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Abstract

A semi-analytical solution procedure for three dimensional wave propagation in reinforced concrete (RC) beams has
been presented in this paper. Elastodynamic Green�s function has been derived by employing the compatibility condi-
tions and utilizing the symmetry conditions at the loaded cross section. Numerical procedure developed for the Green�s
function has been validated using results available in the literature for an infinite laminated composite plate. Three-
dimensional wave propagation analysis has been performed for reinforced concrete beam sections of T and L shapes
which are common forms of structural elements. Steel reinforcement has been modeled in the finite element mesh. Effect
of corrosion has also been included in the finite element model. Green�s function for reinforced concrete sections
affected by corrosion of steel unit normalized frequency has been evaluated for illustration. Accuracy of the solution
technique has been evaluated in terms of the percentage error in energy balance between the input energy of the applied
unit load and the output energy carried by the propagating wave modes. The percentage error has been found to be
negligible in all the cases considered here. A simple and accurate numerical method has been presented here as a tool
to evaluate Green�s function for RC beams and can be used to detect corrosion.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Reinforced concrete (RC) beams are commonly used structural elements in Civil Engineering infrastruc-
tures. A suitable strategy is desired to monitor their structural integrity for safety of infrastructures under
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operating environment. One essential component of a monitoring strategy is to include technique for
detecting and characterizing flaws such as cracks and corrosions.
Green�s function can be advantageously employed in quantitative nondestructive evaluation (QNDE)

for locating and estimating the size and extent of flaws. Green�s function provides the loading function
on flaws if hybrid formulation is pursued. It also constitutes the kernel of the boundary integral in bound-
ary element method. Green�s function is constructed through the summation of wave modes (spectral data).
Spectral data is obtained through wave propagation analysis.
Wave propagation in layered anisotropic media has been investigated in the past using different ap-

proaches. Datta et al. (1988) presented a stiffness method to analyze dispersive wave propagation in a lam-
inated anisotropic plate. The lamina was divided into several sub-layers and displacement distribution
through the thickness of each layer was approximated by a polynomial function. Liu et al. (1990) presented
a numerical method to investigate harmonic wave propagation in anisotropic laminated strips in which dis-
placement field within each element was approximated by a linear expansion in the thickness direction and
by a series expansion in the width direction. Karunasena et al. (1991) developed an analytical method to
derive dispersion equation for guided waves in anisotropic plate by using propagator matrix approach.
The method was found to be mathematically cumbersome and time consuming as compared to the stiffness
approach developed earlier. Chimenti (1997) reviewed number of experimental and theoretical works in the
field of ultrasonic characterization of materials using guided waves in plate-like structures. Most investiga-
tions in the field of wave propagation and scattering of guided ultrasonic waves in laminated fiber rein-
forced plates considered plates of large in-plane dimensions and thus essentially two-dimensional
situations were investigated. However, Taweel et al. (2000) and Mukdadi et al. (2002) have attempted to
analyze propagation of waves in fiber reinforced laminated plates of finite width, by considering the
three-dimensional effect, and by using a semi analytical finite element method. Deformation of the cross
section was modeled by two-dimensional finite elements and analytical representation of propagating waves
along the length of the plate was used.
Zhu et al. (1995) investigated two-dimensional Green�s functions for a laminated plate by a modal rep-

resentation approach. Liu and Lam (1996) developed an exact matrix formulation for a two-dimensional
time-harmonic elastodynamic Green�s functions for anisotropic media. Displacements and stresses were ex-
pressed in the Fourier transform domain with help of modal expansion. Zhuang et al. (1999) presented
Green�s function for a laminated anisotropic circular cylinder formed by superposing modal solutions gen-
erated from a system of equations based on semianalytical finite element formulation.
Green and Green (2000) presented a computational method for wave propagation due to a point load in

composite plates and laminates in which integral transforms were used to reduce governing equations. Mal
(2002) analyzed elastic waves generated by a localized dynamic source in structural composites. External as
well as internal localized dynamic sources were considered. A low-velocity foreign object impact was con-
sidered under external type and sudden initiation of crack and its rapid growth was considered under the
internal category. Cavigila and Morro (2000) investigated time-harmonic wave propagation in multilayers
consisting of a sequence of inhomogeneous layers separated by discontinuity surfaces. A wave-splitting pro-
cedure was applied based on the use of the eigenvectors of the matrix associated with the system.
Two methodologies are possible to construct steady-state Green�s function using spectral data (Zhuang

