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A higher order refined model with isoparametric elements is proposed to study the transient dynamic
response of laminated arches/curved beams. The strain field is modeled through cubic axial, cubic trans-
verse shear and linear transverse normal strain components. As the cross-sectional warping is accurately
modeled by this theory, the shear correction factor is rendered redundant. The stress–strain relationship
is derived from an orthotropic lamina in a three-dimensional state of stress, so that angle-ply laminates
can be studied through one-dimensional elements. Consistent mass matrix is constituted for the equation
of motion, which is solved by Newmark integration scheme. The higher order formulation is validated
with available results and subsequently applied to arches with various curvatures, aspect ratios, bound-
ary conditions, loadings and lamination schemes to evaluate its transient dynamic performance and suit-
able conclusions are drawn.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Evaluation of response of laminated arches or curved beams to
transient dynamic loads is the key to the design of components,
subsystems or even systems with such materials in aero space,
healthcare, automotive and transportation segments due to their
high strength to weight ratio. That would be feasible through the
development of a suitable numerical model and that is primary fo-
cus of this paper.

Wu and Witmer studied the nonlinear transient response of an
impulsively loaded ring through the displacement finite elements
based on principle of virtual work [1] and developed the equation
of motion for beams and rings [2] with material and geometric
nonlinearities based on Euler–Bernoulli and Timoshenko [3] theo-
ries of deformation using virtual work and D’Alembert’s principle.
Tene et al. [4] studied plane curved beam with shear deformation
and rotary inertia, subjected to static and dynamic loads through
Houbolt’s method and finite difference scheme. Sagartz [5] evalu-
ated the transient response of a three-layer ring through a compu-
tational model along with an experimental study. Remseth [6]
studied the nonlinear dynamic analysis of space frames, wherein
curved beams were modeled through the introduction of initial
deflections in the element stiffness relations.

Sheinman [7] reported an arbitrary plane curved beam with
geometric nonlinearity, shear deformation, rotary inertia, initial
imperfections and viscous damping, subjected to dynamic loads
ll rights reserved.
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through Houbolt’s method. Noor and Knight [8] developed a com-
putational procedure for predicting the dynamic response of
curved beam with geometric nonlinearity. Using a mixed formula-
tion and explicit central difference method, they analyzed arches
with transverse shear and rotary inertia. Noor and Peters [9] pre-
sented a large rotation dynamic analysis of curved beams with
the effects of transverse shear deformation using Newmark’s inte-
gration. Henrych [10] dealt with the subject of linear free and
forced oscillations of planar arches and frames, with various
cross-sections, rotatory and tangential inertia, transverse shear
and extensionality of the neutral axis.

Hsiao and Hsiao [11] published a co-rotational finite element
formulation for the dynamic analysis of a planar curved beam,
based on the Euler–Bernoulli theory, wherein the nonlinear dy-
namic equilibrium equations are solved through Newmark integra-
tion scheme and Newton–Raphson technique. Khdeir and Reddy
[12] studied the dynamic response of slightly curved cross-ply
laminated composite beams to general forcing functions and for
arbitrary end conditions through a model based on shallow shell
theory for thin to thick arches. Huang et al. [13] analyzed the tran-
sient response of arches with variable curvature, shear deforma-
tion, rotary inertia and damping by combining the dynamic
stiffness method with the Laplace transform. Gordon and Hollk-
amp [14] adopted implicit condensation and expansion method
to predict the response of a thin, curved aluminum beam to ran-
dom distributed loading.

As one can observe from the reported literature that the for-
mulations based on classical Euler–Bernoulli theory can handle
only thin sections with higher aspect ratios. While the studies
based on first order theory can model deeper sections, they have
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Nomenclature

S arclength of the arch
t thickness of cross-section
R radius of curvature
S/t aspect ratio
b(=S/R) subtended angle of an arch
BC boundary condition
HOAM higher order arch model

FOST first order shear deformation theory of Timoshenko [3]
k shear correction factor (5/6) for FOST
tf time at which the external force vector reaches zero

magnitude
tp time at which the external force vector reaches peak

value
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limitations such as the need for a shear correction factor [3] and
the inability to capture the cross-sectional warping – a key factor
for sandwich constructions with stiff facings and weak cores.
Besides, this theory cannot model the variation of transverse
displacement across the thickness i.e. the transverse normal
strain. Hence, there is a need for a numerical model that can
accurately model and analyze deep laminated arches or curved
beams. This paper aims to propose a higher order model, fulfill-
ing that need.

This higher order theory models the cross-sectional warping
through a cubic axial strain; considers the variation of transverse
displacement across the thickness through a linearly varying trans-
verse normal strain; incorporates transverse shear strain, varying
cubically across the cross-section and does not require any shear
correction factor and is built through standard isoparametric ele-
ments. Its elasticity matrix had been derived from an orthotropic
lamina assumed to be in a three-dimensional state of stress, in
such a way that even angle-ply laminations can be studied using
one-dimensional elements. The equation of motion assembled
through consistent mass matrix is solved by the Newmark time
integration scheme.

