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AN EFFICIENT SEMI-ANALYTICAL MODEL FOR COMPOSITE
AND SANDWICH PLATES SUBJECTED TO THERMAL LOAD

Tarun Kant, Sandeep S. Pendhari, and Yogesh M. Desai
Department of Civil Engineering, Indian Institute of Technology Bombay,
Powai, Mumbai, India

A simple, semi-analytical model with mixed (stresses and displacements) fundamental
variables starting from the exact three dimensional (3D) governing partial differential
equations (PDEs) of laminated composite and sandwich plates for thermo-mechanical
stress analysis has been presented in this paper. The plate is assumed simply supported
on all four edges. Two different temperature variations through the thickness of
plates are considered for numerical investigation. The accuracy and the effectiveness
of the proposed model are assessed by comparing numerical results from the present
investigation with the available elasticity solutions. Some new results for sandwich
laminates are also presented for future reference.

Keywords: Composites; Laminates; Sandwich; Semi-analytical; Thermal load

INTRODUCTION

Laminated composite and sandwich plates are extensively used due to their
high specific strength and high specific stiffness. With the advancement of the
technology of laminated materials, it is now possible to use these materials in
high temperature situations. However, composites have no yield-limit, unlike metals
and have a variety of failure modes, such as fiber failure, matrix cracking, inter
fiber failure and delamination, which give rise to a damage growing in service.
Moreover, composite and sandwich plates are subjected to significant thermal
stresses due to different thermal properties of the adjacent laminas and therefore
accurate predictions of thermally induced deformations and stresses represent a
major concern in design of conventional structures.

Behavior of composite and sandwich plates can be characterized by a complex
3D state of stress. In many instances, these laminated structural elements are
moderately thick in relation to their span dimensions. For thick or moderately thick
structural elements, the normal to the mid surface is distorted due to inhomogeneity
in the transverse shear moduli, which is smaller than in-plane Young’s moduli,
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78 T. KANT ET AL.

resulting in significant effects of transverse shear deformation and also transverse
normal deformation.

The 3D elasticity analysis of laminates with a large number of orthotropic/
isotropic layers becomes very complex [1–3]. Therefore, researchers have their
attention on two dimensional (2D) analytical models by introducing some
assumptions concerning the deformation of the transverse normals that are
dependent on the nature of problem under consideration.

Classical lamination plate theory (CLPT) is based on the main assumption
that the laminate is thin. As a consequence it is assumed that the normal to
the laminate mid surface remains straight, inextensible and normal during the
deformation. Maulbetsch [4] seems to have written the first paper, available in the
literature, on thermal stresses in isotropic plates and Pell [5] is the first who studied
thermal deflections of anisotropic thin plates under arbitrary temperature loading.
On the other hand, the first-order shear deformation theory (FOST), based on
Reissner [6] and Mindlin [7] approaches, considers effects of the transverse shear
deformation by assuming it to be constant through the thickness of laminates, has
been used by Reddy and Chao [8], Weinstein et al. [9], Rolfes et al. [10] and Argyris
and Tenek [11]. Due to the constant shear assumption, FOST is inadequate to
account for accurate shear distortion and a fictitious shear correction coefficient to
correct the shear strain energy is normally used. Further, several higher-order shear
deformation theories (HOSTs) with Taylor series-type expansion in the thickness
direction for the displacements have been developed for composite and sandwich
plates under thermal loading [12–14].

CLPT, FOST and HOST are the equivalent single layer (ESL) theories in
which slope discontinuity in the inplane displacements and shear stress continuity
at the laminae interfaces are not satisfied. To overcome the discrepancy of ESL,
discrete layer theories (DLTs) and zig-zag theories have been developed for
thermomechanical analysis of composite and sandwich plates [15, 16].

The present article which starts from 3D equations and does not make any
kinetic or kinematic assumptions is mainly concerned with the formulation of a two-
point boundary value problem (BVP) governed by a set of coupled first-order ODEs,

d
dz

y�z� = A�z�y�z�+ p�z� (1)

in the interval −h/2 ≤ z ≤ h/2 with any half of the dependent variables prescribed
at the edges z = ±h/2 under thermal loading. Here, y�z� is an n-dimensional vector
of fundamental variables whose number �n� equals the order of PDE, A�z� is a
n× n coefficient matrix (which is a function of material properties in the thickness
direction) and p�z� is an n-dimensional vector of non-homogenous (loading) terms.
It is clearly seen that mixed and/or non-homogeneous boundary conditions are
easily admitted in this formulation.