et al., 1999). One is based on integral transform and the other on forced vibration. Recently, Mukdadi and
Datta (2003) constructed the Green�s function based on integral transform. Other approach of forced
vibration has been pursued in the present work by making use of the spectral data obtained using three
dimensional wave propagation analysis (Taweel et al., 2000). The dispersion equation has been solved using
three-dimensional semi analytical method in which eight-node or nine-node isoparametric elements are
used to model cross section of a beam and an exponential function is used to define displacement field along
length of the beam. Symmetry conditions at the loaded cross section have been advantageously employed to
construct steady-state elastodynamic Green�s function for a beam of arbitrary cross section. Method has
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been applied to practical problems in Civil Engineering field of reinforced concrete L and T beams. Para-
metric investigation has been performed to identify finite element mesh size required to obtain converged
solution for reinforced concrete beams. Converged eigenvalues and eigenmodes obtained from wave prop-
agation analysis for a particular frequency have been utilized to evaluate displacement field in Green�s func-
tion. For reinforced concrete beam affected by corrosion of steel, two layers of steel rust and degenerated
concrete around each steel bar have been modeled separately. Effect of corrosion of steel reinforcement has
been investigated by comparing displacement variation curves for corroded section of reinforced concrete
beams with those for original reinforced concrete beams.
2. Theoretical formulation

2.1. Wave propagation in reinforced concrete beam

Consider a time-harmonic elastic wave passing through a reinforced concrete beam. Direction of prop-
agation of wave is assumed to be along the longitudinal axis of the beam. For simplicity in numerical mod-
eling, stirrups and bends in reinforced concrete beam have been neglected and it is assumed to consist of
reinforcement bars in the longitudinal direction. The global coordinate system (X,Y,Z) as shown in Fig.
1(a) is adopted to model the beam. A semi-analytical numerical solution technique is adopted to analyze
wave propagation in a reinforced concrete beam. The cross section has been modeled with nine-node iso-
parametric quadrilateral elements and the wave motion along longitudinal axis is defined with analytical
expression.
Displacement field inside an element comprising of �n� number of nodes can be expressed as
uðx; y; z; tÞ ¼
uðx; y; z; tÞ
vðx; y; z; tÞ
wðx; y; z; tÞ

8><
>:

9>=
>; ¼

Pn
i¼1Niðy; zÞuiðx; tÞPn
i¼1Niðy; zÞviðx; tÞPn
i¼1Niðy; zÞwiðx; tÞ

8><
>:

9>=
>; ¼ Nd ð1Þ
where
N ¼ Nðy; zÞ; d ¼ dðx; tÞ
are the element shape matrix of size 3 · 3n and displacement vector of size 3n, respectively.
Rearranging the terms node-wise, displacement field can be written as
ð2Þ
where
dTj ¼ uj vj wjf g
represents the nodal displacement vector corresponding to node number j.
The strain–displacement relation is expressed in a split operator form
e ¼ Lu ¼ ðLyz þ LxÞu ð3Þ
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Fig. 1. Three-dimensional Green�s function for laminated composite beam (a) Geometry, co-ordinate axes and finite element model;
(b) Symmetry conditions over the cross section of beam at x = 0.
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Here 	 
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Substituting for the displacement vector u from Eqs. (2) and (3) can be shown to be
e ¼ LyzNdþ LxNd ¼ b1dþ b2d;x ð6Þ
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where
bT1 ¼

0 0 0 0 N 1;z N ;y

0 N 1;y 0 0 N 1;z 0

0 0 N 1;z N 1;y 0 0

� � � � � �
� � � � � �
0 0 0 0 Nj;z Nj;y

0 Nj;y 0 0 Nj;z 0

0 0 Nj;z Nj;y 0 0

� � � � � �
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;

and
d;x ¼
od

ox
ð7Þ
The constitutive relation for each distinct material comprising the cross section can be written as
r ¼ Ce ð8Þ

where
r ¼ rx ry rz syz sxz sxyf gT ð9Þ
and C is a (6 · 6) matrix of anisotropic elastic moduli.
The governing equations of motion for a beam can be derived by using Hamilton�s principle
d
Z t2

t1

T 	 ðU þ V EÞf gdt ¼ 0 ð10Þ
Here T is the kinetic energy. On the other hand, U and VE represent the internal strain energy and potential
energy due to external forces, respectively. The kinetic energy in terms of the velocity vector u and unit mass
density q can be shown in the form
T ¼ 1

