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Abstract. The first-order Reissner-Mindlin shear deformation theory (FOST) is employed to investigate the 
transient response of isotropic, layered orthotropic and anisotropic composite and sandwich shells. The 
eight-noded Serendipity and nine-noded Lagrangian quadrilateral superparametric shell elements are used. 
Numerical convergence and stability of the elements are established using an explicit central difference 
technique with a special mass matrix diagonalization scheme. The effects of transverse shear modulii of stiff 
layers, length/thickness and radius/length ratios, time step, finite element mesh, orientation of fibers and 
degree of orthotropy on the transient response of shells are studied. The variety of results presented here, 
based on realistic material properties of more commonly used advanced laminated composite shells, should 
serve as references for future investigations. 

Introduct ion 

The increased use of  f iber-reinforced composites for h igh-performance design applications 
necessitates more  realistic predict ion of  the response characteristics of  composi te  and 
sandwich shells. Most  structures,  whether  they are used in land, sea or  air, are subjected to 
dynamic loads during their operat ion.  Therefore ,  there  exists a need  for assessing the 
transient  analysis of  laminated shells. To date,  however,  t ransient  response of  composite-  
sandwich shells of  finite dimensions have not  received adequate  consideration.  

A large amount  of  l i terature has been devoted to the development  of  theories for 
conventional  sandwich structures and to the study of  their static and dynamic behaviors by 
analytical and numerical  methods.  A detailed historical review is given in two books by 
P lan tema [1] and Allen [2] and in two papers  by Habip  [3,4]. The  pioneer  worker  was Reissner  
[5,6], who also studied the finite deflection problem. A few researchers  [7,8] have adopted  the 
finite e lement  me thod  in analyzing conventional  sandwich shells. In the present  paper,  the 
transient  response of  layered, composi te-sandwich shells is investigated using a shear  de- 
formable finite element.  The  H u g h e s - L i u  element  [9] is a degenera ted  3-D element,  an 
approach  originally presented  by A h m a d  et al. [10] and used by many others  [11-13]. The  
present  2-D finite e lement  formulat ion is based on A h m a d ' s  shell e lement  [10] and is 
extended for the analysis of  f iber-reinforced laminated o r tho t rop ic / an i so t rop ic  shell struc- 
tures. This study is the cont inuat ion of  the present  authors '  earlier work [14] on anisotropic 
sandwich plates. 
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Apparently, the present study is the first to consider the transient dynamic analysis of 
fiber-reinforced laminated anisotropic sandwich shell structures using a superparametric 
element. 

Equations of motion 

Finite element spatial discretization schemes, when applied to structural dynamic analysis 
problems, result in a set of ordinary differential equations. In the absence of damping, these 
equations take the form 

Mii( t )  + Ka( t ) = q( t ), (1) 

in which the dots define differentiation with time, a( t )  is the nodal displacement vector, M 
and K are the mass and stiffness matrices respectively, and q( t )  is the vector of external 
forces which varies with time t. 

Element stiffness and mass 

A typical quadrilateral shell element and the three types of coordinates, viz. nodal, local 
and global, are shown in Fig. 1. The geometric definition of the element is given in Ref. [13]. 
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Fig. 1. (a) Local and global coordinates. (b) A typical none-noded shell element. 
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The displacement components ui, u i and w i are the midsurface nodal displacements in the x, 
y and z global coordinate directions, o/i and ~i are the rotations about the Vzi and vii axes 
respectively. The vectors Fli, ~2i and U-+3i are mutually perpendicular. It is therefore conceiv- 
able that in the assembled structure, no two nodal rotation vectors will have the same 
direction. Vector F3i is defined by input data, and is presumed to span the thickness and to be 
normal to the midsurface. The displacements at any point (~:, ~7, z ' )  can be expressed in terms 
of the nodal displacements as, 

(U) NN (Ui) NN F l l i - - 1 2 i ] (  ai } 
= E Ni(~, '0) ui + E Ni(~, ~7)z'lmli --m2i fli " (2) 

i=l W i i=l Lnli -n2i  

The normal rotations a i and /3 i can be expressed in terms of global rotations Oxi, Oy i and 
0zi at each node i about the global axes x, y and z directions, respectively as 

Oxi = 12iOL i + lli[~i, Oy i = m2ioti + mlifli, Ozi = tl2iOl i 'J- nlifli. (3) 

The shape functions used for describing the geometry of the element and displacement 
variation are expressed in the natural coordinates (~, "O). The relationship between the 
natural and local coordinate systems can be computed by using the chain rule of partial 
differentiation and is given in Ref. [13]. 