Through the transient dynamic analyses of shallow to deep and
thin to thick laminated arches with various boundary and loading
conditions, the proposed higher order formulation is first validated
and subsequently evaluated in a comparative manner with the first
order model.
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Fig. 1. Arch geometry with displacement components.
2. Theoretical formulation

The higher order arch model (HOAM), based on Taylor’s series
expansion [15], can be expressed, for an arch, as follows:

u ¼ u0 þ zhx þ z2u�0 þ z3h�x ð1Þ
w ¼ w0 þ zhz þ z2w�0 ð2Þ

where z is the distance from the neutral axis to any point of inter-
est along the depth of the arch, u0 and w0 are axial and transverse
displacements in x–z plane, hx is the face rotation about y-axis
(Fig. 1) and u�0; h�x; hz; w�0 are the higher order terms arising out
of Taylor’s series expansion and defined at the neutral axis.

The Lagrangian function is be given as

L ¼ T � ðU �WÞ ð3Þ

where T is the kinetic energy, U is the internal strain energy and W
is the work done by the external forces/loads. The same can be ex-
pressed as

L ¼ 1
2

Z
_u
�

t q _u
�

dv � 1
2

Z
etrdv � b

Z
u
�

t p
�

dx
� �

ð4Þ

where

u
�
¼ ½u w�t; _u

�
¼ ½ _u _w�t ; e ¼ ½ex ez cxz�

t
;

r ¼ ½rx rz sxz�t; p
�
¼ ½px pz�

t ð4aÞ
The field variables can be expressed in terms of nodal degrees of
freedom as

u
�
¼ Zdd ð5Þ

where

d ¼ u0 w0 hx u�0 h�x hz w�0
� �t ð5aÞ

Zd ¼
1 0 z z2 z3 0 0
0 1 0 0 0 z z2

" #
ð5bÞ

The strain field for an arch [16] can be expressed as

ex ¼
1

ð1þ z=RÞ ðu;x þw=RÞ ð6aÞ

ez ¼ w;z ð6bÞ
cxz ¼ w;x þ u;z � u=R ð6cÞ

where R is the radius of curvature.
Applying the displacement field from Eqs. (1) and (2) in the

above equations, one gets,

ex ¼ ex0 þ z2e�x0 þ zjx þ z3j�x ð7aÞ
ez ¼ ez0 þ zjz ð7bÞ
cxz ¼ uþ z2u� þ zvxz þ z3v�xz ð7cÞ
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and can be expressed in matrix form as

ex ¼ Zt
aea þ Zt

beb ð8Þ
ez ¼ Zt

tet ð9Þ
cxz ¼ Zt

scs ð10Þ

where

ea ¼ ex0 e�x0

� �t ¼ ðu0;x þw0=RÞ u�0;x þw�0=R
� �h it

ð11aÞ

eb ¼ jx j�x
� �t ¼ ðhx;x þ hz=RÞ h�x;x

� �h it
ð11bÞ

et ¼ ez0 jz½ �t ¼ hz 2w�0
� �t ð11cÞ

cs ¼ u u� vxz v�xz

� �t

¼ ðw0;x þ hx � u0=RÞ w�0;x þ 3h�x � u�0=R
� �h

hz;x þ 2u�0 � hx=R
� 	

�h�x=R
� 	�t ð11dÞ

Za ¼
1

ð1þ z=RÞ
z2

ð1þ z=RÞ


 �t

ð11eÞ

Zb ¼
z

ð1þ z=RÞ
z3

ð1þ z=RÞ


 �t

ð11fÞ

Zt ¼ ½1 z�t ð11gÞ
Zs ¼ ½1 z2 z z3�t ð11hÞ

The strains of Eqs. (8)–(10) can be rewritten in a combined ma-
trix form as

e ¼ Z�e ð12Þ

where

Z ¼
Zt

a Zt
b 0 0

0 0 Zt
t 0

0 0 0 Zt
s

2
64

3
75 ð12aÞ

�e ¼ ½ea eb et cs�
t ð12bÞ

The stress–strain relationship of an orthotropic lamina in a
three dimensional state of stress can be expressed as [17],

ro ¼ Qeo ð13Þ

where

ro ¼ ½rx ry rz sxy syz sxz�t ð13aÞ
eo ¼ ½ex ey ez cxy cyz cxz�

t ð13bÞ

and Q is given by Eqs. (A17)–(A29), in Appendix A.
By setting ry, sxy, syz equal to zero in Eq. (13) and deriving the

remaining stress components from the same equation, one gets
the stress–strain relationship as [18],

r ¼ Ce ð14Þ

where

r ¼ ½rx rz sxz�t ð14aÞ

C ¼
C11 C12 0
C21 C22 0
0 0 C33

2
64

3
75 ð14bÞ

and the expressions for various C matrix elements are given by Eqs.
(B1)–(B6), in Appendix B.

