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Abstract

A novel semi-analytical model is presented here for accurate estimation of stresses and displacements in composite and sandwich lam-
inates. Displacements and corresponding transverse stresses are considered as primary variables of interest. Formulation is based on
solution of a two-point boundary value problem (BVP) governed by a set of linear first-order ordinary differential equations (ODEs)
through the thickness of a laminate. These first-order ODEs are numerically integrated by using fourth-order Runge–Kutta–Gill routine.
Present model is free from any simplifying assumptions and also satisfies the continuity requirements of displacements and interlaminar
transverse stresses at the laminae interfaces. Solutions for a wide range of composite and sandwich laminates are obtained to validate the
present formulation. Results obtained through this technique are seen to compare well with the available three dimensional (3D) elas-
ticity and other two dimensional (2D) analytical and 2D/3D finite element (FE) solutions. Few new benchmark solutions are also pre-
sented for future reference.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Fiber reinforced polymer composites (FRPCs) lami-
nates posses ideal engineering properties like high stiff-
ness/strength along the fiber direction, light weight, etc.
and therefore these materials are used in many engineering
applications. Simple theories applicable to homogenous
material like steel cannot be directly employed to analyze
layered composites because of mismatch of properties of
different layers. Furthermore, delamination is one of the
major failure modes of laminated composites that involve
separation of layers of composite laminate due to the trans-
verse/interlaminar stresses. Thus, a laminate theory which
predicts these stresses accurately is an essential prerequisite
for understanding of the failure behavior.

The behavior of composite and sandwich laminates can
be characterized by a complex 3D state of stress. In many
instances, these laminated structural elements are moder-
ately thick in relation to their span dimensions. As a result,
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a refined analysis is required by incorporating transverse
shear deformation in analytical 2D models. The classical
laminate plate theory (CLPT) based on the Kirchhoff [1]
hypothesis ignores effects of transverse shear deformation,
normal stress/strain and non-linear inplane normal strain
distribution through the thickness. On the other hand,
the first-order shear deformation theory (FOST) based on
Reissner [2] and Mindlin [3] considers effects of the trans-
verse shear deformation by assuming it to be constant
through the thickness. Thus a fictitious shear coefficient is
introduced to correct the strain energy due to the shear
deformation. In order to remove the limitations of FOST,
higher-order shear deformation theories (HOSTs) involv-
ing higher order terms in the Taylor’s expansion of dis-
placements in the thickness coordinate were developed.
In these theories, an additional dependent unknown was
introduced [4–11] with each additional power of the thick-
ness coordinate. All these theories are referred to as equiv-
alent single layer (ESL) theories. The ESL theories have
been reported to predict the overall response like gross
deflections, buckling modes, inplane stresses, etc. reason-
ably well. However, these fail to capture the transverse
stresses accurately.
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Nomenclature

1, 2, 3 local coordinate system of lamina (principal
material directions)

x, y, z reference coordinate system of laminate
a, b, h length, width and thickness of laminate
E1, E2, E3 Young’s moduli of lamina in principal mate-

rial directions
G12, G13, G23 Shear moduli of lamina in three orthogo-

nal planes

u; v;w displacement components along reference direc-
tions x, y and z, respectively, at a point

rx, ry, rz, sxy, sxz, syz, components of stress at a
point

ex, ey, ez, cxy, cxz, cyz components of strain at a point
n order of partial differential equation
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Elasticity solution of layered laminates [12,13] indicates
that the interlaminar continuity of the interlaminar trans-
verse normal and shear stresses as well as the layerwise con-
tinuous displacement field through the thickness of a
laminate components is an essential requirement for their
accurate estimation. Thus, a layerwise analysis is necessary
for composite and sandwich laminates. Various displace-
ment based layerwise theories have been proposed by Reddy
[14], Soldatos [15], Wu and Kuo [16], Wu and Hsu [17] and
others. However, only continuity of displacement field
through the thickness of a laminate could be satisfied in
the displacement based layerwise models and continuity of
the transverse normal and shear stresses at the layer inter-
faces could not be enforced. To overcome this lacks, another
group of researchers including Spilker [18], Wu and Lin [19],
Shin and Chen [20], Ramtekkar et al. [21,22] have worked
on development of layerwise mixed/hybrid FE models with
displacement and the transverse stresses as primary vari-
ables. Such models satisfy requirements of continuity of dis-
placements and transverse stresses through the thickness of
composite and sandwich laminates.