2

Z
V
_uTq _udv ð11Þ
where
q ¼
q 0 0

0 q 0

0 0 q

2
64

3
75
is the mass matrix.
The strain energy U is represented by
U ¼ 1

2

Z
V

eTCedv ð12Þ
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The potential energy VE consists of applied traction on some generic cross-section and it is expressed as
V E ¼ 1

2

Z
A
uTrf dA ð13Þ
Here rf denotes the normal and the shear tractions on the cross-sectional surface.
Substituting Eqs. (2) and (6) into Eqs. (11)–(13), and using Eq. (10),
d
Z t2

t1

Z
V

_d
T
NTqN _d	 dTbT1Cb1d	 dTbT1Cb2d;x 	 dT;xbT2Cb1d	 dT;xbT2Cb2d;x

� �
dxdy dz

�

þ
Z
S
dTNTrf

� �
dy dz

�
dt ¼ 0 ð14Þ
can be obtained.
By performing the integration over area of cross-section of the element,
d
Z t2

t1

1

2

Z
_d
T
m _d	 dTk11d	 dTk12d;x 	 dT;xk21d	 dT;xk22d;x

� �
dxþ dTf

� �
dt ¼ 0 ð15Þ
is formed, where
kab ¼
Z
A
bTaCbb dy dz; a; b ¼ 1; 2; m ¼

Z
A
NTqNdy dz and f ¼

Z
A
NTrf dy dz ð16Þ
Eq. (15) can be written for the entire beam by performing assembly of all the matrices defined in Eq. (16) as
d
Z t2

t1

1

2

Z
_qTM _q	 qTK11q	 qTK12q;x 	 qT;xK21q	 qT;xK22q;x

� �
dxþ qTF

� �
dt ¼ 0 ð17Þ
where
K11 ¼
XNE
n¼1
k11n; K12 ¼ KT21 ¼

XNE
n¼1
k12n; K22 ¼

XNE
n¼1
k22n; M ¼

XNE
n¼1
mn; F ¼

XNE
n¼1
fn ð18Þ
and NE represents the total number of elements over the cross-section, and q is the global displacement
vector.
The displacement field for the wave propagation in a reinforced concrete beam can be expressed as
q ¼ q0eiðkx	xtÞ ð19Þ

Here x represents the circular frequency, k is the complex wave number and q0 is the vector of nodal dis-
placements at the origin.
Following governing equation can be obtained for propagation of wave by substituting Eq. (19) in Eq.

(17), performing the variation and dropping the non-homogeneous part of Eq. (17) and the common expo-
nential term.
K1 þ ikK2 þ k2K3 	 x2M
� �

q0 ¼ 0 ð20Þ
where K1 = K11,K2 = K12 	 K21 and K3 = K22.
The determinant of Eq. (20) yields the dispersion relation for propagation of wave.
Equation for wave propagation in a reinforced concrete beam is written in a compact form as
K	 x2M ¼ 0 ð21Þ
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where
K ¼ K1 þ ikK2 þ k2K3
For a nontrivial solution, the determinant of the coefficient matrix in Eq. (21) must be zero. This results in a
generalized eigenvalue problem when k is specified. For a bounded solution, the wave travelling in the po-
sitive x-direction must correspond to a complex wave number, k, having a form k = kR + kI where kR and
kI P 0. In contrast, if kR = 0 and kI 5 0, the mode is evanescent or non-propagating.
To simplify Eq. (21) mathematically it is written in an expanded matrix form as
A	 kB½ �Q ¼ 0 ð22Þ

where
A ¼
0 I

K�
1 iK2

� �
; B ¼

I 0

0 	K3

� �
; ð23Þ

Q ¼ q0 kq0f gt ð24Þ

and
K�
1 ¼ K1 	 x2M ð25Þ
A nontrivial solution to Eq. (25) can be sought by setting the determinant of the coefficient matrix to zero.
This results in the dispersion relation to solve for the eigenvalues k for a given value of x.