The local system of axes is the most convenient system for expressing the stress compo- 
nents and their resultants for shell analysis and design. If at any point on the mid-surface, a 
normal z'  is erected with two other orthogonal axes x '  and y '  tangent to it (Fig. 1), the strain 
components of interest are given simply by the three-dimensional relationships. To more 
easily deal with the shell assumption of zero normal stress in the z '-direction (o- z, = 0), the 
strain components should be defined in terms of the local system of axes x ' ,  y ' ,  z ' .  The linear 
midplane strain-displacement relationship can now be written as follows: 

0N/, 
IF'X~ k~X t 0 = ~ mlUi+~llWi), 7x'tt 'ui  + 

EY0= k~Yt ]0 = i=l ~Yt~12Ui-'l-~12U i'j-n2Wi), 

~Ut OU t ONi(~lUi...[_~lUi..J_~lWi)..~_ n2wi ) 
")/x'y~ Oy' o Ox' o i=l Oy' Ox' 

Xx' OOy,t)X, i=l~ ON---~-iP [°li(J212iq-~12m2ibn2n2i) ~ 

_OOx, NN 0N/[ 
E Oy--'7 [ ai(-lll2i + ~tlmEi + nlH2i) 

Xy' Oy' i = 1 

+fli(illli + ~tlmli + Ttlnli)], (4) 

Xx'y' 
OOy, O0 x, 

Oy' Ox' 

~ aNir , .  
= i=l ~Ty, Jai( IEl2i +  2m2i 
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OW' ~ ONi l- 
~y ' z '=  0 T  -- 0.r ' =  ~(131~i-~-~13UiJc'n3Wi) 

i=1 

-- Ni[oli(]ll2i+~llm2i +H,?12, ) + ~ i ( ] l / l i  + m l m , ,  + n i l / l / ) ] .  

~ ,  =, = - -  + 0v, = a  x' . E ~-',( ?~u,+m~,,+n~w~) 
i=1 

Jr" Ni[oli( ]212i ~- m2m2i %- -~2712i ) -~- [~i( ]2,,i ~- m2ftlli -~- n2"li ) ] . 

where l, m and n represent the direction cosines, and NN is the number of nodes per 
element. 

The generalized strain tensor U at any point in the local coordinate system can be 
expressed by the following relation: 

NN 
C:'= E Biai, (5a)  

i - I  

where 

~'= [ex;, eye,, Yx'y;, Xx', X~.', X.,,.,.,, Yx'=;, y,, ;]f ,  (5b) 

a i =  [ui,  ci, wi, ~i, /3i] v, (5c) 

and B is the strain-displacement matrix defined in terms of the displacement derivatives with 
respect to the local Cartesian coordinates x ' ,  y ' ,  z '  by eqn. (4). The components of the 
membrane force, bending moment and shear force vectors are defined as, 

(6a) 

NL 
[Qx' QY']= E / h , ~ , [ ~ . , ,  r , . ,=,]dz.  (6b) 

L=lJhl 

Upon integration, these expressions are rewritten in a concise matrix form which defines 
the stress-resultant/strain relations of the layered sandwich shell and which is given by 

O' = D ~ ' ,  ( 7 a )  

~ ' =  [Xx, , Nv,, N~,y,, Mx,, My,, M,.,y,, Q~,, Qv,] T, (7b) 

and the rigidity matrix D is given in Ref. [14], 

o =  ~ ~ o b  0 , 7c) 
L : 1 0 D~ 

in which D m = QijH1, D c = Qz;H2, D b = Qi;H3 and D~ = QmlHl are the membrane rigidity, 
coupling between inplane and bending rigidity, flexural rigidity and shear rigidity matrices 
respectively (where i, j = 1, 2, 3 and m, 1 = 5, 4). In the above relations, NL is the number of 
layers and 