An attempt is made here to look at the governing exact
3D partial differential equations (PDEs) of laminate. Tak-
ing a cue from Kantorovich and Krylov [23] for the dimen-
sion reduction through an assumption of global solution
functions in all but one independent coordinate, mathe-
matical model as a two point BVP governed by a set of lin-
ear coupled first order ODEs,

d

dz
yðzÞ ¼ AðzÞyðzÞ þ pðzÞ ð1Þ

in the interval �h=2 6 z 6 h=2 with any half of the depen-
dent variables prescribed at the edges z ¼ �h=2 is formu-
lated. Clearly, mixed and/or non-homogenous boundary
conditions are easily admitted in the formulation. Here,
yðzÞ is an n-dimensional vector of dependent variables
whose number (n) equals the order of PDE, AðzÞ is a
n� n coefficient matrix and pðzÞ is an n-dimensional vector
of non-homogenous (loading) terms.

2. Theoretical formulation

A laminate composed of a number of isotropic/ortho-
tropic, linear elastic laminae of uniform thickness with plan
dimension axb and thickness ‘h’ is considered (Fig. 1). The
angle between the fiber direction and reference axis ‘x’ is
measured in anticlockwise direction as shown in Fig. 1.
Simply (diaphragm) supported end conditions on all four
edges of laminates are considered (Table 1). The top sur-
face of laminate is loaded with transversely distributed
load. The intensity of transverse loading is expressed in
the form of a double Fourier series as

pðx; yÞ ¼
X1

m

X1
n

p0mn sin
mpx

a
sin

npy
b
; ð2Þ

where p0mn is the peak intensity of distributed load.
With m and n assumed to be odd in Eq. (2), the loading

is symmetric about the center of the plate.

2.1. Constitute relations

Each lamina in the laminate has been considered to be in
a 3D state of stress so that the constitutive relation for a
typical ith lamina with reference to the principal material
coordinate axes (1, 2 and 3) can be written as

ðe1Þi ¼
1

E1

r1 �
m21

E2

r2 �
m31

E3

r3

� �i

;

ðe2Þi ¼ � m12

E1

r1 þ
1

E2

r2 �
m32

E3

r3

� �i

;

ðe3Þi ¼ � m13

E1

r1 �
m23

E2

r2 þ
1

E3

r3

� �i

;

ðc12Þ
i ¼ s12

G12

� �i

; ðc13Þ
i ¼ s13

G13

� �i

and ðc23Þ
i ¼ s23

G23

� �i

:

ð3Þ
These can be written as

r1

r2

r3

s12

s13

s23

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

i

¼

C11 C12 C13 0 0 0

C22 C23 0 0 0

C33 0 0 0

C44 0 0

Sym: C55 0

C66

2
666666664

3
777777775

i e1

e2

e3

c12

c13

c23

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

i

;

ð4Þ
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Fig. 1. Laminate geometry with positive set of lamina/laminate reference axes and fiber orientation.

Table 1
Boundary conditions (BCs)

BC imposed on
displacement field

BC imposed on stress field

Face x = 0 v ¼ w ¼ 0 rx ¼ 0 (true)
Face x ¼ a/2 u = 0 sxz ¼ 0
Face y = 0 u ¼ w ¼ 0 ry ¼ 0 (true)
Face y ¼ b/2 v = 0 syz ¼ 0
Top face

z ¼ h/2
– sxz ¼ syz ¼ 0 and rz ¼ p0ðx; yÞ

Bottom face
z ¼ �h/2

– sxz ¼ syz ¼ rz ¼ 0
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where r1; r2; r3; s12; s13; s23 are stresses and e1; e2; e3; c12;
c13; c23 are linear strain components with reference to the
lamina coordinates 1; 2; and 3. C0mns ðm; n ¼ 1; . . . ; 6Þ are
elasticity constants of the ith lamina with reference to the
fiber axes (1, 2, 3) defined in Appendix A. Stress–strain
relations for the ith lamina in laminate coordinates
ðx; y; zÞ can be written as
rx

ry

rz

sxy

sxz

syz

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

¼

Q11 Q12 Q13 Q14 0 0

Q22 Q23 Q24 0 0

Q33 Q34 0 0

Q44 0 0

Sym: Q55 Q56

Q66

2
66666666664

3
77777777775

ex

ey

ez

cxy

cxz

cyz

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

;

ð5Þ
where rx; ry ; rz; sxy ; sxz; syz are stresses and ex; ey ; ez; cxy ;
cxz; cyz are strain components with respect to laminate
axes ðx; y; zÞ and Q0mns ðm; n ¼ 1; . . . ; 6Þ are the transformed
elasticity constants of the ith lamina with reference to the
laminate axes. Elements of matrix [Q] are defined in
Appendix B.