2.2. Green�s function for a reinforced concrete beam

Consider a concentrated time-harmonic unit load of frequency x acting at a point P(y,z) in the domain
of the reinforced concrete beam as shown in Fig. 1(b). Direction of application of the unit load may coin-
cide with any of the three global co-ordinate axes. However, Green�s function for a typical case of unit load
acting in z-direction has been discussed in the sequel for illustration. The cross section of the beam is mod-
eled by a finite element mesh, which divides the layers into sub-layers. Since symmetry conditions are em-
ployed, only right hand side (x P 0) region of the beam is considered in the analysis.
The displacement vector qx, at any point in the beam section is approximated by the modal sum of a

finite number of modes MS in the form
qx ¼
XMS

m¼1
Amqme

ikmx ð26Þ
where Am is the unknown amplitude of mth mode and
qTm ¼ u1m; . . . ; uim; . . . ; uNNm; v1m; . . . ; vim; . . . ; vNNm; w1m; . . . ; wim; . . . ; wNNmf g ð27Þ
is the displacement mode shape vector corresponding to the wave number km which has been evaluated
using Eq. (22).
The displacement vector at x = 0 is expressed as
q0 ¼ GA ð28Þ

where
G ¼ q1; . . . ; qm; . . . ; qMS½ �;AT ¼ A1; . . . ; Am; . . . ; AMSf g ð29Þ
G is the displacement mode shape matrix of size (3NN · MS) and A is the amplitude vector ofMS dimen-
sion. Here NN denotes total number of nodes in the finite element mesh defining the cross section of the
beam.
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The force vector at x = 0 can be formed as
2
64
2
64
f0 ¼ FA ð30Þ
where
F ¼ f1; . . . ; fm; . . . ; fMS½ � ð31Þ
and
fTm ¼ fx1m . . . ; fxim; . . . ; fxNNm fy1m . . . ; fyim; . . . ; fyNNm fz1m . . . ; fzim; . . . ; fzNNmf g ð32Þ
Forces fxim, fyim and fzim are the resultant of stresses rx, sxy and sxz derived from vector qm using strain–
displacement and stress–strain relations.
Consider a unit concentrated load acting at a point P(y,z) in the negative z-direction on the top of the

beam as shown in Fig. 1(b). Symmetric conditions with respect to vertical plane x = 0 lead to following
definition of displacement and force mode shape vectors, respectively.
qT0 ¼ 0j qT0y

��� qT0z

n o
; fT0 ¼ fT0x

�� 0j fT0z
	 


ð33Þ
where
0T ¼ 0 . . . ; 0 . . . ; 0f gNN ; qT0y ¼ v1 . . . ; vi . . . ; vNNf gNN ;
qT0z ¼ w1 . . . ; wi . . . ; wNNf gNN ; fT0x ¼ fx1 . . . ; fxi . . . ; fxNNf gNN
and
Node L

#
fT0z ¼ 0 . . . ; 	 1

2
. . . ; 0

	 

NN

ð34Þ
Node L represented above indicates the particular node in the finite element mesh at which the unit load
acts. Thus the term –1/2 shown in above equation may occupy any location from 1 to NN in the vector f0z.
By using Eq. (33), Eqs. (28) and (30) can be rewritten as
G1

G2

G3

3
75A ¼

0

q0y

q0z

8><
>:

9>=
>; ð35Þ

F1

F2

F3

3
75A ¼

f0x

0

f0z

8><
>:

9>=
>; ð36Þ
Here Gi and Fi (i = 1,2,3) are NN by MS matrices.
By combining the first part of Eq. (35) and the last two parts of Eq. (36),
HA ¼ r ð37Þ

is obtained where
H ¼
G1

F2

F3

2
64

3
75; r ¼

0

0

f0z

8><
>:

9>=
>; ð38Þ
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Matrix H defined in Eq. (38) is a rectangular matrix and vector A cannot be evaluated directly from Eq.
(37). A variational solution to the problem can be obtained by applying the principle of virtual displace-
ment wherein first variation of work done by forces is minimized. A complementary matrix H	 described
below is formed and both sides of Eq. (37) are pre-multiplied by H