1 
= hL+ l h i ' )  n'  = H~, ~7( ~' - , 1 , 2 , 3 , 4 , 5 .  (7d) 
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As the strain-displacement matrix B and the rigidity matrix D are obtained in local 
coordinates, the same matrices should be used for the computation of the element stiffness 
matrix. Therefore the stiffness matrix is given by 

K =  fABTDB OA = f1_1 fl_IBTDBIj[ d~: dr/. (8) 

The integration of the stiffness matrix is over the midsurface of the shell. Now, a temporal 
discretization of the dynamic equilibrium equations (1) is employed by approximating the 
accelerations and velocities using finite difference expressions [14-16]. In the present work, a 
central difference approximation is adopted, so that the accelerations and velocities can be 
written as 

ii n = (an+ 1 _ 2a n + an-1 )  / A t  2, (9a) 

it n =  ( a n+l - - a n - 1 ) / ( 2 A t ) ,  (9b) 

where superscripts n + 1, n and n - 1 stand for three successive time intervals. The substitu- 
tion of expressions given by (9a) and (9b) into equations (1) gives, 

M ( a n + l  _ 2a n + a n - 1 ) / A t  2 + f n  = qn, (10) 

where, fn  is the internal resisting force vector and is given by 

f n  = f B TO.n d A  = fl fl BTo.n i J i  ds ¢ d~7. (11) 
~A - 1 - - 1  

If the values of a ~-1 and a n etc., are known, the value of a n÷~ can readily be found as, 

an+~= M-I{A/2[ _ f , ,  + qn] _ M a , , - l  + 2Man}.  (12) 

Since no stiffness and mass matrices of the complete element assemblage need to be 
calculated, the solution can essentially be carried out on the element level and relatively little 
high-speed storage is required. The method becomes even more effective if element stiffness 
and mass matrices of subsequent elements are the same, because in that case it is only 
necessary to calculate or read from back-up storage the matrices corresponding to the first 
element in the series. Using the central difference scheme, systems of very large order have 
been solved effectively. 

It must be recognized that the effectiveness of the procedure depends on the use of a 
diagonal mass matrix and the neglect of general velocity-dependent damping forces. If only a 
diagonal damping matrix is included, the benefits of performing the solution on the element 
level are preserved. If the mass matrix M is diagonal, the computation at each time step is 
trivial. Unfortunately, for the quadrilateral isoparametric elements used in the spatial dis- 
cretization, M is not diagonal, therefore a special mass matrix diagonalization scheme is used 
here, which is derived from a consistent mass matrix and is discussed elsewhere [14,17]. The 
mass matrix M in eqn. (1) is given by 

NE NE 

M = ~., M e = ~" ~Afrea N T m N  d A ,  (13a) 
e = l  e = l  

where 

I '1 ] 11 NL hL+l(1 ' pL 
m = I ,  , ( I , ,  12) = Y'. f z '2) dz, (13b) 

i2 L = I  hL 

I2 
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in which I1 and I 2 are normal inertia and rotary inertia respectively, and pL is the material 
density of the Lth layer. 

Numerical  results and discussion 

In the present  study, the eight-node Serendipity and the nine-node Lagrangian quadrilat- 
eral superparametr ic  shell elements were employed. It is well known that the shear correction 
coefficients depend on the lamination scheme and the lamina material properties. But due to 
lack of well accepted coefficients for finite shells, the transverse shear energy term in FOST is 
corrected using a multiplier 5 / 6  for all the materials except for the core of a sandwich shell 
where a coefficient of unity has been used. To evaluate the element stiffness properties based 
on the Gauss-quadrature (GQ) rule, the numerical selective reduced integration (SI) scheme 
viz., 3 × 3 for membrane,  coupling between inplane and bending, and flexure terms, 2 × 2 for 
shear terms, and the reduced integration (RI) scheme, i.e., 2 × 2, for all terms in the energy 
expression, were employed. To obtain the load vector, 2 × 2 and 3 × 3 G Q  rules were used 
respectively, while using RI  and SI schemes. The external load is being applied on the shell 
mid-surface. The element mass matrix is evaluated using a 3 × 3 G Q  rule in all the examples. 