2.2. Strain–displacement relationship

General 3D linear strain–displacement relations can be
written as



16 T. Kant et al. / Composite Structures 83 (2008) 13–24
ex ¼
ou
ox
; ey ¼

ov
oy
; ez ¼

ow
oz
;

cxy ¼
ou
oy
þ ov

ox
; cxz ¼

ou
oz
þ ow

ox
; cyz ¼

ov
oz
þ ow

oy
:

ð6Þ
2.3. Equations of equilibrium

The 3D differential equations of equilibrium are

orx

ox
þ osyx

oy
þ oszx

oz
þ Bx ¼ 0;

osxy

ox
þ ory

oy
þ oszy

oz
þ By ¼ 0;

osxz

ox
þ osyz

oy
þ orz

oz
þ Bz ¼ 0:

ð7Þ

Here, Bx;By and Bz are components of body force in x, y

and z directions, respectively.

2.4. Partial differential equations

Eqs. (5)–(7) have a total of 15 unknowns, 6
stressesðrx; ry ; rz; sxy ; sxz; syzÞ, 6 strains ðex; ey ; ez; cxy ; cxz; cyzÞ
and 3 displacements ðu; v;wÞ in 15 equations. After simple
algebraic manipulations, a system of PDEs involving only
six fundamental dependent variables u; v;w; sxz; syz and rz

called ‘primary variables’ are obtained as follows:

ou
oz
¼ 1

ðQ55Q66 � Q56Q65Þ
½�Q65syz þ Q66sxz� �

ow
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;
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oz
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;
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� �
;
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� �
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oy
� Bz: ð8Þ
2.5. Inplane variation of primary variables

The above PDEs defined by Eq. (8) can be reduced to a
coupled first-order ODEs by using a double Fourier trigo-
nometric series for primary variables satisfying completely
the simple (diaphragm) end conditions at all four edges,
x = 0, a and y = 0, b, as follows:

uðx; y; zÞ ¼
X
mn

umnðzÞ cos
mpx

a
sin

npy
b
;

vðx; y; zÞ ¼
X
mn

vmnðzÞ sin
mpx

a
cos

npy
b
;

wðx; y; zÞ ¼
X
mn

wmnðzÞ sin
mpx

a
sin

npy
b
;

sxzðx; y; zÞ ¼
X
mn

sxzmnðzÞ cos
mpx

a
sin

npy
b
;

syzðx; y; zÞ ¼
X
mn

syzmnðzÞ sin
mpx

a
cos

npy
b
;

rzðx; y; zÞ ¼
X
mn

rzmnðzÞ sin
mpx

a
sin

npy
b

ð9Þ

in the above both m, n are 1, 3, 5, 7, . . .

2.6. Linear first-order ordinary differential equations

(ODEs)

Substituting Eq. (9) into Eq. (8), a set of linear coupled
first-order ODEs involving only primary variables
uðzÞ; vðzÞ;wðzÞ; sxzðzÞ; syzðzÞ and rzðzÞ are obtained as

dumnðzÞ
dz

¼ �wmnðzÞ
mp
a
þ Q66

Q55Q66 �Q56Q65

� �
sxzmnðzÞ;

dvmnðzÞ
dz

¼ �wmnðzÞ
np
b
þ Q55

Q55Q66 �Q56Q65

� �
syzmnðzÞ;

dwmnðzÞ
dz

¼ Q31

Q33

umnðzÞ
mp
a
þQ32

Q33

vmnðzÞ
np
b
þ 1

Q33

rzmnðzÞ;

dsxzmnðzÞ
dz

¼ Q11 �
Q13Q31

Q33

� �� �
m2p2

a2

�

þ Q44 �
Q43Q34

Q33

� �� �
n2p2

b2

�
umnðzÞ

þ Q12 �
Q13Q32

Q33

� �
� Q43Q34

Q33

� �
þQ44

� �
mnp2

ab
vmnðzÞ

� Q13

Q33

mp
a

� �
rzmnðzÞ � Bxðx; y; zÞ;

dsyzmnðzÞ
dz

¼ Q21 �
Q31Q23

Q33

� �
� Q43Q34

Q33

� �
þQ44

� �
mnp2

ab
umnðzÞ

þ Q22 �
Q23Q32

Q33

� �� �
n2p2

b2

�

þ Q44 �
Q43Q34

Q33

� �� �
m2p2

a2

�
vmnðzÞ �

Q23

Q33

np
b

� �
rzmnðzÞ

� Byðx; y; zÞ;
drzmnðzÞ

dz
¼ mp

a

� 	
sxzmnðzÞ þ

np
b

� 	
syzmnðzÞ � Bzðx; y; zÞ: ð10Þ

Eq. (10) defines the governing two-point BVP in ODEs
through thickness of the laminate in the domain
�h/2 < z < h/2 with stress components known at the top
and bottom faces. The basic approach to the numerical