	T
to obtain
H
	T
HA ¼ H	T

r ð39Þ
The amplitude coefficients can be obtained from Eq. (39) as
A ¼ H
	T
H

h i	1
H

	T
r ð40Þ
Here
H	 ¼
F1

G2

G3

2
64

3
75 ð41Þ
and overbar refers to the complex conjugate.
The input energy in the reinforced concrete beam due to the unit concentrated load (Zhu et al., 1995) can

be expressed as
I in ¼ 1

2
x Im½�qp� ð42Þ
The term qp in the above equation represents the displacement of the loading point in the direction of the
unit load. The symbol ‘‘Im’’ used in Eq. (42) stands for imaginary part of a complex number.
Transmission of energy inside beam structure occurs only through the propagating modes. Time-

averaged value of the energy flux associated with the mth propagating mode through the beam cross section
is given by
Im ¼ x Amj j2Im fTm:�qm
� �

ð43Þ
The percentage error in energy balance, on the other hand, can be defined as
e ¼ 1

I in
I in 	

XMp

m¼1
Im

" #�����
������ 100 ð44Þ
whereMp is the total number of propagating modes. As per the principle of energy conservation, the value
of e needs to be zero. Since propagation of wave does not require imposition of any boundary conditions,
above check has been employed to assess numerical accuracy of solution procedure developed.
3. Numerical investigations

Numerical method presented in this work for propagation of wave and the evaluation of Green�s func-
tion in a reinforced concrete beam takes into account the three-dimensional effect in an efficient manner.
Computer programs have been written in FORTRAN-90 language to analyze these problems. These pro-
grams have been validated by comparing the obtained results with those available in the literature. An
example of a homogeneous isotropic rectangular plate has been considered to validate the wave propaga-
tion formulation and program by comparing the obtained results for an isotropic rectangular beam cross
section with those presented by Taweel et al. (2000). On the other hand, results presented by Zhu et al.
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(1995) for plane strain problem in a 35-layer cross ply laminated composite plate have been considered to
validate Green�s function formulation and program. The normalized frequency, X, and normalized com-
plex wave number, f, in case of plane strain problem have been defined by following expressions
X ¼ xHpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðC55=qÞ0o

p ; f ¼ kHp ð45Þ
where Hp is the total thickness of laminated plate, q is the mass density and C55 is the shear modulus of
rigidity of 0� lamina respectively.
Program developed for analysis of three-dimensional wave propagation organizes all the eigenvalues

(wave numbers k) so as to have propagating modes in ascending order followed by non-propagating modes
in ascending order of their imaginary part. This arrangement has been found to be quite useful in selecting
modes for superposition in Green�s function solution.
Further, following expressions have been employed for the normalized frequency, X, and the normalized

complex wave number, f, for the three-dimensional problem.
X ¼ xHffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl=qÞc

p ; f ¼ kH ð46Þ
Here H is the total depth of RC beam section, q is the mass density and l is the shear modulus of rigidity of
concrete, respectively.
Green�s functions have been evaluated for typical T-shaped and L-shaped beams, which are commonly

used in Civil Engineering structural systems. Basic assumption of elastic behaviour and homogeneous iso-
tropic nature of concrete has been maintained in modeling the concrete section. Effect of stirrups has been
neglected for simplicity and the longitudinal steel reinforcement bars have been modeled by square ele-
ments of equivalent cross sectional areas. Effect of corrosion of steel reinforcement bars has been modeled
keeping in view the phenomenon of corrosion. The rust formed after corrosion of bars is known to expand
in volume. This volume increase leads to development of micro-cracks in surrounding concrete and subse-
quent reduction in modulus of elasticity of concrete. It has been considered in the present study that cor-
rosion of reinforcement steel bar produces a layer of rust, which is almost twice its original volume. The
steel rust has been assumed to have 10% of modulus of elasticity of original steel and a negligible Poisson�s
ratio. Further, it has been assumed that the volume expansion of steel rust generates micro-cracks in sur-
rounding concrete portion leading to reduction in its modulus of elasticity by 50%. Volume of this degen-
erated concrete has been considered to be six times the area of corroded steel reinforcement bar. With these
reasonable assumptions, some useful investigations of corroded T and L beam sections have been
performed. Brief discussion on the examples considered has been presented next. Effect of corrosion has
been investigated with the help of displacement variation curves obtained from Green�s function for origi-
nal as well as corroded beams. A 9-node lagrangian element has been used to model reinforced concrete
beam sections. The circular reinforcement bars have also been modeled by rectangular 9-node elements
with equivalent cross sectional areas to reduce modeling complexities. In the present study, maximum mesh
size employed for modeling a beam cross section included 1117 nodes for L-beam section with corrosion of
re-bars.
Different examples solved here consider unit load acting at a particular point on the surface of the rein-

forced concrete beam while deriving Green�s function. However, if required a line load with a known time-
history can be applied by small modification in the program.