THEORETICAL FORMULATION

A plate composed of a number of isotropic/orthotropic, linear elastic laminae
of uniform thickness with plan dimension a× b and thickness ‘h’ is considered
(Figure 1). The angle between the fiber direction and reference axis, x is measured
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A SEMI-ANALYTICAL MODEL FOR COMPOSITE AND SANDWICH PLATES 79

Figure 1 Laminate geometry with positive set of lamina/laminate reference axes and fiber orientation.

in anticlockwise direction as shown in Figure 1. Simply (diaphragm) supported
end conditions on all four edges are considered (Table 1). Plate is subjected to
only thermal load and all surfaces are free from any external stresses. Further,
it is assumed that the thermal load is distributed linearly through the thickness
(Figure 2).

�T�x� y� z� = T0�x� y�+
2z
h
T1�x� y� (2)

Constitute Relations

Each lamina in the laminate has been considered to be in a 3D state of
stress so that the constitutive relation for a typical ith lamina with reference to the
principal material coordinate axes (1� 2 and 3� can be written as,

��1�
i =

(
1
E1

�1 −
�21
E2

�2 −
�31
E3

�3 + �t1T

)i
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80 T. KANT ET AL.

Table 1 Boundary conditions (BCs)

BC imposed on BC imposed on
displacement field stress field

Face x = 0, a v = w = 0 —
Face x = a/2 u = 0 	xz = 0
Face y = 0, b u = w = 0 —
Face y = b/2 v = 0 	yz = 0
Top face z = h/2 — 	xz = 	yz = 0 and �z = 0
Bottom face z = −h/2 — 	xz = 	yz = �z = 0

��2�
i =

(
−�12
E1

�1 +
1
E2

�2 −
�32
E3

�3 + �t2T

)i

��3�
i =

(
−�13
E1

�1 −
�23
E2

�2 +
1
E3

�3 + �t3T

)i

(3)

�
12�
i =

(
	12
G12

)i

�
13�
i =

(
	13
G13

)i

and �
23�
i =

(
	23
G23

)i

in which �t1T , �t2T , and �t3T are the free thermal strains that arise due to
temperature variation. These can also be written as,




�1

�2

�3

	12
	13
	23




i

=




C11 C12 C13 0 0 0
C22 C23 0 0 0

C33 0 0 0
C44 0 0

Sym� C55 0
C66




i 


�1 − �t1T

�2 − �t2T

�3 − �t3T


12

13

23




i

(4)

where �1, �2� �3, 	12, 	13, 	23 are stresses and �1, �2, �3, 
12, 
13, 
23 are linear
strain components with reference to the lamina coordinates 1� 2� and 3. Cmn’s

Figure 2 Through thickness temperature distribution.
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A SEMI-ANALYTICAL MODEL FOR COMPOSITE AND SANDWICH PLATES 81

�m� n = 1� � � � � 6� are elasticity constants of the ith lamina with reference to the fiber
axes �1� 2� 3� defined in Appendix A. Stress-strain relations for the ith lamina in
laminate coordinates �x� y� z� can be written as,




�x

�y

�z

	xy
	xz
	yz




=




Q11 Q12 Q13 Q14 0 0
Q22 Q23 Q24 0 0

Q33 Q34 0 0
Q44 0 0

Sym� Q55 Q56

Q66







�x − �txT

�y − �tyT

�z − �tzT


xy − �txyT


xz

yz




(5)

where �x, �y, �z, 	xy, 	xz, 	yz are stresses; �x, �y, �z, 
xy, 
xz, 
yz are strain components
and �txT , �tyT , �tzT , �txyT are free thermal strains with respect to laminate axes
�x� y� z� and Qmn’s �m� n = 1� � � � � 6� are the transformed elasticity constants of the
ith lamina with reference to the laminate axes. Elements of matrix [Q] are defined
in Appendix B.

Strain-Displacement Relationship

General 3D linear strain-displacement relations can be written as,

�x =
�u

�x
�y =

�v

�y
�z =

�w

�z


xy =
�u

�y
+ �v

�x

xz =

�u

�z
+ �w

�x

yz =

�v

�z
+ �w

�y

(6)

Equations of Equilibrium

The 3D differential equations of equilibrium are,

��x

�x
+ �	yx

�y
+ �	zx

�z
+ Bx = 0

�	xy

�x
+ ��y

�y
+ �	zy

�z
+ By = 0 (7)

�	xz
�x

+ �	yz

�y
+ ��z

�z
+ Bz = 0

Here, Bx, By and Bz are components of body force in x, y and z directions,
respectively.