Table 3
Material properties

Examples Source Property

2 and 4 Pagano
[13]

E1 ¼ 172:4 GPa m12 ¼ 0:25 G12 ¼ 3:45 GPa
E2 ¼ 6:89 GPa m13 ¼ 0:25 G13 ¼ 3:45 GPa
E3 ¼ 6:89 GPa m23 ¼ 0:25 G23 ¼ 1:378 GPa

3 Pagano
[13]

Face sheet

E1 ¼ 172:4 GPa m12 ¼ 0:25 G12 ¼ 3:45 GPa
E2 ¼ 6:89 GPa m13 ¼ 0:25 G13 ¼ 3:45 GPa
E3 ¼ 6:89 GPa m23 ¼ 0:25 G23 ¼ 1:378 GPa

Core sheet

E1 ¼ 0:276 GPa m12 ¼ 0:25 G12 ¼ 0:1104 GPa
E2 ¼ 0:276 GPa m31 ¼ 0:25 G13 ¼ 0:414 GPa
E3 ¼ 3:450 GPa m32 ¼ 0:25 G23 ¼ 0:414 GPa
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integration of the BVP defined in Eq. (10) and the associ-
ated boundary conditions when it contains no boundary

layer effects is to transform the given BVP into a set of ini-
tial value problems (IVPs) – one non-homogeneous and
n=2 homogeneous. The solution of BVP defined by Eq.
(10) is then obtained by forming a linear combination of
one non-homogeneous and n=2 homogeneous solutions
so as to satisfy the boundary conditions at z ¼ þh=2 [24].
This gives rise to a system of n=2 linear algebraic equations,
the solutions of which determines the unknown n=2 com-
ponents, X1, X2 and X3 (Table 2) at the starting edge
z ¼ �h=2. Then a final numerical integration of Eq. (10)
produces the desired results. Availability of efficient, accu-
rate and robust ODE numerical integrators for IVPs helps
in computing reliable values of the primary variables
through the thickness. Change in material properties are
incorporated by changing coefficients of material matrix
appropriately for each lamina.

2.7. Secondary relations

Secondary variables, rx, ry and sxy can be expressed in
terms of primary variables with the help of constitutive
and strain–displacement relation as

rx ¼
Q13Q31

Q33

� Q11

� �X
mn

umnðzÞ
mp
a

� 	
sin

mpx
a

sin
npy

b

þ Q13Q32

Q33

� Q12

� �X
mn

vmnðzÞ
np
b

� 	
sin

mpx
a

sin
npy

b

þ Q14 �
Q13Q34

Q33

� �X
mn

umnðzÞ
np
b

� 	
cos

mpx
a

cos
npy

b

þ Q14 �
Q13Q34

Q33

� �X
mn

vmnðzÞ
mp
a

� 	
cos

mpx
a

cos
npy

b

þ Q13

Q33

� �X
mn

rzmnðzÞ sin
mpx

a
sin

mpy
b

ð11Þ

ry ¼
Q23Q31

Q33

� Q11

� �X
mn

umnðzÞ
mp
a

� 	
sin

mpx
a

sin
npy

b

þ Q23Q32

Q33

� Q22

� �X
mn

vmnðzÞ
np
b

� 	
sin

mpx
a

sin
npy

b

þ Q24 �
Q23Q34

Q33

� �X
mn

umnðzÞ
np
b

� 	
cos

mpx
a

cos
npy

b

þ Q24 �
Q23Q34

Q33

� �X
mn

vmnðzÞ
mp
a

� 	
cos

mpx
a

cos
npy

b

þ Q23

Q33

� �X
mn

rzmnðzÞ sin
mpx

a
sin

mpy
b

ð12Þ
Table 2
Transformation of a BVP into IVPs

Intg. Starting edge; z = �h/2

u v w sxz syz

1 0 (assumed) 0 (assumed) 0 (assumed) 0 (known) 0 (known
2 1 (unity) 0 (assumed) 0 (assumed) 0 0
3 0 (assumed) 1 (unity) 0 (assumed) 0 0
4 0 (assumed) 0 (assumed) 1 (unity) 0 0
Final X1 X2 X3 Known Known
sxy ¼
Q43Q31

Q33

� Q11

� �X
mn

umnðzÞ
mp
a

� 	
sin

mpx
a

sin
npy

b

þ Q43Q32

Q33

� Q42

� �X
mn

vmnðzÞ
np
b

� 	
sin

mpx
a

sin
npy

b

þ Q44 �
Q43Q34

Q33

� �X
mn

umnðzÞ
np
b

� 	
cos

mpx
a

cos
npy

b

þ Q44 �
Q43Q34

Q33

� �X
mn

vmnðzÞ
mp
a

� 	
cos

mpx
a

cos
npy

b

þ Q43

Q33

� �X
mn

rzmnðzÞ sin
mpx

a
sin

mpy
b
: ð13Þ

3. Numerical results and discussion

A computer code is developed by incorporating the pres-
ent approach in FORTRAN-90 for the analysis of compos-
ite and sandwich laminates. Numerical investigations on
various examples have been performed for validation of
the present semi-analytical formulation. The 3D elasticity
solution given by Pagano [13] and various other analytical
and FE solutions available in the literature have been used
for proper comparison of the obtained results. Material
properties used here have been tabulated in Table 3.