In transient analysis, the zero initial conditions on displacements and their derivatives were 
assumed for all cases. A quarter  of the the shell is discretized for isotropic and cross-ply 
( 0 ° / 9 0 ° / 0 ° / 9 0 ° / . . . )  laminates and a full shell discrete model is invariably used in angle-ply 
and other cases. An important note on symmetry line boundary conditions in fibre-reinforced 
laminated or thotropic /anisot ropic  composites can be found in Ref. [18]. The values of the 
principle radii of curvature of the middle surface are denoted by R 1 and R 2 ( R  1 = R,  = R for 
spherical shells). The critical time step size depends on the mesh size, length/ thickness  ratio, 
degree of orthotropy, Poisson's ratio and the material density. In the present study, an 
estimate of the critical time step size, given by Tsui and Tong [19] for isotropic structures, is 
used with minor modification: 

o(1 - ~e ) /E~  ~ '/~ 

At~Ax 2 + ( " r r : / 1 2 ~ l - - - u ~ [  l+ i'5(Ax/h)2] t (14) 

where Ax is the smallest distance between adjacent nodes in any quadrilateral element used. 

Example 1 

A spherical cap clamped on the boundary, shown in Fig. 2, is subjected to a distributed 
step pressure of 600 l b / i n  2. The dimensions and properties of the shell are as follows: 
internal radius R~ = 22.27 in (R = 22.475 in); thickness of shell, h = 0.41 in; semi-angle = 
26.67°; elastic modulus, E = 10.5 × 106 lb/in2;  mass density p = 2.45 × 10 4 lb s2/in 4, 
Poisson's ratio = 0.3, time step t = 1 ms. Figure 2 shows the centre vertical displacement of 
the spherical cap for the analysis based on both the present seven 8-noded quadrilateral 
elements and ten 8-noded axisymmetric elements [15]. Since the geometry of the shell is thin 
(large ratio of a/h), the difference between the present element with FOST and an 
axisymmetric element [15] is almost negligible, except in the re~ions of local minimum and 
maximum. 

Example 2 

A quarter of a composite-sandwich spherical shell was analysed with a 2 × 2 mesh 
subjected to a uniformly distributed static loading q = 1 N / c m  2. A frontal technique is used 
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Fig. 2. Transient response of a clamped spherical cap. 

to solve the static equilibrium equations. The stacking sequence of a layered shell is 
(0°/90°/0°/90°/core/90°/0°/90°/0 °) and the thickness of each stiff layer is 0.05h and that 
of the core is 0.6h. Keeping the arc lengths a = b = 32 cm constant, the radius of the middle 
surface, R, and thickness, h, were varied. The following material properties were used: for 
face sheets (graphi te /epoxy prepreg system), E 1 = 1.308 × 107 N / c m  2, E 2 = 1.06 x 106 
N / c m  2, G12 = G13 = 6.0 × 105 N / c m  2, G23 = 3.9 × 105 N / c m  2, ule = 0.28, p = 15.8 × 10 -6 N 
s2/cm4; and for the core (U.S. commercial aluminium honeycomb), G23 = 1.772 x 104 N / c m  2, 
G13 = 5.206 × 104 N / c m : ,  p = 0.1009 × 10 -5 N sZ/cm 4. 