The internal strain energy can be evaluated using Eqs. (12) and
(14) as

U ¼ 1
2

Z
etrdv ¼ 1

2

Z
�etD�edx ð15Þ
where

D ¼ b
Z

ZtCZ dz ð15aÞ

¼ b
Z ZaC11Zt

a ZaC11Zt
b ZaC12Zt

t 0
ZbC11Zt

a ZbC11Zt
b ZbC12Zt

t 0
ZtC21Zt

a ZtC21Zt
b ZtC22Zt

t 0
0 0 0 ZsC33Zt

s

2
6664

3
7775dz ð15bÞ

¼

Daa Dab Dat 0
Dba Dbb Dbt 0
Dta Dtb Dtt 0
0 0 0 Dss

2
6664

3
7775 ð15cÞ

and the expansions of various D matrices are given by Eqs. (C3)–
(C13), in Appendix C.

The kinetic energy can be expressed using Eq. (5) as

T ¼ 1
2

Z
ð _dt �m _dÞdx ð16Þ

where

�m ¼ b
XNL

l¼1

Z
ðzt

dqlzdÞdz ð17Þ

where ql is the mass density of a layer and �m is given by Eq. (C12),
in Appendix C.

The external work done of Eqs. (3) and (4) can be modified with
Eq. (5) as

W ¼ dt
Z

P
�

dx ð18Þ

where

P
�
¼ bZt

d p
�

ð18aÞ

¼ b½px pz zpx z2px z3px zpz z2pz�
t ð18bÞ

which can expressed as

P
�
¼ px0 pz0 mx0 p�x0 m�x0 mz0 p�z0

� �t ð18cÞ

The Lagrangian function can be re-stated with Eqs. (15), (16)
and (18) as

L ¼ 1
2

Z
_dt �m _ddx� 1

2

Z
�etD�edx� dt

Z
P
�

dx
� �

ð19Þ
3. Finite element modeling

The displacements within an element can be expressed in terms
of its nodal displacements in isoparametric formulations as

d ¼ Nde ð20Þ

where N is the shape function vector [19] and de is a vector contain-
ing nodal displacement vectors of an element with m nodes and can
be expressed as

de ¼ dt
1 dt

2 � � � dt
m

h it
ð21Þ

Similarly, the strains with in an element can be written through
Eqs. (5a) and (12b) as

�e ¼

Ba

Bb

Bt

Bs

2
6664

3
7775de ¼ Bde ð22Þ



Table 3
Material data for validation experiments.

No Details Ref.

Data-3.1 Beam Bathe et al. [21]
E1 = E2 = E3 = 1.2 � 104 lb/in.2

G12 = G23 = G13 = 0.5 � 104 lb/in.2

S = 10 in., b = 1in., t = 1in.
v = 0.2
q = 1.0 � 10�6 lb s2/in.4

Load: pz = 2.85 lb/in; step pulse
loading – tf = 0.013 s
No. of elements: 8 cubic
BC: CF

Data-3.2 Beam Mondkar and
Powell [22]

E1 = E2 = E3 = 3.0 � 107 lb/in.2

G12 = G23 = G13 = 1.4286 � 107 lb/in.2

S = 20 in., b = 1 in., t = 0.125 in.
v = 0.05
q = 2.5374 � 10�4 lb s2/in.4

Load: pc = 640 lb; step pulse
loading – tf = 0.005 s
No. of elements: 16 cubic
BC: CC

Data-3.3 Beam Liu and Lin [23]
E1 = E2 = E3 = 3.0 � 107 lb/in.2

G12 = G23 = G13 = 1.1538 � 107 lb/in.2

S = 30 in., b = 1 in., t = 2 in.
v = 0.3
q = 0.733 � 10�3 lb s2/in.4

Load: pz = 220 lb/in.; step pulse
loading – tf = 0.007 s
No. of elements: 16 cubic
BC: SS
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where, for a given node m, the strain displacement matrix can be
computed as

Ba ¼
N;x N=R 0 0 0 0 0
0 0 0 N;x 0 0 N=R


 �
m

ð23Þ

Bb ¼
0 0 N;x 0 0 N=R 0
0 0 0 0 N=R 0 0


 �
m

ð24Þ

Bt ¼
0 0 0 0 0 N 0
0 0 0 0 0 0 2N


 �
m

ð25Þ

Bs ¼

�N=R N;x N 0 0 0 0
0 0 0 �N=R 3N 0 N;x

0 0 �N=R 2N 0 N;x 0
0 0 0 0 �N=R 0 0

2
6664

3
7775

m

ð26Þ

By substituting Eqs. (20) and (22) in Eq. (19), one gets,

L ¼ 1
2

_dt
e

Z
Nt �mN dx _de

� 1
2

dt
e

Z
BtDBdxde � dt

e Pc þ
Z

Nt P
�

dx

 �� �

ð27Þ

Applying Hamilton’s principle on L, we get the governing equa-
tion of motion as

M€dþ Kd ¼ FðtÞ ð28Þ
where

M ¼
Z

Nt �mN dx ð28aÞ

K ¼
Z

BtDBdx ð28bÞ

FðtÞ ¼ Pc þ
Z

Nt P
�

dx
� 


pðtÞ ð28cÞ

The external force vector of Eq. (28c) can be expressed as

FðtÞ ¼ Pc þ
X

wgNt P
�
jJj

� �
pðtÞ ð29Þ
Table 1
Temporal distribution of loading function.