Following normalizations have been used in all numeri-
cal examples considered here for the comparison of the
results excluding Example 1.

s ¼ a
h

; �u ¼ E2u
hp0s3

; �w ¼ 100E2h3w
p0a4

; rz ¼
rz

p0

;

ðrx; ry ; sxyÞ ¼
1

p0s2
ðrx; ry ; sxyÞ; ðsxz; syzÞ ¼

1

p0s
ðsxz; syzÞ

ð14Þ
in which bar over the variable defines its normalized value.
Final edge; z ¼ h=2 Load term

rz u v w sxz syz rz

) 0 (known) Y11 Y21 Y31 Y41 Y51 Y61 Include
0 Y12 Y22 Y32 Y42 Y52 Y62 Delete
0 Y13 Y23 Y33 Y43 Y53 Y63 Delete
0 Y14 Y24 Y34 Y44 Y54 Y64 Delete
Known uT vT wT 0 0 p(x,y) Include



Table 4
Transverse displacement (�wÞ and shear stress (sxzÞ in homogenous isotropic plates under an uniform distributed load

t a
b

a
h �wða=2; b=2; 0Þ sxzð0; b=2; 0Þ

Present analysis Elasticity solutiona Present analysis Elasticity solutiona

0.3 0.2 20 8770.7200 8769.6000 14.7100 14.7960
10 558.1750 558.0600 7.3130 7.3120
7.14 148.3900 148.5800 5.1830 5.1700

0.5 20 6855.0700 6855.0000 13.6150 13.6990
10 437.5200 437.5200 6.7650 6.7920
7.14 116.7300 116.9400 4.7920 4.7990

1.0 20 2761.3100 2761.3000 9.8000 9.8330
10 178.4460 178.4500 4.8500 4.8810
7.14 48.4460 48.4010 3.4220 3.4340

2.0 20 437.5200 437.5200 5.1900 5.3600
10 29.6040 29.6040 2.5520 2.5890
7.14 8.4400 8.45180 1.7850 1.7970

0.2 1.0 10 203.1500 203.1500 4.8460 4.8810
0.4 1.0 10 153.7600 153.7500 4.8460 4.8810

a Srinivas and Rao [12].

Table 5
Maximum stresses (rx;ry ; sxy ; sxz and syzÞ and the transverse displacement (�wÞ of symmetric cross-ply (00/900/00) square laminated plates under bi-
directional transverse sinusoidal load

s Source rxða2; b
2;�h

2Þ ryða2; b
2;�h

6Þ sxyð0; 0;�h
2Þ sxzð0; b

2; 0Þ syzða2; 0; 0Þ �wða2; b
2; 0Þ

2 Present analysis 1.4360 �0.9370 0.6690 �0.7420 �0.0859 0.0702 0.1640 0.3090 (.33) 0.2590 0.2600 (.03) 5.0950
Elasticity
solutiona

1.4360 �0.9380 0.6690 �0.7420 �0.0850 0.0700 0.1640 0.3090 (.33) 0.2590 0.2600 (.03) –

Mixed FE
analysisb

– �0.9760 – – – 0.0900 – 0.3350 (.33) – – –

Mixed FE
analysisc

1.4600 �0.9540 0.6790 �0.7540 �0.0870 0.0710 0.1660 0.3110 (.33) 0.2600 0.2610 (.03) 5.1100

HOSTd 1.0910 – 0.6330 – – 0.0803 – – – – 5.2150

4 Present analysis 0.8010 �0.7550 0.5340 �0.5560 �0.0510 0.0505 0.2560 0.2820 (.27) 0.2170 2.0060
Elasticity
solutiona

0.8010 �0.7550 0.5340 �0.5560 �0.0510 0.0500 0.2560 0.2820 (.27) 0.2170 –

Mixed FE
analysisb

– �0.7850 – – – 0.0540 – 0.3090 (.27) – –

Mixed FE
analysisc

0.8080 �0.7600 0.5380 �0.5600 �0.0510 0.0500 0.2570 0.2830 (.27) 0.2210 2.0070

HOSTd 0.7670 – 0.5079 – – 0.0500 – – – 1.9260
10 Present analysis �0:5900 0.2845 �0.2880 �0:0290 0.3570 0.1230 0.7530