Partial Differential Equations

Equations (5)–(7) have a total of 15 unknowns, six stresses
��x� �y� �z� 	xy� 	xz� 	yz�, 6 strains ��x� �y� �z� 
xy� 
xz� 
yz� and 3 displacements �u� v� w�
in 15 equations. After simple algebraic manipulations, a system of PDEs involving
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82 T. KANT ET AL.

only 6 fundamental variables u� v� w� 	xz� 	yz and �z called “primary variables” are
obtained as follows:

�u

�z
= 1

�Q55Q66 −Q56Q65�

[−Q65	yz +Q66	xz
]− �w

�x

�v

�z
= 1

�Q55Q66 −Q56Q65�

[
Q55	yz −Q56	xz

]− �w

�y

�w

�z
= 1

Q33

[
�z −Q31

�u

�x
−Q34

�u

�y
−Q32

�v

�y
−Q34

�v

�x

]

+ T

Q33

(
Q31�tx +Q32�ty +Q33�tz +Q34�txy

)

�	xz
�z

=
(
−Q11 +

Q13Q31

Q33

)
�2u

�x2
+

(
−Q41 −Q14 +

Q13Q34

Q33

+ Q43Q31

Q33

)
�2u

�x�y

+
(
−Q44 +

Q43Q34

Q33

)
�2u

�y2
+

(
−Q14 +

Q13Q34

Q33

)
�2v

�x2

+
(
−Q12 −Q44 +

Q13Q32

Q33

+ Q43Q34

Q33

)
�2v

�x�y

+
(
−Q42 +

Q43Q32

Q33

)
�2v

�y2
−

(
Q13

Q33

)
��z

�x
−

(
Q43

Q33

)
��z

�y
− Bx

−
[(
−Q11 +

Q13Q31

Q33

)
�tx +

(
−Q12 +

Q13Q32

Q33

)
�ty +

(
−Q14 +

Q13Q34

Q33

)
�txy

]
�T

�x

−
[(
−Q41 +

Q43Q31

Q33

)
�tx +

(
−Q42 +

Q43Q32

Q33

)
�ty +

(
−Q44 +

Q43Q34

Q33

)
�txy

]
�T

�y

�	yz

�z
=

(
−Q41 +

Q43Q31

Q33

)
�2u

�x2
+

(
−Q21 −Q44 +

Q23Q31

Q33

+ Q43Q34

Q33

)
�2u

�x�y

+
(
−Q24 +

Q23Q34

Q33

)
�2u

�y2
+

(
−Q44 +

Q43Q34

Q33

)
�2v

�x2

+
(
−Q24 −Q42 +

Q23Q34

Q33

+ Q43Q32

Q33

)
�2v

�x�y

+
(
−Q22 +

Q23Q32

Q33

)
�2v

�y2
−

(
Q43

Q33

)
��z

�x
−

(
Q23

Q33

)
��z

�y
− By

−
[(
−Q21 +

Q23Q31

Q33

)
�tx +

(
−Q22 +

Q23Q32

Q33

)
�ty +

(
−Q24 +

Q23Q34

Q33

)
�txy

]
�T

�y

−
[(
−Q41 +

Q43Q31

Q33

)
�tx +

(
−Q42 +

Q43Q32

Q33

)
�ty +

(
−Q44 +

Q43Q34

Q33

)
�txy

]
�T

�x

��z

�z
= −�	xz

�x
− �	yz

�y
− Bz (8)
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A SEMI-ANALYTICAL MODEL FOR COMPOSITE AND SANDWICH PLATES 83

Inplane Variation of Primary Variables

The above PDEs defined by Eq. (8) can be reduced to a coupled first-
order ODEs by using a double Fourier trigonometric series for primary variables
satisfying completely the simple (diaphragm) end conditions at all 4 edges, x = 0, a
and y = 0, b, as follows:

u�x� y� z� = ∑
mn

umn�z� cos
mx

a
sin

ny

b

v�x� y� z� = ∑
mn

vmn�z� sin
mx

a
cos

ny

b

w�x� y� z� = ∑
mn

wmn�z� sin
mx

a
sin

ny

b

	xz�x� y� z� =
∑
mn

	xzmn�z� cos
mx

a
sin

ny

b

	yz�x� y� z� =
∑
mn

	yzmn�z� sin
mx

a
cos

ny

b

�z�x� y� z� =
∑
mn

�zmn�z� sin
mx

a
sin

ny

b

(9)

in the above both m, n are 1� 3� 5� 7� � � � � � � � � � � � � .
Further, temperature variations along the inplane directions are also expressed

in sinusoidal form as

T�x� y� z� = ∑
m′n′

Tm′n′�z� sin
m′x
a

sin
n′x
b

(10)

in which both m′, n′ also assume integer values 1� 3� 5� 7� � � � � � � � � � � � � .

Linear First-Order Ordinary Differential Equations (ODEs)

On substitution of Eqs. (9) and (10) in Eq. (8), the following 6 coupled first-
order ODEs corresponding to each set of modal values m and n are obtained.

d

dz




umn�z�

vmn�z�

wmn�z�

	xzmn�z�

	yzmn�z�

�zmn�z�




=




0 0 B13 B14 0 0
0 0 B23 0 B25 0
B31 B32 0 0 0 B36

B41 B42 0 0 0 B46

B51 B52 0 0 0 B56

0 0 0 B64 B65 0







umn�z�

vmn�z�

wmn�z�

	xzmn�z�

	yzmn�z�

�zmn�z�




+




0
0
p3

p4

p5

p6




which can be written in compact form as,

d

dz
y�z� = Bij�z�y�z�+ p�z� (11)