Triangular pulse loading-1
pðtÞ ¼ t=tp for ð0 6 t 6 tpÞ
¼ 1� ½ðt � tpÞ=ðtf � tpÞ� for ðtp < t 6 tf Þ
¼ 0 for ðt > tf Þ

Triangular pulse loading-2
pðtÞ ¼ 1� t=tf for ð0 6 t 6 tf Þ
¼ 0 for ðt > tf Þ

Step pulse loading
pðtÞ ¼ 1 for ð0 6 t 6 tf Þ
¼ 0 for ðt > tf Þ

Sine pulse loading
pðtÞ ¼ sinðpt=tf Þ for ð0 6 t 6 tf Þ
¼ 0 for ðt > tf Þ

Blast (exponential) loading
p(t) = e�dt

Newmark method constants c = 0.5, b = 0.25

Table 2
Boundary conditions for different supports.

Support type At x = 0 At x = S

Simply supported (SS) u0 ¼ u�0 ¼ 0 u0 ¼ u�0 ¼ 0
w0 ¼ hz ¼ w�0 ¼ 0 w0 ¼ hz ¼ w�0 ¼ 0

Clamped–clamped (CC) u0 ¼ u�0 ¼ hx ¼ h�x ¼ 0 u0 ¼ u�0 ¼ hx ¼ h�x ¼ 0
w0 ¼ hz ¼ w�0 ¼ 0 w0 ¼ hz ¼ w�0 ¼ 0

Clamped–free (CF) u0 ¼ u�0 ¼ hx ¼ h�x ¼ 0 All free
w0 ¼ hz ¼ w�0 ¼ 0

Pinched ring (PR) u0 ¼ u�0 ¼ hx ¼ h�x ¼ 0 u0 ¼ u�0 ¼ hx ¼ h�x ¼ 0
where

Pc � the vector of nodal concentrated loads of an element

ð29aÞ

P
�
¼ b 0 pz 0 0 0

t
2

pz
t2

4
pz


 �
ð29bÞ
Data-3.4 Circular arch Noor and
Knight [8]

E1 = E2 = E3 = 1.0 � 107 lb/in.2

G12 = G23 = G13 = 4.1667 � 106 lb/in.2

S = 210.848in., R = 67.115in., b = 180o

b = 1 in., t = 1 in.
v = 0.1999
q = 2.44 � 10�4 lb s2/in.4

Load1: pc = 700 lb; step pulse
loading – tf = 0.072 s
Load2: pc = 2100 lb; triangular pulse
loading-1
tp = 250 ls; tf = 500 ls
No. of elements: 16 cubic
BC: CC

Data-3.5 Shallow arch Khdeir and
Reddy [12]

E1 = 40 � 106 lb/in.2, E2 = E3 = 1.0 � 106 lb/in.2

G12 = G13 = 0.6 � 106 lb/in.2, G23 = 0.5 � 106 lb/in.2

S = 20in., R = 100in., b = 11.45916o

b = 1in., t = 2in.
v = 0.25
q = 1.2 � 10�4 lb s2/in.4

Load: sinusoidal load with central amplitude
pz = 50 lb/in.;
Triangular pulse loading-2 with tf = 0.005 s,
Sine pulse loading with tf = 0.005 s,
Step pulse loading with tf = 0.005 s,
Blast loading with d = 660 s�1, tf = 0.005 s
No. of elements: 8 cubic
BC: CC
Lamination – [0/90]6 for sine pulse loading; for all
others [0/90/0]



Table 4
Material data for HOAM experiments.

Material data – sandwich

Face: Graphite/Epoxy Chen and Sun [24]
Ex = 120.11GPa (0.1742 � 108 lb/in.2)
Ey = Ez = 7.9083 GPa (0.1147 � 107 lb/in.2)
Gxy = Gyz = Gxz = 5.5041 GPa (0.7983 � 106 lb/in.2)
kGxy = kGyz = kGxz = 4.5871 GPa (0.6653 � 106 lb/in.2)
qf = 0.1433 � 10�3 lb s2/in.4

mf = 0.3

Core: Aluminium
honeycomb (0.25 in
cell size, 0.007 in foil)

Allen [25]

Ex = Ey = Ez = Gxy = mc = 0.
Gyz = 70.395 MPa (0.1021 � 105 lb/in.2)
Gxz = 140.79 MPa (0.2042 � 105 lb/in.2)
kGyz = 58.661 MPa (0.8508 � 104 lb/in.2)
kGxz = 117.35 MPa (0.1702 � 105 lb/in.2)
qc = 0.3098 � 10�5 lb s2/in.4

tc/tf = 8

Material data –
composite

Reddy[26]