Elasticity
solutiona

�0:5900 0.2850 �0.2880 �0:0290 0.3570 0.1230 –

Mixed FE
analysisb

0.6100 – – 0.0300 0.3820 – –

Mixed FE
analysisc

�0:5940 0.2860 �0.2890 �0:0290 0.3580 0.1240 0.8560

HOSTd 0.5850 0.2712 – 0.0281 – – 0.7176

20 Present analysis �0:5520 �0:2100 �0:0234 0.3850 0.0940 0.5164
Elasticity
solutiona

�0:5520 �0:2100 �0:0234 0.3850 0.0940 –

Mixed FE
analysisc

�0:5550 �0:2100 �0:0230 0.3880 0.1010 0.5170

HOSTd 0.5507 0.2050 0.0231 – – 0.5058

‘–’ Indicates results are not available.
Number within ‘( )’ indicates position in the thickness dimension where stress is maximum.
a Pagano [13].
b Wu and Kuo [16].
c Ramtekkar et al. [21].
d Kant and Swaminathan [11].
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A convergence study on number of steps required for
numerical integration in the thickness direction of the lam-
inate is performed first for all examples. It is observed in all
examples that 20–30 steps are enough for converged solu-
tion. Details of the convergence studies are not presented
here for the sake of brevity. Illustrative examples consid-
ered in the present work are discussed next.

Example 1. A homogenous isotropic plate with simple
support end conditions (Table 1) on all four edges and
subjected to an uniformly distributed load has been
considered to show the ability of present formulation to
handle different loadings. The convergence study on
number of harmonics required to define the uniformly
distributed load is performed along with the convergence
study on number of steps for numerical integration and
displacements as well as stresses were observed to converge
after 17 harmonics. Normalized Young’s modulus of
elasticity for isotropic plate has been considered
E = 1 GPa and Poisson’s ratios are varied from 0.2 to 0.4
in steps of 0.1. The normalized transverse displacement ð�wÞ
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Fig. 2. Variation of normalized (a) inplane normal stress rx (b) inplane displac
thickness of a 00/900/00 symmetric laminate subjected to bidirectional sinusoid
and the transverse shear stress ðsxzÞ obtained by the
proposed approach for isotropic plate have been compared
in Table 4 with elasticity solution given by Srinivas and
Rao [12] for various a/b ratios as well as Poisson’s ratios.
The transverse displacement and the shear stress have been
normalized by using relations �w ¼ wG=ðhp0Þ and
sxz ¼ sxz=p0, respectively for a consistent comparison with
the data available in the literature. It is observed from
Table 4 that the present approach predicts highly accurate
values of the transverse deflection and the transverse shear
stress for thin as well as thick isotropic plate.

Example 2. Various three-layered symmetric cross-ply (00/
900/00) square laminates with aspect ratios, s = 2, 4, 10 and
20 and simple supports end condition on all four edges
(Table 1) subjected to bidirectional sinusoidal load on its
top surface are considered next for validation. Material
properties are presented in Table 3. Results of the normal-
ized maximum inplane normal stresses ðrx and ryÞ, the
inplane shear stress ðsxyÞ, the transverse shear stresses
ðsxz and syzÞ and the transverse displacement ð�wÞ are pre-
nalysis

3]

r et al. [21]

-0.010 -0.005 0.000 0.005 0.010

-0.50

-0.25

0.00

0.25

0.50

u (0,b/2,z)

z

z
0.00 0.06 0.12 0.18 0.24

-0.50

-0.25

0.00

0.25

0.50

τ
yz

 (a/2,0,z)

b

d

ement �u (c) transverse shear stress sxz (d) transverse shear stress syz through
al load.



20 T. Kant et al. / Composite Structures 83 (2008) 13–24
sented in Table 5. Moreover, the variations of the inplane
normal stress ðrxÞ, the inplane displacement ð�uÞ and trans-
verse shear stresses ðsxz and syzÞ through the laminate thick-
ness are shown in Fig. 2 for an aspect ratio of 4. Results
have been compared with the 3D elasticity solution given
by Pagano [13] and also with the HOST of Kant and
Swaminathan [11] and the mixed FE solution by Wu and
Kuo [16], Ramtekkar et al. [21]. This comparison clearly
indicates that the present results are very close to the elas-
ticity solution compared to those obtained by others and
thus proves the superiority of the present formulation.