The elements of matrices Bij�z� and vector p�z� are given in the Appendix C.
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A SEMI-ANALYTICAL MODEL FOR COMPOSITE AND SANDWICH PLATES 85

Equation (11), defines the governing two-point BVP in ODEs through
thickness of the laminate in the domain −h/2 < z < h/2 with stress components
known at the top and bottom faces. The basic approach to the numerical integration
of the BVP defined in Eq. (11) is to transform the given BVP into a set of IVPs—one
non-homogeneous and n/2 homogeneous. The solution of BVP defined by Eq. (11)
is then obtained by forming a linear combination of one non-homogeneous and n/2
homogeneous solutions so as to satisfy the boundary conditions at z = h/2 [17].
This gives rise to a system of n/2 linear algebraic equations, the solutions of which
determines the unknown n/2 components, X1, X2 and X3 (Table 2) at the starting
edge z = −h/2. Then a final numerical integration of Eq. (11) produces the desired
results. Availability of efficient, accurate and robust ODE numerical integrators
for IVPs helps in computing reliable values of the primary variables through the
thickness. Change in material properties are incorporated by changing coefficients
of material matrix appropriately for each lamina.

Secondary Relations

Secondary variables, �x, �y and 	xy can be expressed in terms of primary
variables with the help of constitutive and strain-displacement relation as,

�x =
(
Q13Q31

Q33

−Q11

)∑
mn

umn�z�
(m

a

)
sin

mx

a
sin

ny

b

+
(
Q13Q32

Q33

−Q12

)∑
mn

vmn�z�
(n
b

)
sin

mx

a
sin

ny

b

+
(
Q14 −

Q13Q34

Q33

)∑
mn

umn�z�
(n
b

)
cos

mx

a
cos

ny

b

+
(
Q14 −

Q13Q34

Q33

)∑
mn

vmn�z�
(m

a

)
cos

mx

a
cos

ny

b

+
(
Q13

Q33

)∑
mn

�zmn�z� sin
mx

a
sin

my

b

+
{(

Q13Q31

Q33

−Q11

)
�tx +

(
Q13Q32

Q33

−Q12

)
�ty +

(
Q13Q34

Q33

−Q14

)
�xty

}

× ∑
m′n′

T�z� sin
m′x
a

sin
n′y
b

� � � � � � � � � (12)

�y =
(
Q23Q31

Q33

−Q11

)∑
mn

umn�z�
(m

a

)
sin

mx

a
sin

ny

b

+
(
Q23Q32

Q33

−Q22

)∑
mn

vmn�z�
(n
b

)
sin

mx

a
sin

ny

b

+
(
Q24 −

Q23Q34

Q33

)∑
mn

umn�z�
(n
b

)
cos

mx

a
cos

ny

b
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86 T. KANT ET AL.

+
(
Q24 −

Q23Q34

Q33

)∑
mn

vmn�z�
(m

a

)
cos

mx

a
cos

ny

b

+
(
Q23

Q33

)∑
mn

�zmn�z� sin
mx

a
sin

my

b

+
{(

Q23Q31

Q33

−Q21

)
�tx +

(
Q23Q32

Q33

−Q22

)
�ty +

(
Q23Q34

Q33

−Q24

)
�xty

}

× ∑
m′n′

T�z� sin
m′x
a

sin
n′y
b

� � � � � � � � � (13)

	xy =
(
Q43Q31

Q33

−Q11

)∑
mn

umn�z�
(m

a

)
sin

mx

a
sin

ny

b

+
(
Q43Q32

Q33

−Q42

)∑
mn

vmn�z�
(n
b

)
sin

mx

a
sin

ny

b

+
(
Q44 −

Q43Q34

Q33

)∑
mn

umn�z�
(n
b

)
cos

mx

a
cos

ny

b

+
(
Q44 −

Q43Q34

Q33

)∑
mn

vmn�z�
(m

a

)
cos

mx

a
cos

ny

b

+
(
Q43

Q33

)∑
mn

�zmn�z� sin
mx

a
sin

my

b

+
{(

Q43Q31

Q33

−Q41

)
�tx +

(
Q43Q32

Q33

−Q42

)
�ty +

(
Q43Q34

Q33

−Q44

)
�xty

}

× ∑
m′n′

T�z� sin
m′x
a

sin
n′y
b

� � � � � � � � � (14)

NUMERICAL INVESTIGATION

A computer code is developed by incorporating the present formulation in
FORTRAN 90 for the analysis of composite and sandwich plates under thermal
load. Numerical investigations on various examples have been performed including
validation of the present semi-analytical formulation and solution of new problems.
The 3D elasticity solution presented by Bhaskar et al. [3] and Rohwer et al. [14]
and other analytical solutions available in the literature have been used for proper
comparison of the obtained results. Material properties used here have been
tabulated in Table 3.