Ex = 525.38 GPa(0.762 � 108 lb/in.2)
Ey = Ez = 21.015 GPa (0.3048 � 107 lb/in.2)
Gxy = Gyz = Gxz = 10.508 GPa (0.1524 � 107 lb/in.2)
kGxy = kGyz = kGxz = 8.7563 GPa (0.127 � 107 lb/in.2)
q = 0.72567 � 10�4 lb s2/in.4

m = 0.25

Data-4.1 Circular arch
Material data – sandwich
S = 7979.6 mm (314.1593 in.),
R = 2540 mm (100 in.)
b = 180�
b = 25.4 mm (1 in.)
Load: pc = 444.82 N (100 lb);
step pulse loading – tf = 0.02 s
No. of elements: 16 cubic
BC: CC
Lamination: [0/30/45/60/core/60/45/30/0]
Aspect ratios: 5, 10, 15, and 25

Data-4.2 Pinched ring
Material data – sandwich
S (of quarter ring) = 197.62 mm (7.7802 in.)
R = 125.81 mm (4.953 in.)
b = 90�
b = 25.4 mm (1 in.)
Load: pc = 444.82 N (100 lb);
load on quarter ring = 222.41 N (50 lb);
Step pulse loading – tf = 0.025 s
No. of elements: 8 cubic
BC: PR
Lamination: [0/90/core/0/90]
Aspect ratios: 5, 10, 15, and 25

Data-4.3 Cantilever quarter arch
Material data – composite
S = 2677.7696 mm (105.424 in.),
R = 1704.721 mm (67.115 in.)
b = 90�
b = 25.4 mm (1 in.)
Load: pc = 3336.15 N (750 lb);
step pulse loading – tf = 0.07 s
No. of elements: 8 cubic
BC: CF
Lamination: [30/�30/30]
Aspect ratios: 5, 10, 15, and 25

Data-4.4 Shallow arch
Material data – composite
S = 892.59156 mm (35.1414 in.),
R = 1704.721 mm (67.115 in.)
b = 30�
b = 25.4 mm (1 in.)
Load: pz = 455 lb/in.; step pulse loading – tf = 0.004 s
No. of elements: 16 cubic
BC: SS
Lamination: [0/45/�45/90]
Aspect ratios: 5, 10, 15, and 25

PC

Fig. 2a. Circular arch with central load.

PC

PC

PC/2

Fig. 2b. Pinched ring and its quarter model.

PC

Fig. 2c. Quarter arch with tip load.

Pz

β β

Pz

Fig. 2d. Shallow arch with sinusoidal and uniformly distributed load.
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Fig. 3. Temporal variation of dynamic load.
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pz � uniformly distributed transverse load or ð29cÞ

pz � central amplitude of sinusoidal load ð29dÞ

pðtÞ� temporal variation of the forcing function as given in Table1

ð29eÞ
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Fig. 4. Transient response of a cantilever beam (Data-3.1).
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Fig. 5. Transient response of a clamped beam (Data-3.2).
4. Solution to equation of dynamic equilibrium

The equation of dynamic equilibrium Eq. (28) with damping can
be expressed in an incremental form as

MDaþ CDv þ KDd ¼ DF ð30Þ
-0.05

0

0.05

0.1

0.15

0.2

0.25

0 1 2 3 4 5 6 7

Time (milliseconds)

M
id

sp
an

 d
ef

le
ct

io
n 

(in
)

HOAT
Ref [23]

Fig. 6. Transient response of SS beam (Data-3.3).
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Fig. 7. Transient response of a clamped semi-circular arch with step loading (Data-
3.4).
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where

Da ¼ ðanþ1 � anÞ ¼ ð€dnþ1 � €dnÞ ð30aÞ
Dv ¼ ðvnþ1 � vnÞ ¼ ð _dnþ1 � _dnÞ ð30bÞ
Dd ¼ ðdnþ1 � dnÞ ð30cÞ
DF ¼ ðFnþ1 � FnÞ ð30dÞ

and the subscript n + 1 and n represent quantities at time tn+1 and tn

respectively. The solution to this equation through Newmark Beta
method [20] can be obtained as

vnþ1 ¼ vn þ ð1� cÞanDt þ canþ1Dt ð31Þ
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Fig. 8. Transient response of a clamped semi-circular arch with triangular loading
(Data-3.4).
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Fig. 10. Transient response of a shallow
dnþ1 ¼ dn þ vnDt þ 1
2
� b

� 

anDt2 þ banþ1Dt2 ð32Þ

where c and b are the parameters adopted in Newmark’s method
and Dt = tn+1 � tn.