Example 3. A symmetric square sandwich laminate (00/
core/00) with simple support end conditions on all four
edges (Table 1) and subjected to bi-directional sinusoidal
load on its top surface has been considered here. Material
properties of the face sheets and core materials have been
presented in Table 3. Thickness of the face sheets is one
tenth of the total thickness of the sandwich plate. Results
for aspect ratios, s=2, 4, 10 and 20, have been compared
in Table 6 with elasticity solution given by Pagano [13] as
well as analytical and FE solutions presented by others.
Present results are seen to be closest to the elasticity solu-
tion. Through thickness variations of all the normalized
Table 6
Maximum stresses (rx;ry ; sxz; syz and T xyÞ of symmetric (00/core/00) square san

s Source rxða2; b
2;�h

2Þ rxða2; b
2;�0:4hÞ ryða2; b

2;�h
6Þ

2 Present
analysis

3.2780 �2.6520 �2.2200 1.6680 0.4520

Elasticity
analysisa

3.2780 �2.6530 �2.2200 1.6680 0.4520

Mixed FEMd 3.3250 �2.6840 �2.2320 1.6710 0.4560

4 Present
analysis

1.5560 �1.5120 �0.2330 0.1960 0.2590

Elasticity
analysisa

1.5560 �1.5120 �0.2330 0.1960 0.2590

FEM-HOSTb 1.5230 – �0.0120 – 0.2410
Mixed FEMc 1.5480 – – 0.2410 – 0.2490
Mixed FEMd 1.5700 �1.5240 �0.2320 0.1940 0.2600

10 Present
analysis

1.1530 �1.1520 0.6280 �0.6290 0.1100

Elasticity
analysisa

1.1530 �1.1520 0.6280 �0.6290 0.1100

FEM-HOSTb 1.1660 – 0.6880 – 0.1050
Mixed FEMc 1.2100 – 0.6890 – 0.1110
Mixed FEMd 1.1590 �1.1580 �0.6330 0.6290 0.1110

20 Present
analysis

�1:1100 �0:8100 �0:0700

Elasticity
analysisa

�1:1100 �0:8100 �0:0700

Mixed FEMc 1.1730 0.8610 0.0720
Mixed FEMd �1:1150 �0:8150 �0:070

‘–’ Indicates results are not available.
Number within ‘( )’ indicates position in the thickness dimension where stres
a Pagano [13].
b Pandya and Kant [9].
c Wu and Kuo [16].
d Ramtekkar et al. [21].
stress components ðrx; ry ; rz; sxy ; sxz and syzÞ and inplane
and transverse displacements ð�u; �wÞ for an aspect ratio
of 4 have been presented in Figs. 3 and 4. Excellent
agreement of the results with the elasticity solution sug-
gests that problem with sudden change in material prop-
erties can be analyzed accurately by using the present
approach.

Example 4. A two layered unsymmetric cross-ply (00/900)
square laminate with equal thicknesses under bi-direc-
tional transverse load on its top surface is considered in
this example with simple support boundary conditions
(Table 1). Exact solution of this example is not available
in the literature. Material properties are presented in
Table 3. The normalized maximum stresses ðrx; ry ; sxy ; sxz

and syzÞ have been presented in Table 7. Results with
HOST presented by Kant and Swaminathan [11] and 3D
analytical given by Vel and Batra [25] have been used
for general comparison purpose. Fig. 5 shows the through
thickness variations of inplane normal stress ðrxÞ, inplane
displacement ð�uÞ, transverse shear stress (sxzÞ and trans-
verse displacement (�wÞ for an aspect ratio of 4. It is noted
that, only for a thin laminate, results show good agree-
ment with HOST.
dwich plates under bi-directional transverse sinusoidal load

sxzð0; b
2; 0Þ syzða2; 0; 0Þ sxyð0; 0;�h

2Þ
�0.3920 0.1850 0.3200 (.44) 0.1390 0.1400 (.08) �0.2400 0.2340

�0.3920 0.1850 0.3200 (.44) 0.1390 0.1400 (.08) �0.2400 0.2340

�0.3960 0.1860 0.3230 (.44) 0.1420 0.1420 (.08) �0.2430 0.2360

�0.2590 0.2390 0.1070 �0.1440 0.1480

�0.2530 0.2390 0.1070 �0.1440 –

– 0.2750 – �0.1420 –
– �0.1340 –

�0.2550 0.2370 0.1040 – –

�0.1100 0.3000 0.0527 �0.0707 0.0720

�0.1100 0.3000 0.0530 �0.071 0.0720

– 0.3400 – �0.0690 –
– 0.3240 – �0.0710 –
�0.1100 0.3030 0.0550 �0.0710 0.0720

0.3170 0.0360 �0:0510

0.3170 0.0360 �0:0510

0.3530 – 0.0520
0.3170 0.0360 �0:0510

s is maximum.
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4. Concluding remarks