Table 1 shows the centre transverse deflection for the 8-node and 9-node quadrilateral 
shell elements with different boundary conditions: simply supported and clamped. The results 
are presented for RI  and SI schemes and also varying a/h ratios from 10 to 1000 and R/a 
ratios from 1 to infinity. From this table, it is observed that for a thick shell, a/h = 10, the 
difference in the results between 8-node and 9-node elements is almost negligible. For a thin 
shell, a/h = 100, as R/a increases from unity to infinity there is not much appreciable 
difference in the simply supported case, but in the clamped shell the percentage difference 
with respect to the 9-node element is about -1 .5 ,  - 4 ,  and - 7  for R/a = 1, 5 and 10 
respectively, and for R/a = 50, 100 and 0% it is about - 1 1 .  For a/h---500, the percentage 
difference between 8-node and 9-node elements, with respect to the latter, varies from about 
2% to - 5% for R/a = 1 to ~ for the case of simply supported shells, whereas in the clamped 
boundary conditions for R/a---1 and 5 it is about 3% and - 3 %  respectively, and for 
R/a = 10 it is - 7%, but it is - 46%, - 56% and - 60% for R/a = 50, 100 and oo respectively. 
In the case of  very thin shells, a/h = 1000, the percentage difference varies from about 4.8% 
to - 3 . 7 5 %  for R/a = 1 to 50, and 11.5% and 20% for R/a = 100 and ~ respectively, in 
simply supported shells, but in clamped shells it varies from about 3.5% to - 7 0 %  for 
R/a = 1 to oo. This significant difference in the results of 8-node and 9-node elements is noted 
in the case of very thin shells (a/h = 500 and 1000) with R/a = 50, 100 and oo (plate). 

Since there are no analytical results available for thin and very thin sandwich-type 
fibre-reinforced composite spherical shells, the present results are not validated, but it is 
observed that as such there is no appreciable difference between RI  and SI schemes even for 
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Table 1 

Center deflection (w x Factor) in cm of composite-sandwich spherical shells for static load. 

a / h Factor R / a Simply supported Clamped 

8-node 9-nnde 8-node 9-node 

SI RI SI RI SI RI SI RI 

10 0.0001 

100 0.001 

500 0.01 

1000 0.1 

I 2.4023 2.4102 2.4/)56 2.4147 0.7036 0.7000 0 .71 t59  0.7031 
5 5.6202 5.6230 5.6345 5.6374 2 . 1 5 5 1  2.1555 2.1665 2.1669 

10 5.8347 5.8368 5.8499 5 . 8 5 2 1  2 . 2 9 9 1  2.2997 2.3114 2.3118 
50 5.9066 5.9085 5.9221 5.9240 2.3493 2.3498 2.3618 2.3622 

100 5.9089 5.9107 5.9244 5.9263 2.3509 2.3514 2.3634 2.3638 
5.91/96 5.9115 5.9252 5 .927{)  2.3514 2.3520 2.3639 2.3643 

1 4.5369 4.5900 4.5390 4.5902 0.7302 0.7320 0.7392 0.7451 
5 109.62 110.49 1 0 9 . 9 3  110.78 21.639 21.837 22.567 22.814 

10 260.04 26t.43 261.05 262.43 53.323 53.635 57.484 57.881 
50 450.95 4 5 1 . 3 1  453.18 453.55 94.054 94.229 1 0 5 . 7 9  1116.114 

100 461.45 461.711 463.76 464.02 96.317 96.476 1 0 8 . 5 9  108.82 
~¢ 465.113 465.24 467.36 467.59 07.082 97.235 1 0 9 . 5 5  109.77 

1 2.4068 2.6392 2.3547 2.5037 0.4213 0.5417 0.4097 //.5233 
5 60.875 61.239 61.0611 61.432 8 . 0 7 3 1  8.0919 8.2874 8.4190 

10 254.99 256.66 251.56 251.53 39 .131t  39.220 41.963 42.525 
50 3165.6 3182.3 3263.3 3281 / .8  387.82 388.34 7 1 5 . 3 1  720.44 

100 4645.3 4654.5 4881.4 4892.6 493.42 493.88 1 1 1 1 . 4  1115.8 
5485.7 5488.2 5826.9 5829.7 541.14 541.56 1 3 5 3 . 6  1356.6 

1 0.4914 0.4950 ( I . 4 8 0 1  0.4722 0.0869 0.1177 {).11839 0.1124 
5 12.191 1 2 . 3 9 6  1 2 . 3 2 4  1 2 . 8 6 7  1 . 5 4 7 8  1 . 5 9 1 6  t.6880 1.9156 

10 48.795 49.105 48 .91 /7  49.196 6.4188 6.4282 6 .61 /75  6.7129 
50 1060.9 1 0 6 9 . 8  111)2.3 1 1 1 1 . 2  1 4 1 . 0 8  1 4 1 . 1 8  225.88 228.49 