Two thermal load cases are considered here for numerical studies.

1. Equal temperature rise of the bottom and the top surface of the plate with
sinusoidal inplane variations: �T�x� y�±h/2� = T0 sin

x
a
sin y

b
, (Case A).

2. Equal rise and fall of temperature of the top and bottom surface of the plate with
sinusoidal inplane variations: �T�x� y� h/2� = −�T�x� y�−h/2� = T0 sin

x
a
sin y

b
,

(Case B).
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A SEMI-ANALYTICAL MODEL FOR COMPOSITE AND SANDWICH PLATES 87

Table 3 Material properties

Set Source Property

I Rohwer E1 = 150�0GPa E2 = 10�0GPa E3 = 10�0GPa
et al. [14] �12 = 0�30 �13 = 0�30 �23 = 0�30

G12 = 5�0GPa G13 = 5�0GPa G23 = 3�378GPa
�1 = 0�139E-6 k−1 �2 = 9�0E-6k−1 �3 = 9�0E-6k−1

II Bhaskar E1 = 172�4GPa E2 = 6�89GPa E3 = 6�89GPa
et al. [3] �12 = 0�25 �13 = 0�25 �23 = 0�25

G12 = 3�45GPa G13 = 3�45GPa G23 = 1�378GPa
�1 = 1�0 k−1 �2 = 1125�0 k−1 �3 = 1125�0 k−1

Face Sheet
III Khare E1 = 172�4GPa E2 = 6�89GPa E3 = 6�89GPa

et al. [18] �12 = 0�25 �13 = 0�25 �23 = 0�25
G12 = 3�45GPa G13 = 3�45GPa G23 = 1�378GPa
�1 = 0�1E-5k−1 �2 = 2�0E-5k−1 �3 = 0�1E-5k−1

Core Sheet
E1 = 0�276GPa E2 = 0�276GPa E3 = 3�450GPa

�12 = 0�25 �31 = 0�25 �32 = 0�25
G12 = 0�1104GPa G13 = 0�414GPa G23 = 0�414GPa
�1 = 0�1E-6k−1 �2 = 0�2E-5k−1 �3 = 0�1E-6k−1

Following normalizations have been used in all examples considered here for
the comparison of the results.

s = a

h
u� v = 1

h�1T0s
3
�u� v� w = h3w

�1T0a
4

�z =
�z

E2�1T0

(
�x� �y� 	xy

) = 1
E2�1T0s

2

(
�x� �y� 	xy

) (
	xz� 	yz

) = 1
E2�1T0s

(
	xz� 	yz

) (15)

in which bar over the variable defines its normalized value.
A convergence study on number of steps required for numerical integration

in the thickness direction of the laminate is performed first for all examples. It is
observed in all examples that 20–30 steps are enough for converged solution. Details
of the convergence studies are not presented here for the sake of brevity. Illustrative
examples considered in the present work are discussed next.

Example 1

A homogeneous, orthotropic plate with simple support end conditions
(Table 1) on all four edges and subjected to thermal load has been considered
to study the effect of the temperature distribution and validate the present
methodology. Material properties are presented in Table 3(I). The normalized
maximum stresses ��x� �y� 	xy� 	xz� 	yz� and transverse displacement (w� for various
aspect ratios ranging from thick to thin plate are presented in Table 4 for both
type of thermal loads. Moreover, through thickness variations of transverse shear
stress �	xz�, transverse normal stress ��z�, in-plane normal stress (�x� and transverse
displacement (w� for an aspect ratio of 5 are shown in Figures 3 and 4 for



D
ow

nl
oa

de
d 

B
y:

 [K
an

t, 
Ta

ru
n]

 A
t: 

12
:0

5 
8 

Ja
nu

ar
y 

20
08

 

88 T. KANT ET AL.

T
ab

le
4
M
ax

im
um

st
re
ss
es

��
x
�
�
y
�
	 x

y
�
	 x

z
an

d
	 y

z
)
an

d
th
e
tr
an

sv
er
se

di
sp
la
ce
m
en
t
�w

)
of

sq
ua

re
ho

m
og

en
eo
us

or
th
ot
ro
pi
c
pl
at
es

un
de
r
th
er
m
al

lo
ad

C
as
e
A
:
�
T
�x
�
y�
±h

/2
�
=

T
0
si
n


x a
si
n


y b

s
So

ur
ce

�
x

( a 2
�
b 2
�
±

h 2

)
�
y

( a 2
�
b 2
�
±

h 6

)
10

	 x
y

( 0�
0�

±
h 2

)
10

	 x
z

( 0�
b 2
�
±0

�3
h
)

10
2
	 y

z

( a 2
�
0�

±0
�3
h
)

10
2
w
( a 2

�
b 2
�
±

h 2

)