A novel, semi-analytical methodology with mixed vari-
ables (displacements and transverse stresses) for static anal-
ysis of composite and sandwich laminates under
transversely distributed load has been presented in this
paper. A two point BVP governed by a set of linear cou-
pled first-order ODEs is formed by assuming all primary
variables in the form of trigonometric functions along the
inplane directions. The solution ensures the fundamental
elasticity relationship between stress, strain and displace-
ment fields within the elastic continuum and implicitly
maintains the continuity of displacements and transverse
stresses at the laminae interfaces. It is shown through
numerical investigation that results obtained by present
approach are highly accurate. Since loading term is
expanded in the form of a Fourier series, any system of
loading can be handled with this formulation. Another
important feature of this approach is that both the dis-
placements and the stresses are computed simultaneously
with the same degree of accuracy.

Appendix A. Coefficients of [C] matrix

C11 ¼
E1ð1� m23m32Þ

D
; C12 ¼

E1ðm21 þ m31m23Þ
D

;

C13 ¼
E1ðm31 þ m21m32Þ

D
; C22 ¼

E2ð1� m13m31Þ
D

;

C23 ¼
E2ðm32 þ m12m31Þ

D
; C33 ¼

E3ð1� m12m21Þ
D

;

C44 ¼ G12; C55 ¼ G13; C66 ¼ G23;

where
D ¼ ð1� m12m21 � m23m32 � m31m13 � 2m12m23m31Þ:
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Table 7
Maximum stresses (rx;ry ; sxz; syz and T xyÞ of symmetric cross-ply (00/900) square laminated plates under bi-directional transverse sinusoidal load

s Source rxða2; b
2;�h

2Þ ryða2; b
2;�h

6Þ sxzð0; b
2; 0Þ syzða2; 0; 0Þ sxyð0; 0;�h

2Þ
2 Present analysis 0.1830 �0.8880 1.4040 �0.1110 0.1490 0.2570 (�.187) 0.0668 0.0673 (.28) �0.0791 0.0681

HOSTa – �0.8270 1.1946 – – – – – �0.0729 –

5 Present analysis 0.1010 �0.7670 0.7900 �0.0920 0.1316 0.3220 (�.218) 0.1211 0.3240 (.28) �0.0566 0.0570
HOSTa – �0.7510 0.7720 – – – – – �0.0557 –
3D Analyticalb – �0.7671 0.7894 – – �0.1211 – – –

10 Present analysis 0.0890 �0.7300 0.7310 �0.0865 0.1250 0.3330 (�.218) 0.1220 0.3320 (.28) �0.0536 0.0537
HOSTa – �0.7270 0.7270 – – – – – �0.0533 –
3D Analyticalb — �0.7304 0.7309 – – – 0.1220 – – –

20 Present analysis 0.0854 �0.7200 0.7200 �0.0849 0.1230 0.3350 (�.218) 0.1220 0.3340 (.28) �0.0528 0.0528
HOSTa – �0.7190 0.7190 – – – – – �0.0527 –

‘–’ Indicates results are not available.
Number within ‘( )’ indicates position in the thickness dimension where stress is maximum.
a Kant and Swaminathan [11].
b Vel and Batra [25].
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Fig. 5. Variation of normalized (a) inplane normal stress rx (b) inplane displacement �u (c) transverse shear stress sxz (d) transverse displacement �w through
thickness of a 00/900 unsymmetric laminate subjected to bidirectional sinusoidal load.
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Appendix B. Coefficients of [Q] matrix

Q11 ¼ C11c4 þ 2ðC12 þ 2C44Þc2s2 þ C22s4;

Q12 ¼ C12ðc4 þ s4Þ þ ðC11 þ C22 � 4C44Þc2s2;

Q13 ¼ C13c2 þ C23s2;

Q14 ¼ ðC11 � C12 � 2C44Þc3sþ ðC12 � C22 þ 2C44Þcs3;

Q22 ¼ C22c4 þ 2ðC12 þ 2C44Þc2s2 þ C11s4;

Q23 ¼ C23c2 þ C13s2;

Q24 ¼ ðC12 � C22 þ 2C44Þc3sþ ðC11 � C12 � 2C44Þcs3;

Q33 ¼ C33;

Q34 ¼ ðC31 � C32Þcs;

Q44 ¼ ðC11 � 2C12 þ C22 � 2C44Þc2s2 þ C44ðc4 þ s4Þ;
Q55 ¼ C55c2 þ C66s2;

Q56 ¼ ðC55 � C66Þcs;

Q66 ¼ C55s2 þ C66c2:
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