Eqs. (31) and (32) can be expressed in incremental form as

Dv ¼ ð1� cÞanDt þ canþ1Dt ð33Þ

Dd ¼ vnDt þ 1
2
� b

� 

anDt2 þ banþ1Dt2 ð34Þ

Substituting Eqs. (33), (34) and (30a) in Eq. (30), one gets

MDaþ C½ð1� cÞanDt þ canDt þ cDaDt� þ K½vnDt

þ 1
2
� b

� 

anDt2 þ banDt2 þ bDaDt2�

¼ DF ð35Þ

which after rearranging terms becomes,

MDa ¼ DF ð36Þ

where

M ¼ ½M þ CcDt þ KbDt2� ð36aÞ

DF ¼ DF � CanDt � vnDt þ an
Dt2

2

� 

K


 �
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Fig. 11. Transient response of a shallow arch to sine pulse (Data-3.5).
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Fig. 12. Transient response of a shallow arch to blast loading (Data-3.5).
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Fig. 13. Response of a circular arch – S/t = 5 (Data-4.1).
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Here, Eq. (36) can be solved for Da and current acceleration – an+1–
can be computed using Eq. (30a). With the acceleration at current
time step and Eqs. (33) and (34), Dv and Dd can be evaluated.
The current velocity and displacement – vn+1 and dn+1 – can then
be estimated from Eq. (30b) and (30c).
5. Numerical experiments

Numerical experiments have been carried out to study the per-
formance of HOAM. This model is first validated through solving
problems available in the literature and later its performance is
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Fig. 14. Response of a circular arch – S/t = 10 (Data-4.1).
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Fig. 15. Response of a circular arch – S/t = 15 (Data-4.1).
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Fig. 16. Response of a circular arch – S/t = 25 (Data-4.1).
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studied for various material and geometric conditions. For all the
problems solved, various details such as material properties, lami-
nation schemes, loading and end conditions are given in Tables 2–4
as well in Figs. 2 and 3.
5.1. Validation experiments

Few beam and arch problems are taken up first, in order to val-
idate the proposed model.
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Fig. 17. Response of a pinched ring – S/t = 5 (Data-4.2).
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Fig. 18. Response of a pinched ring – S/t = 10 (Data-4.2).
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Fig. 19. Response of a pinched ring – S/t = 15 (Data-4.2).
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A cantilever beam of Bathe et al. [21] subjected to uniformly
distributed load, a clamped beam of Mondkar and Powell [22] with
a central concentrated load and a simply supported beam of Liu
and Lin [23] with uniformly distributed load are analyzed with
HOAM and the results are presented in (Figs. 4–6). The close corre-
lation between the earlier results and those of present model can
be seen from these plots.

Next, a semi-circular arch of Noor and Knight [8] with a step
pulse load and a triangular pulse loading is studied and the results
of HOAT are presented in Figs. 7 and 8. Here also, close correlation
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Fig. 20. Response of a pinched ring – S/t = 25 (Data-4.2).
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Fig. 21. Response of a quarter arch – S/t = 5 (Data-4.3).
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Fig. 22. Response of a quarter arch – S/t = 10 (Data-4.3).
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between the current model and those of Noor and Knight can be
observed.

A shallow cross-ply arch subjected to varieties of dynamic load-
ings, studied by Khdeir and Reddy [12] is analyzed by HOAM and its
close correlation with the earlier results can be seen in Figs. 9–12.

Thus, with the correlations established with arches of varying
curvature, aspect ratios, end conditions, material properties and
transient dynamic loadings, the accuracy and adequacy of HOAM
are validated in this section.

5.2. Higher order arch model (HOAM) experiments

A circular clamped arch with sandwich material and central
concentrated load (Data-4.1) is analyzed with HOAM and first
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Fig. 24. Response of a quarter arch – S/t = 25 (Data-4.3).
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Fig. 25. Response of a shallow arch – S/t = 5 (Data-4.4).
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order shear theory (FOST) for various aspect ratios of 5, 10, 15 and
25. The results are presented in Figs. 13–16.

In the case of thick arch of aspect ratio of five, it can be seen that
deformations of HOAM are roughly four times than that of FOST
and the period of the former is twice as much that of the latter.
A similar significant order of difference, both for deformations as
well as the period, can be observed for higher aspect ratios as well.

Next, a pinched ring with unsymmetric sandwich material
(Data-4.2) is studied for various aspect ratios as shown in Figs.
17–20. In this case also, deformations of HOAM are almost four
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Fig. 27. Response of a shallow arch – S/t = 15 (Data-4.4).

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004

Time (sec)

M
id

sp
an

 d
ef

le
ct

io
n 

(in
)

HOAM
FOST

Fig. 28. Response of a shallow arch – S/t = 5 (Data-4.4).
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times those of the FOST. The period of HOAM is twice than that of
FOST, for all aspect ratios considered.

Composite structures are taken up next. A quarter arch with
symmetric lamination (Data-4.3) with a tip load is analyzed for
various aspect ratios as shown in Figs. 21–24. In this case, the
deformations as well as the period of HOAM and FOST are quite
close, with HOAM being slightly more flexible.