4
P
re
se
nt

an
al
ys
is

0.
41

43
−0

.7
44

6
−0

.9
59

8
±3

.7
94

3
±6

.2
97

9
±6

.0
30

9
10

P
re
se
nt

an
al
ys
is

−0
.1
26

1
−0

.2
09

2
−0

.2
23

3
±0

.2
86

4
±0

.4
21

8
±0

.3
78

0
20

P
re
se
nt

an
al
ys
is

−0
.0
48

4
−0

.0
53

8
−0

.0
54

7
±0

.0
18

8
±0

.0
26

9
±0

.0
23

6

C
as
e
B
:
�
T
�x
�
y�
h
/2
�
=

−�
T
�x
�
y�
−h

/2
�
=

T
0
si
n


x a
si
n


y b

s
So

ur
ce

�
x

( a 2
�
b 2
�
±

h 2

)
�
y

( a 2
�
b 2
�
±

h 2

)
10

	 x
y

( 0�
0�

±
h 2

)
	 x

z

( 0�
b 2
�
±0

�3
h
)

	 y
z

( a 2
�
0�

±0
�3
h
)

10
2
w
( a 2

�
b 2
�
±

h 2

)

4
P
re
se
nt

an
al
ys
is

±2
.0
16

4
∓2

.0
53

8
∓3

.5
56

6
0.
92

39
−0

.8
61

6
9.
02

26
10

P
re
se
nt

an
al
ys
is

±0
.4
84

5
∓0

.5
63

8
∓0

.6
38

0
0.
25

65
−0

.2
51

7
1.
40

42
20

P
re
se
nt

an
al
ys
is

±0
.1
19

8
∓0

.1
44

8
∓0

.1
40

5
0.
06

60
−0

.0
65

7
0.
29

16



D
ow

nl
oa

de
d 

B
y:

 [K
an

t, 
Ta

ru
n]

 A
t: 

12
:0

5 
8 

Ja
nu

ar
y 

20
08

 

A SEMI-ANALYTICAL MODEL FOR COMPOSITE AND SANDWICH PLATES 89

Figure 3 Variation of normalized (a) transverse shear stress 	xz (b) transverse normal stress �z
(c) inplane normal stress �x (d) transverse displacement w through thickness of a homogeneous
orthotropic plate subjected to thermal load, �T�x� y�±h/2� = T0 sin

x
a
sin y

b
(Case A).

case A and case B, respectively. 3D elasticity and HOST solutions given by Rohwer
et al. [14] are also plotted on same trace for comparison of the present solution. This
comparison clearly indicates that the present results are very close to the elasticity
solutions compared to HOST and thus proves the superiority of the present model.
Large value of 	xz as compared to 	yz (Table 4) is due to higher modulus values
of G13 and E1 as compared to G23 and E2. Transverse normal stress (�z� shows
compression at the plate center (Figure 3b) and roughly cubic distribution of
transverse shear stress (	xz� through the thickness of plate (Figure 3a) is observed for
constant temperature (Case A). Moreover, in case B, the transverse normal stress
(�z� is found to be too small as compared to case A with compressive value in the
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90 T. KANT ET AL.

Figure 4 Variation of normalized (a) transverse shear stress 	xz (b) transverse normal stress �z
(c) inplane normal stress �x (d) transverse displacement w through thickness of a homogeneous
orthotropic plate subjected to thermal load, �T�x� y� h/2� = −�T�x� y�−h/2� = T0 sin

x
a
sin y

b

(Case B).

upper half and tensile value in the lower half of plate. And transverse shear stresses
	xz and 	yz are found to be nearly same with opposite signs.

Example 2

Various three-layered, symmetric, cross-ply (0�/90�/0��, square laminates with
aspect ratios, s = 4, 10 and 20 and simple support end conditions on all four
edges (Table 1) subjected to constant (Case A) and varied (Case B) temperature
distribution through thickness and sinusoidal variations along the inplane directions
are considered here to show the ability of the present model to handle layered
structure. Material properties are presented in Table 3(II). Results for aspect ratios,
s = 4, 10 and 20 have been compared in Table 5 with elasticity solutions given by
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92 T. KANT ET AL.

Bhaskar et al. [3]. Present results are seen to be closest to the elasticity solutions.
Through thickness variations of transverse shear stress (	xz�, transverse normal
stress (�z�, inplane normal stress (�x� and inplane displacement (u� for an aspect
ratio of 5 have been presented in Figures 5 and 6 for case A and case B, respectively.
Solutions are only available for varied temperature (Case B) and solutions with
constant temperature (Case A) will be useful as benchmark solution in future.
Variation of transverse shear stress (	xz� for constant temperature (Case A) is found
to be smooth curved profile in the top and bottom lamina (0�� but almost linear
profile is observed in the middle lamina (90�� with zero value at the mid-surface
(Figure 5a), whereas for varied temperature (Case B), 	xz varies smoothly in curved
fashion through the thickness (Figure 6a). Interesting distribution of transverse