Example 1. Wave propagation in homogeneous, isotropic cylinder with rectangular cross section,
Poisson�s ratio = 0.3, and height to width ratio H/W = 0.5 has been considered. Symmetry conditions
have been employed in both the directions and the quarter section of the beam has been modeled with
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8-noded quadrilateral elements forming a finite element mesh consisting of 65 nodes and 16 elements.
Results obtained by the present method have been compared with those presented by Taweel et al. (2000) in
Fig. 2. It can be observed from Fig. 2 that results of the present method correlate well with the published
Table 1
Elastic properties of 0� and 90� graphite/epoxy laminate in Example 2

Lamina (degrees) C11 (GPa) C33 (GPa) C13 (GPa) C55 (GPa)

0� 160.73 13.92 6.44 7.07
90� 13.92 13.92 6.92 3.50
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results. Thus, it can be concluded that methodology and program presented here can be used for wave
propagation in beams of finite width.

Example 2. A 35 layer (90�/0�/ . . .90�/0�/90�/ . . .0�/90�) symmetric cross-ply laminated plate has been con-
sidered to validate the formulation of the Green�s function. Elastic properties of 0� and 90� laminae are
presented in Table 1. Plate of unit width has been considered to simulate the plane strain situation with
the three-dimensional wave propagation program and boundary conditions are specified at all the nodes
to restrain displacement in the width direction. The beam cross section of unit width has been descritized
into 70 nine-noded elements in the thickness direction for consistency in comparing results of the Zhu et al.
(1995), where an infinite plate was divided into 70 sub-layers. The unit load acting at a distance of 16H/35
(2H being thickness of plate) from top surface of the laminated plate has been considered to evaluate the
Green�s function at normalized frequencies X = 1 and X = 10. The horizontal and the vertical displace-
ments along the cross section of the beam at distances 0.2H and 10H have been presented in Fig. 3(a)–
(d) to highlight differences in the near as well as the far field effects. Comparison of results obtained by
the present method with those by Zhu et al. (1995) shown in Fig. 3 validates the solution technique adopted
for Green�s functions problem in laminated composite beams. As a numerical check for accuracy, the per-
centage error in energy balance was calculated and it was found to be less than 1.5% in all the examples
considered herein.

Example 3. A reinforced concrete T-beam with reinforcement and geometrical details shown in Fig. 4(a)
has been considered. Details of finite element modeling of steel bar affected by corrosion and surrounding
degenerated concrete portion has been presented in Fig. 4(b). Material properties for concrete, steel rein-
forcement and layers of rust and degenerated concrete around reinforcement bar have been presented in
Table 2. Symmetry conditions have been utilized to model the cross section of the T-beam. Finite element
Fig. 4. Cross sectional dimensions of a reinforced concrete (a) T-beam; (b) enlarged view of conceptual model of cross section of a steel
reinforcement bar affected by corrosion; and (c) L-beam cross section.



Table 2
Elastic properties of concrete, steel, rust due to corrosion and degraded concrete around rusted steel bar in reinforced concrete beams
investigated in Examples 3 and 4

Material C11 C33 C13 C55 Mass density (q) (kg/m3)