A composite shallow arch (Data-4.4) with uniformly distrib-
uted load is analyzed with the proposed model. The results for
multiple aspect ratios are plotted in Figs. 25–28. It can be seen
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that both HOAM and FOST predict identical results, from deep to
thin arches.

6. Conclusions

A higher order model with isoparametric elements, which
incorporates transverse shear and normal strain components, is
presented in this paper for studying the transient dynamic
response of laminated arches. The proposed model can study shal-
low to deep and thin to thick arch geometries with different end
conditions and loadings quite effectively. Through the constitutive
relationship, adapted from the three dimensional stress–strain
relationship of an orthotropic lamina, even angle-ply laminates
can be analyzed using one-dimensional elements. With the consis-
tent mass matrix, governing equation of motion is solved through
Newmark time marching scheme. The model is first validated with
the available results in open literature and evaluated later for var-
ious arch geometries, laminations, and boundary as well as loading
conditions and compared with the first order theory. It emerges
from the numerical experiments that the proposed model is quite
effective for deep sandwich constructions and performs as good as
first order theory for laminated composite structures.

Appendix A

The stress–strain relationship at a point of an orthotropic lam-
ina in a three-dimensional state of stress/strain can be expressed
[17], along the lamina axes (Fig. 29) as

r0 ¼ De0 ðA1Þ

where

r0 ¼ r1 r2 r3 s12 s23 s13½ � ðA2Þ

e0 ¼ e1 e2 e3 c12 c23 c13½ � ðA3Þ
D ¼ 1
D

E1ð1� m23m32Þ E1ðm21 þ m31m23Þ E1ðm31 þ m21m32Þ 0 0 0
E2ðm12 þ m13m32Þ E2ð1� m13m31Þ E2ðm32 þ m12m31Þ 0 0 0
E3ðm13 þ m12m23Þ E3ðm23 þ m21m13Þ E3ð1� m12m21Þ 0 0 0

0 0 0 DG12 0 0
0 0 0 0 DG23 0
0 0 0 0 0 DG13

2
666666664

3
777777775

ðA4Þ
D ¼ ð1� m12m21 � m23m32 � m31m13 � 2m12m23m31Þ ðA5Þ

The relation between engineering and tensor strain vectors,
along lamina and laminate axes, can be given as

e0 ¼ Re0ts ðA6Þ
e� ¼ Re�ts ðA7Þ
1

x

y

z, 3

2

α
α

1

x

y
2

α

α

Fig. 29. Axis system – 1–3: Lamina axes; x, y, z: laminate axes.
where

R ¼

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2

2
666666664

3
777777775

ðA8Þ

If the angle between lamina and laminate axes can be defined as a,
then the lamina to laminate axis transformation is given by,

T ¼

c2 s2 0 2sc 0 0
s2 c2 0 �2sc 0 0
0 0 1 0 0 0
�sc sc 0 ðc2 � s2Þ 0 0

0 0 0 0 c �s

0 0 0 0 s c

2
666666664

3
777777775

ðA9Þ

where

c ¼ cos a
s ¼ sina

ðA10Þ

and the stress and strain along the lamina and laminate axes can be
equated as

r0 ¼ Tr� ðA11Þ
e0ts ¼ Te�ts ðA12Þ

By making use of Eqs. (A6)–(A12), one can get the laminate stress–
strain relationship as

r� ¼ Qe� ðA13Þ
where

Q ¼ T�1DðT�1Þt ðA14Þ
ðT�1Þt ¼ RTR�1 ðA15Þ
Q ¼

Q 11 Q 12 Q 13 Q 14 0 0
Q 21 Q 22 Q 23 Q 24 0 0
Q 31 Q 32 Q 33 Q 34 0 0
Q 41 Q 42 Q 43 Q 44 0 0

0 0 0 0 Q55 Q 56

0 0 0 0 Q65 Q 66

2
666666664

3
777777775

ðA16Þ
Q11 ¼ D11c4 þ 2ðD12 þ 2D44Þs2c2 þ D22s4 ðA17Þ
Q12 ¼ D12ðs4 þ c4Þ þ ðD11 þ D22 � 4D44Þs2c2 ðA18Þ
Q13 ¼ D31c2 þ D32s2 ðA19Þ
Q14 ¼ ðD11 � D12 � 2D44Þsc3 þ ðD12 � D22 þ 2D44Þs3c ðA20Þ
Q22 ¼ D11s4 þ 2ðD12 þ 2D44Þs2c2 þ D22c4 ðA21Þ
Q23 ¼ D13s2 þ D23c2 ðA22Þ
Q24 ¼ ðD11 � D12 � 2D44Þs3c þ ðD12 � D22 þ 2D44Þsc3 ðA23Þ
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Q 33 ¼ D33 ðA24Þ
Q 34 ¼ ðD13 � D23Þsc ðA25Þ
Q 44 ¼ ðD11 � 2D12 þ D22 � 2D44Þs2c2 þ D44ðc4 þ s4Þ ðA26Þ
Q 55 ¼ D55c2 þ D66s2 ðA27Þ
Q 56 ¼ ðD66 � D55Þsc ðA28Þ
Q 66 ¼ D55s2 þ D66c2 ðA29Þ
Appendix B