Figure 5 Variation of normalized (a) transverse shear stress 	xz (b) transverse normal stress �z
(c) inplane normal stress �x (d) inplane displacement u through thickness of a 0�/90�/0� symmetric
composite plate subjected to thermal load, �T�x� y�±h/2� = T0 sin

x
a
sin y

b
(Case A).
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A SEMI-ANALYTICAL MODEL FOR COMPOSITE AND SANDWICH PLATES 93

Figure 6 Variation of normalized (a) transverse shear stress 	xz (b) transverse normal stress �z
(c) inplane normal stress �x (d) transverse displacement w through thickness of a 0�/90�/0� symmetric
composite subjected to thermal load, �T�x� y� h/2� = −�T�x� y�−h/2� = T0 sin

x
a
sin y

b
(Case B).

normal stress (�z� is observed for this configuration in both types of loadings. In
case of constant temperature (Case A), �z in top and bottom lamina (0�� shows
compression whereas, �z in middle lamina (90�� shows tension at the plate center
(Figure 5b) and in case of varied temperature (Case B), �z in top lamina (0�� is
compressive, �z in bottom lamina (0�� is tensile and �z in middle lamina (90��
has mixed behavior of compression and tension below and above the mid-surface
(Figure 6b) which proves the necessity of refined model to model the accurately such
highly non-linear behaviour. All variations are observed to be symmetric about the
mid-surface as expected.
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A SEMI-ANALYTICAL MODEL FOR COMPOSITE AND SANDWICH PLATES 95

Example 3

A 4-layered, unsymmetric, cross-ply �0�/90�/0�/90��, square composite plate
with equal thickness under the thermal load is considered in this example with
simple support end conditions (Table 1). Material properties are presented in
Table 3(I). Results of the maximum normalized stresses ��x� �y� 	xy� 	xz� 	yz� and
transverse displacement �w� are presented in Table 6 for various aspect ratios and
through thickness variations of transverse shear stress (	xz�, transverse normal stress
(�z�, inplane normal stress (�x� and transverse displacement (w� are depicted in

Figure 7 Variation of normalized (a) transverse shear stress 	xz (b) transverse normal stress �z
(c) inplane normal stress �x (d) transverse displacement w through thickness of a 0�/90�/0�/90�

unsymmetric composite plate subjected to thermal load, �T�x� y�±h/2� = T0 sin
x
a
sin y

b
(Case A).
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96 T. KANT ET AL.

Figures 7 and 8 for an aspect ratio of 5 for case A and case B, respectively. 3D
elasticity solution given by Rohwer et al. [14] is used for comparison of the results
obtained through present investigations. Excellent agreements of present results
with elasticity solutions suggest that the formulation is capable to handle such
unsymmetric laminate configurations. It is also seen that transverse shear stress 	xz
has symmetry about mid plane with shear stress 	yz (Table 6). Zig-zag variation
of transverse shear stress (	xz� through the thickness of plate is observed (Figure 7a
and 8a) and this is due to the abrupt change in stiffness between 0� and 90� layers

Figure 8 Variation of normalized (a) transverse shear stress 	xz (b) transverse normal stress �z
(c) inplane normal stress �x (d) transverse displacement w through thickness of a 0�/90�/0�/90�

unsymmetric composite subjected to thermal load, �T�x� y� h/2� = −�T�x� y�−h/2� = T0 sin
x
a
sin y

b

(Case B).
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for both cases A and B. Variation of transverse normal stress (�z� is seen to be
antisymmetric about mid plane (Figure 8b).

Example 4

A symmetric square sandwich plate �0�/core/0�� with simple support end
conditions (Table 1) on all four edges and subjected to thermal load has been
considered here. Exact solution of this example is not available in the literature.
Material properties are presented in Table 3(III). Thickness of each face sheets is
one tenth of the total thickness of the plate. The normalized maximum stresses

Figure 9 Variation of normalized (a) transverse shear stress 	xz (b) transverse normal stress �z
(c) inplane normal stress �x (d) inplane displacement u through thickness of a 0�/core/0� symmetric
sandwich plate subjected to thermal load, �T�x� y�±h/2� = T0 sin

x
a
sin y

b
(Case A).
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A SEMI-ANALYTICAL MODEL FOR COMPOSITE AND SANDWICH PLATES 99

Figure 10 Variation of normalized (a) transverse shear stress 	xz (b) transverse normal stress �z
(c) inplane normal stress �x (d) transverse displacement w through thickness of a a 0�/core/0�

symmetric sandwich subjected to thermal load, �T�x� y� h/2� = −�T�x� y�−h/2� = T0 sin
x
a
sin y

b

(Case B).

(�x� �y� 	xy� 	xz� 	yz� and transverse displacement (w� for various aspect ratios, 4, 10
and 20 are presented in Table 7. Figures 9 and 10 show the through thickness
variations of transverse shear stress (	xz�, transverse normal stress (�z�, inplane
normal stress (�x� and transverse displacement (w� for an aspect ratio of 4 for
case A and case B, respectively. Theses results should serve as benchmark solutions
in future.