Concrete 27.77 kPa 27.77 kPa 6.944 kPa 10.416 kPa 2500
Steel 277.2 GPa 277.2 GPa 12.45 GPa 76.33 GPa 7850
Rust 20.0 GPa 20.0 GPa 0.202 GPa 9.90 GPa 981.25
Degenerated concrete 13.88 kPa 13.88 kPa 3.472 kPa 5.208 kPa 2500
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meshes with increasing order of refinement were employed to model the cross section till a converged solu-
tion was obtained. Dispersion curves for the T-beam with and without reinforcement are shown in Fig. 5(a)
and (b). Finite element mesh with 303 nodes and 62 elements in half cross section was found to give con-
verged solution for the T-beam without reinforcement. On the other hand, a similar mesh with 341 nodes
and 69 elements in half cross section produced a converged solution for the T-beam with reinforcement.
The Green�s function for the T-beam need the wave propagation solution for the complete cross section.
The T-beam sections with and without reinforcement were analyzed for the normalized frequency X = 1
using finite element mesh of 519 nodes, 110 elements for full section of T-beam without reinforcement
and 589 nodes, 123 elements for full section of reinforced T-beam. Eight propagating modes were found
for X = 1 in both types of T-beam sections. Green�s functions have been obtained for a unit load acting
on the top surface at a distance y = Wf/2,Wf being the width of the T-beam flange. The Green�s functions
have been evaluated for unreinforced and reinforced T-beam by considering 1200 modes. Through thick-
ness displacement variations at locations (x = H,y = Wf/2) and (x = 10H,y = Wf/2) have been presented in
Fig. 6(a-1) through (d-3). Above-mentioned reinforced concrete T-beam section affected by corrosion caus-
ing 10% reduction of reinforcement was considered next. Since effect of corrosion has been included for
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modeling corroded beam section, a finite element mesh containing 1157 nodes and 255 elements was
required to produce a converged solution. Dispersion curves for original reinforced T-beam and T-beam
with 10% corrosion of steel have been compared in Fig. 5(b). Remarkable differences are observed in dis-
persion curves of these two forms of T-beam and it shows that corrosion can be identified through study of
dispersion curves.

The axial displacement component in the unreinforced and the reinforced T-beam has been found to
vary linearly. Comparison of curves in Fig. 6(a-1) through (b-3) indicates that the axial displacement
For (a-1) to (d-3)
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component for unreinforced and reinforced sections exhibit minor variations in near field. On the other
hand, there is large difference in magnitudes. Further, patterns of the axial displacements of unreinforced
and reinforced beam are opposite to each other in the far field. The transverse vertical displacement along
thickness direction has been found to be the most predominant displacement in all the cases. The real part
of the vertical displacement has been found to vary linearly for both unreinforced as well as reinforced T-
beams. On the other hand, the imaginary part of the vertical displacement is observed to remain constant
over the thickness for both unreinforced as well as reinforced T-beams. Nature of variation of the vertical
displacement curves for unreinforced and reinforced sections was found to be almost identical. Inclusion of
reinforcement in the T-beam is observed to affect vertical displacement component in different ways. The
real part of the vertical displacement for reinforced T-beam diminishes in both near and far field regions
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as compared to displacement variation for unreinforced beam. However, the imaginary part reduces in near
field region and increases in far field region.
A reinforced T-beam affected by corrosion causing with 10% reduction of steel area has been analyzed by

evaluating Green�s function and similar displacement variation curves have been superimposed on those
presented for the healthy reinforced T-beam section in Fig. 6(c-1) through (d-3). Comparison of these dis-
placement curves indicates that both axial and vertical displacement components evaluated in the far field
vary substantially and can be utilized for detection of corrosion. Further, the energy carried by the prop-
agating modes has been evaluated for different cases and the percentage error in energy balance has been
observed to be very low in all cases with maximum error being a mere 1.31% occurring for corroded rein-
forced T-beam. Accuracy of the numerical technique developed for Green�s functions has thus been
established.
Surface displacements are often easier to measure in experimental works. Comparison of surface dis-

placements for healthy and corroded T-beam sections has been shown in Fig. 7(a)–(c). Axial surface dis-
placement component compared in Fig. 7(a) shows considerable differences in magnitude as well as
variation and can be very useful in detection of corrosion. Large differences are observed in the transverse
displacements compared in Fig. 7(b) but its magnitude being extremely small it may not help much in
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detecting corrosion effect. Vertical displacement component does not indicate much difference for healthy
and corroded T-beam section.