100 2311.8 2321.3 2617.7 2631.6 246.24 246.43 574.06 578.18 
*¢ 3733.4 3734.8 4 6 6 1 . 1  4663.4 321.58 321.84 1 0 8 2 . 5  1084.9 

SI--Selective Integration, RI--Reduced Integration. 

very thin shells (a/h = 1000). It is concluded that the maximum error (up to 70%) between 
8-node and 9-node elements particularly for very thin (a/h = 1000) composite-sandwich 
spherical shells with clamped boundary conditions could be due to either locking phe- 
nomenon or spurious mechanisms i.e., zero-energy modes, by either of these elements. 

Example 3 

A simply supported, five layer ( 0 ° / 9 0 ° / c o r e / 0 ° / 9 0  °) unsymmetric composite-sandwich 
spherical shell under suddenly applied uniformly distributed pulse loading (q = 1 N / c m  2) 
with a 3 x 3 mesh quarter model is analyzed for two cases: considering and neglecting G23 
and Gt3 of the stiff layers. The same material properties which were given in Example 2 with 
the RI scheme are used here. The thickness of each stiff layer is 0.1 h and that of the core is 
0.6 h. The principle radius of curvature of the middle surface R is 96 cm and arc lengths 
a = b = 32 cm. The variation of the centre transverse deflection for length/thickness ratio 
(a/h) equal to 10 and 100 is presented in Fig. 3. From these plots it is observed that the 
simplified sandwich theories, which account for only bending rigidities of the facings and 
shear rigidities of the core material, predict lower values of frequencies and overestimate 
deflections. Considerable deviation in the results is noted if the shear rigidities for the facings 
are also taken into account, in addition to the bending rigidities. But, in thin shells this effect 
is almost negligible. 
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Fig. 3. Effect of transverse shear modulus of stiff layers ( R / a  = 3, quarter spherical shell with 3 × 3 mesh, stacking 
sequence = 0° /90° /core /0° /90° ,  thickness = 0.1 h /0 .1  h / 0 . 6  h /0 .1  h /0 .1  h). 

Example 4 

To further investigate the effect of material orthotropy on the centre transverse deflection, 
an entire composite spherical shell is analyzed with a 4 × 4 mesh and clamped boundary 
conditions on all the four sides. The problem under consideration is a six-layer symmetric 
angle-ply (0° /45° / -  4 5 ° / -  450/450/0 °) laminate, which is used in F-16 Aircraft by General 
Dynamics Corporation, Ft. Worth. Individual layers are assumed to be orthotropic with the 
following properties: E t / E  2 is varied (i.e. 10, 25 and 40), G23 = 0.2 E 2 ,  G l 2  = G13 = 0.5 E 2 ,  

1/12 = 0.25. The material density, p, Young's modulus in transverse direction, E2, and 
uniformly distributed step load are taken equal to unity. The RI scheme is used to evaluate 
the stiffness properties. The non-dimensionalized centre deflections with time for R / a  = 2 
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Fig. 4. Effect of  degree of orthotropy on the transient response ol  a clamped spherical shell ( a / h  .~ l(), full shell wit~, 
4 × 4 mesh,  stacking sequence = 0 / 4 .  / -  45°,/ 45 / 45  / 0  ), 

and 4 (arc length a = 32 cm and thickness h = 3.2 cm) are shown in Fig. 4. It is found that as 
the material orthotropy increases the deflection decreases, thus frequency increases. 

Conclusions 

The behavior of eight- and none-node quadrilateral superparametric shell elements for 
thick, thin and very thin fiber-reinforced laminated composite-sandwich spherical shells is 
studied. Numerical results from the static and transient analysis of sandwich shells based on 
the first-order shear deformation theory are presented. The significance of the effect of 
transverse shear moduli of stiff layers and the degree of orthotropy on the sandwich and 
composite shells for different ratios of a/h and R/a is highlighted. The centre deflections 
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vary more rapidly with greater ratios of R/a, for deep shells (i.e. for large ratios of a/h) than 
for shallow shells (i.e. for small ratios of a/h). All the results presented here for sandwich 
shells must be validated by an independent investigation. 