GENERAL DISCUSSION

The defined variations of temperatures through the thickness of plate are
considered here so that present solutions can be compared with the available
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100 T. KANT ET AL.

3D elasticity results. However, the technique is capable to handle any kind of
temperature variations. Further, the present model maintains the continuity of
transverse stresses and displacements at the laminae interfaces without involving any
complexity in the formulation and solution technique.

It is observed in all examples considered in the present study that variation
in transverse displacement (w� along the thickness is very small for an aspect ratio
equal/greater than 10 (thin plate). However, for thick plates with aspect ratios less
than 5, w varies significantly (Figures 4d, 8d and 10d).

The variation of transverse normal stress (�z� here is quite different from what
is observed in the case of mechanical loading.

CONCLUDING REMARKS

An efficient, simple semi-analytical model based on solution of a two-point
BVP governed by a set of coupled first-order ODEs through the thickness of plate
is proposed in this article for thermo-mechanical stress analysis. The shear traction
free conditions at the top and bottom of plate and continuity of transverse stresses
and displacement at the layer interfaces are exactly satisfied which is one of the
important features of the developed model. Moreover, the solution also ensures
the fundamental elasticity relationship between stress, strain and displacement
fields within the elastic continuum. It is shown through numerical investigations
that results obtained by present approach are highly accurate. Another important
feature of this approach is that both displacements and stresses are computed
simultaneously with the same degree of accuracy.

APPENDIX A

Coefficients of [C] Matrix

C11 =
E1�1− �23�32�

�
C12 =

E1��21 + �31�23�

�
C13 =

E1��31 + �21�32�

�

C22 =
E2�1− �13�31�

�
C23 =

E2��32 + �12�31�

�
C33 =

E3�1− �12�21�

�

C44 = G12 C55 = G13 C66 = G23

where � = �1− �12�21 − �23�32 − �31�13 − 2�12�23�31�

APPENDIX B

Coefficients of [Q] Matrix

Q11 = C11c
4 + 2�C12 + 2C44�c

2s2 + C22s
4

Q12 = C12�c
4 + s4�+ �C11 + C22 − 4C44�c

2s2

Q13 = C13c
2 + C23s

2
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Q14 = �C11 − C12 − 2C44�c
3s + �C12 − C22 + 2C44�cs

3

Q22 = C22c
4 + 2�C12 + 2C44�c

2s2 + C11s
4

Q23 = C23c
2 + C13s

2

Q24 = �C12 − C22 + 2C44�c
3s + �C11 − C12 − 2C44�cs

3

Q33 = C33

Q34 = �C31 − C32�cs

Q44 = �C11 − 2C12 + C22 − 2C44�c
2s2 + C44�c

4 + s4�

Q55 = C55c
2 + C66s

2

Q56 = �C55 − C66�cs

Q66 = C55s
2 + C66c

2

APPENDIX C

Coefficients of [B] Matrix

B13 = −m

a
B14 =

Q66

Q55Q66 −Q56Q65

B13 = −n

b
B15 =

Q55

Q55Q66 −Q56Q65

B31 =
Q31

Q33

m

a
B32 =

Q32

Q33

n

b
B36 =

1
Q33

B41 =
(
Q11 −

Q13Q31

Q33

)
m22

a2
+

(
Q44 −

Q43Q34

Q33

)
n22

b2

B42 =
[
Q12 −

(
Q13Q32

Q33

)
−

(
Q43Q34

Q33

)
+Q44

]
mn2

ab
B46 = −

(
Q13

Q33

)
m

a

B51 =
[
Q21 −

(
Q31Q23

Q33

)
−

(
Q43Q34

Q33

)
+Q44

]
mn2

ab

B52 =
(
Q22 −

Q23Q32

Q33

)
n22

b2
+

(
Q44 −

Q43Q34

Q33

)
m22

a2
B56 = −

(
Q23

Q33

)
n

b

B64 =
m

a
B65 =

n

b

Coefficients of �p� Vector

p3 =
1
Q33

(
Q31�tx +Q32�ty +Q33�tz +Q34�txy

)
T�z�
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p4 = −Bx�x� y� z�−
[(

−Q11 +
Q13Q31

Q33

)
�tx +

(
−Q12 +

Q13Q32

Q33

)
�ty

+
(
−Q14 +

Q13Q34

Q33

)
�txy

]
m′
a

T�z�

p5 = −By�x� y� z�−
[(

−Q21 +
Q23Q31

Q33

)
�tx +

(
−Q22 +

Q23Q32

Q33

)
�ty

+
(
−Q24 +

Q23Q34

Q33

)
�txy

]
n′
b

T�z�

p6 = −Bz�x� y� z�
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