Example 4. A reinforced concrete L-beam with reinforcement and geometrical details shown in Fig. 4(c)
has been considered. Concrete of grade M25 and steel of type Fe415 are the constituent materials in the
reinforced concrete L-beam under consideration and their material constants have been specified in Table
2. Dispersion curves for the L-beam with and without reinforcement have been presented in Fig. 8(a) and
(b). A finite element mesh comprising of 335 nodes and 70 elements was found to be sufficient for providing
converged solution for the L-beam without reinforcement. On the other hand, a marginally refined finite
element mesh with 429 nodes and 89 elements was found to provide converged solution for the L-beam
with reinforcement. The eigenvalues and eigenvectors corresponding to X = 1 obtained using the
converged sizes of finite element meshes have been utilized to evaluate the Green�s function for
unreinforced as well as reinforced L-beams. The number of propagating modes for unreinforced and
reinforced L-beams has been found to be six for X = 1. The unit load was applied on the top surface at a
distance y = H. The Green�s function was evaluated for unreinforced and reinforced L-beam by
considering 1000 modes. Through thickness displacement variation curves at locations (x = 0.2H,y =
Ww/2) and (x = 10H,y = Ww/2) have been presented in Fig. 9(a-1) through (d-3), where Ww represents the
width of the web portion of the L-beam. The reinforced concrete L-beam section affected by corrosion
causing 10% reduction of reinforcement has also been considered. A finite element mesh with 1117 nodes
and 249 elements has been used to model the corroded section as explained by Fig. 4(b). Minor differences
especially in the higher frequency range have been observed in dispersion curves of these two forms of L-
beam and it can be quite useful to study dispersion curves while identifying corrosion in this type of RC
beams.
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Displacement variation curves for unreinforced and reinforced L-beam are compared in Fig. 9(a-1)
through (b-3). Displacements along the width direction have been found to be predominant for both unre-
inforced as well as reinforced L-beams. The lateral displacement component for the reinforced L-beam has
been observed to reduce substantially as compared to the unreinforced L-beam. Changes in the vertical dis-
placement variation curves for unreinforced and reinforced L-beams were observed to be of large magni-
tude in near field. Their variation patterns were observed to be of opposite nature for real and imaginary
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parts. The axial displacement component, on the other hand, did not indicate much change due to inclusion
of reinforcement in the L-beam. Its variation changed from parabolic to linear. All the displacement com-
ponents have been found to have negligible values in the bottom portion containing steel reinforcement for
the reinforced L-beam.
A comparative study was performed to investigate effect of corrosion in the reinforced L-beam. Green�s

function was evaluated for the reinforced L-beam with 10% loss of steel caused by corrosion. Through
thickness displacement variation curves for this corroded L-beam have been superimposed on the corre-
sponding graphs obtained for the reinforced L-beam without any corrosion in Fig. 9(c-1) through (d-3).
The axial displacement component in near field region and transverse displacement components evaluated
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in near and far field regions have been observed to vary substantially for corroded beam and these can be
used effectively for detecting corrosion in reinforced L-beam section. Accuracy of the numerical method
developed for the Green�s function analysis was established by observing less than 1.5% error in both types
frequencies considered for L-beam section.
Surface displacements have also been plotted for healthy and corroded L-beam sections in Fig. 10(a)–(c).

Axial surface displacement component compared in Fig. 10(a) shows marginal difference in magnitude in
far field region and similar observations are made for transverse displacement component shown in Fig.
10(b). Finite differences in magnitude of vertical displacement component are observed in far field region
for healthy and corroded L-beam section, but the magnitude of displacement being very small it may
not help much in identifying corrosion in field conditions.
Perceptible differences observed in through thickness displacement variation curves and some marginal

differences in surface displacement curves for healthy and corroded L beam section indicate that measure-
ment of displacements on the vertical face of L beam may be practically more useful for identifying
corrosion with this technique.
4. Conclusions

A semi-analytical method for three-dimensional (3D) wave propagation analysis of reinforced concrete
beam with arbitrary cross section has been presented. A solution procedure to evaluate 3D Green�s function
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for a general beam has been formulated by employing eigenvalues and eigenvectors evaluated beforehand
from the dispersion equation of the beam for a particular excitation frequency. Green�s function for an infi-
nite cross-ply laminated plate has been evaluated using the 3D procedure presented here and the results
compare well with the published analytical method. Further, 3D Green�s function has been evaluated
for practical cases of T-shaped and L-shaped reinforced concrete (RC) beams. Displacement variations
in near as well as far fields at the normalized frequency of 1 have been presented to investigate response
of unreinforced and reinforced concrete beams. For T-beam, axial and vertical displacement components
whereas for L-beam axial and transverse displacement components have been found to show contrasting
differences for healthy and corroded reinforced concrete beams. Surface displacement curves plotted for dif-
ferent RC beams have been observed to indicate some minor differences for corroded beams and may not
be useful in detecting corrosion. Displacements measured on the vertical faces of RC beams will be of more
relevance in detection of corrosion. Accuracy of the procedure has been established by observing negligible
values of percentage error in input energy due to the unit excitation force and the output energy carried by
the propagating modes. Green�s function solution procedure developed here can be utilized as an effective
tool for detecting corrosion in RC beams.
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