Acknowledgement 

Partial support of this research by the Aeronautics Research and Development Board, 
Ministry of Defence, Government of India, and the Natural Sciences and Engineering 
Research Council of Canada, is gratefully acknowledged. 

References 

[1] F.J. PLANTEMA, Sandwich Construction, Wiley, New York, 1966. 
[2] H.C. ALLEN, Analysis and Design of  Structural Sandwich Panels, Pergamon, London, 1969. 
[3] L.M. HAmP, "A review of recent work on multilayered structures", Int. J. Mech. Sci. 7, pp. 389-393, 1965. 
[4] L.M. HAaIP, "A survey of modern developments in analysis of sandwich structures", Appl. Mech. Rev. 18, pp. 

93-98, 1965. 
[5] E. REISSNER, "The effect of transverse shear deformation on the bending of elastic plates", J. Appl. Mech. 

ASME 12, pp. A69-A77, 1945. 
[6] E. REISSNER, "Finite deflections of sandwich plates", J. Aerosp. Sci. 15, pp. 435-440, 1948; 17, p. 125, 1950. 
[7] G.R. MONFORTON and L.A. SCHMrr, "Finite element analysis of sandwich plates and cylindral shells with 

laminated faces", Proc. 2nd Conf. on Matrix Methods in Structural Mechanics, Wright-Patterson Air Force Base, 
Ohio, pp. 573-616, 1969. 

[8] K.M. AIJMEO, "Static and dynamic analysis of sandwich structures by the method of finite elements", J. Sound 
Vib. 18, pp. 75-91, 1971. 

[9] T.J.R. HtJCHES and W.K. LtLJ, "Nonlinear finite element analysis of shells: Part I. Three-dimensional shells", 
Comput. Methods Appl. Mech. Eng. 27, pp. 331-362, 1981. 

[10] S. AIJMAD, B.M. IRONS and O.C. ZmNKIEWICZ, "Analysis of thick and thin shell structures by curved elements", 
Int. J. Numer. Methods Eng. 2, pp. 419-451, 1970. 

[11] T. BELVa'SCHKO, H. STOLARSKI, W.K. Lit:, N. CARPENTER and J.S.J. ONG, "Stress projection for membrane and 
shear locking in shell finite elements", Comput. Methods Appl. Mech. Eng. 51, pp. 221-258, 1985. 

[12] R.V. MILFORD and W.C. SCHNOBRICR, "Degenerated isoparametric finite elements using explicit integration", 
Int. J. Numer. Methods Eng. 23, pp. 133-154, 1986. 

[13] T. KAN'r and D. DAn-rE, "Finite elements available for the analysis of curved thin walled structures", in: Finite 
Element Applications to Thin-Walled Structures, edited by Ed. J.W. BULL, Elsevier Applied Science, London, 
1990. 

[14] T. KANT and MALLW, ARJt:NA, "Transient dynamics of composite sandwich plates using 4-, 8-, 9-noded isopara- 
metric quadrilateral elements", Finite Elements in Analysis and Design 5, pp. 307-318, 1989. 

[15] D.R.J. OWEN and E. HINTON, Finite Elements in Plasticity - -  Theory and Practice, Pineridge Press, Swansea, UK, 
1980. 

[16] K.J. BATHE, Finite Element Procedures in Engineering Analysis, Prentice-Hall, Englewood Cliffs, N J, 1982. 
[17] E. HmTON, T. Rock and O.C. ZIENKIEWICZ, "A note on mass lumping and related processes in the finite 

element method", Earthquake Eng. Struct. Dyn. 4, pp. 245-249, 1976. 
[18] MALLIKARJUNA. "An important note on symmetry line boundary conditions in fibre-reinforced laminated 

anisotropic composites", Comput. Struct. 38, pp. 669-671, 1991. 
[19] T.Y. Tst:T and P. ToNe, "Stability of transient solution of moderately thick plates by finite difference methods", 

A/AA J. 9, pp. 2062-2063, 1971. 


