and CPT, it is obvious that the present higher-order theories give a much 
better approximation to the behaviour of composite laminates. This is especially true in the 
case of relatively thick laminates where the effects of transverse components of stress and strain 
cannot be neglected. Our emphasis here was to establish the credibility of our formulations to 
predict, especially the interlaminar stresses. For this reason, we limited ourselves to problems 

Table 1 
Displacement and stresses for a sandwich beam 

Models I/h ~0/10  6x/103 qxez 

HOST1 2.732438 20.10 
HOST2 2.661469 19.91 
HOST3 4 8.864891 26.29 
HOST4 9.265313 26.03 
Timoshenko 2.870984 16.95 

HOST1 2.130190 125.70 
HOST2 2.117940 125.50 
HOST3 10 3.132560 132.00 
HOST4 3.199090 131.70 
Timoshenko 2.262840 105.90 

HOST1 2.019136 3141.0 
HOST2 2.018640 3141.0 
HOST3 50 2.059384 3148.0 
HOST4 2.062072 3148.0 
Timoshenko 2.151632 2648.0 

1.454 
1.454 
1.420 
1.421 
1.208 

3.637 
3.637 
3.622 
3.622 
3.021 

18.18 
18.18 
18.18 
18.18 
15.10 
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Fig. 5a. Variation of in-plane displacement through the thickness for a sandwich beam. 
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Fig. 5b. Variation of interlaminar shear stress through the thickness for a sandwich beam. 

for which elasticity solutions are available. The numerical estimates of the interlaminar normal 
stress, which is of paramount importance in the delamination studies, was not available todate. 
This was due to the problem of high-order numerical differentiation in the longitudinal 
direction associated with the integration of the elasticity equilibrium equations. The use of 
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Fig. 5c. Variation of inplane stress through the thickness for a sandwich beam. 
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Fig. 5d. Variation of interlaminar normal stress through the thickness for a sandwich beam. 

cubic element seems to have given fairly accurate estimates of  these stresses. While the 
discussion here is limited to a particular type of  loading and bounda ry  conditions, these 
theories can be used to deal with any type of  loading and bounda ry  conditions.  
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The results obtained from HOST1 and HOST3 follow close to the results of HOST2 and HOST4 
respectively, with the results of HOST3 matching well with the elasticity solution for symmetric 
composite and sandwich beams. This is due to the fact that the inplane deformation of the 
reference axis becomes negligible for symmetric laminates under transverse loading pattern. 
Thus HOST3 can be used to tackle the symmetric composite and sandwich beams. 

In unsymmetric case, the results of HOST4 match well with the elasticity solution, as the 
inplane displacement and its higher-order terms also play a paramount role in the analysis. 
Thus, this model should be used to tackle unsymmetric composite and sandwich beams. 
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Appendix 

HOSTI 

a =  (u0, w, ¢ ,  ¢)t. 

The membrane-f lexure and coupling matrix can be written as follows: 

NL [ C l l h l  C12hl C l l h 2 ]  

C22hl C12h  1, 
L=I  s y m m .  Cllh 3 J 

The D s matrix can be written as follows: 

NL [ Ghl Gh2 ] 

D s =  L=IE LGh2 G h 3 j '  

(A.1) 

(A.2) 

(A.3) 
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The non-zero dements of matrix B i (5 x 4) can be written as follows: 

B1,1 --- B3, 3 --- B4, 2 = Bs, 4 -- ONi/Ox , 

B~,~ = B~,~ = U / .  (A.4) 

HOST2 

d = ( u  o, w o , 0  x, O z, u ~ ) t .  (A.5) 

The membrane-flexure and coupling matrix of dimension (4 × 4) is equal to the first (4 × 4) 
matrix in HOST4 of the membrane-flexure and coupling matrix. 

The D s matrix is equal to the D s matrix of HOST4. The Bi matrix has dimension (6 × 5) in 
which the non-zero elements are, 

n l ,  1 = B3, 5 = B4, 3 = Bs, z = B6, 4 = aN/ / /~x ,  

Bz, 4 = Bs, 3 = N/, B6, 5 = 2N/. (A.6) 

HOST3 

d = ( u  o, w,  Ox, Oz, O* )t .  (A.7) 

The membrane-flexure and coupling matrix can be written as follows: 

I Cllhl Cazha C l l h 2  C l l h 4  ] 

NL C22hl C12h2 C12h4 / 

s y m m ,  C11h3 C'lh5 /" ( A . 8 )  L = I  

C l l h 7  J 

The D s matrix is equal to the D s matrix of HOST4. The non-zero elements of B i (7 × 5) can 
be written as follows: 

Ba, 1 = B3, 3 = B4, 5 = Bs, 2 = B7, 4 = ~Ni/Ox , 

BE, 4 = B,, 3 = Ni, B6, 5 = 3N~. (A.9) 