U ¼ ðQ22Q44 � Q 2
24Þ ðB1Þ

C11 ¼ Q 11 þ
Q 12

U
ðQ 14Q 24 � Q12Q44Þ þ

Q 14

U
ðQ 12Q 24 � Q 14Q22Þ ðB2Þ

C12 ¼ Q 13 þ
Q 12

U
ðQ 24Q 34 � Q23Q44Þ þ

Q 14

U
ðQ 23Q 24 � Q 22Q34Þ ðB3Þ

C21 ¼ Q 13 þ
Q 23

U
ðQ 14Q 24 � Q12Q44Þ þ

Q 34

U
ðQ 12Q 24 � Q 14Q22Þ ðB4Þ

C22 ¼ Q 33 þ
Q 23

U
ðQ 24Q 34 � Q23Q44Þ þ

Q 34

U
ðQ 23Q 24 � Q 22Q34Þ ðB5Þ

C33 ¼ Q 66 �
Q 2

56

Q 55
ðB6Þ
Appendix C

Using binomial series, the following terms can be expanded as

1
ð1þ z=RÞ ¼ 1� z

R
þ z2

R2 �
z3

R3 ðC1Þ

1

ð1þ z=RÞ2
¼ 1� 2z

R
þ 3z2

R2 �
4z3

R3 ðC2Þ

which are used in the evaluation of various D matrices.

Daa ¼ b
Z

ZaC11Zt
a dz

¼ b
XNL

l¼1

C11

H1 � 2
R H2 þ 3

R2 H3 � 4
R3 H4 H3 � 2

R H4 þ 3
R2 H5 � 4

R3 H6

H3 � 2
R H4 þ 3

R2 H5 � 4
R3 H6 H5 � 2

R H6 þ 3
R2 H7 � 4

R3 H8

" #

ðC3ÞZ

Dab ¼ b ZaC11Zt

b dz

¼ b
XNL

l¼1

C11

H2 � 2
R H3 þ 3

R2 H4 � 4
R3 H5 H4 � 2

R H5 þ 3
R2 H6 � 4

R3 H7

H4 � 2
R H5 þ 3

R2 H6 � 4
R3 H7 H6 � 2

R H7 þ 3
R2 H8 � 4

R3 H9

" #

ðC4Þ

Dba ¼ Dab

Dbb ¼ b
Z

ZbC11Zt
b dz

¼ b
XNL

l¼1

C11

H3 � 2
R H4 þ 3

R2 H5 � 4
R3 H6 H5 � 2

R H6 þ 3
R2 H7 � 4

R3 H8

H5 � 2
R H6 þ 3

R2 H7 � 4
R3 H8 H7 � 2

R H8 þ 3
R2 H9 � 4

R3 H10

" #

ðC5ÞZ

Dat ¼ b ZaC12Zt

t dz

¼ b
XNL

l¼1

C12

H1 � 2
R H2 þ 3

R2 H3 � 4
R3 H4 H2 � 2

R H3 þ 3
R2 H4 � 4

R3 H5

H3 � 2
R H4 þ 3

R2 H5 � 4
R3 H6 H4 � 2

R H5 þ 3
R2 H6 � 4

R3 H7

" #

ðC6Þ
Dbt ¼ b
Z

ZbC12Zt
t dz

¼ b
XNL

l¼1

C12

H2 � 2
R H3 þ 3

R2 H4 � 4
R3 H5 H3 � 2

R H4 þ 3
R2 H5 � 4

R3 H6

H4 � 2
R H5 þ 3

R2 H6 � 4
R3 H7 H5 � 2

R H6 þ 3
R2 H7 � 4

R3 H8

" #

ðC7Þ
Dta ¼ b
Z

ZtC21Zt
a dz

¼ b
XNL

l¼1

C21

H1 � 2
R H2 þ 3

R2 H3 � 4
R3 H4 H3 � 2

R H4 þ 3
R2 H5 � 4

R3 H6

H2 � 2
R H3 þ 3

R2 H4 � 4
R3 H5 H4 � 2

R H5 þ 3
R2 H6 � 4

R3 H7

" #

ðC8Þ
Dtb ¼ b
Z

ZtC21Zt
b dz

¼ b
XNL

l¼1

C21

H2 � 2
R H3 þ 3

R2 H4 � 4
R3 H5 H4 � 2

R H5 þ 3
R2 H6 � 4

R3 H7

H3 � 2
R H4 þ 3

R2 H5 � 4
R3 H6 H5 � 2

R H6 þ 3
R2 H7 � 4

R3 H8

" #

ðC9Þ

Dtt ¼ b
Z

ZtC22Zt
t dz ¼ b

XNL

l¼1

C22
H1 H2

H2 H3


 �
ðC10Þ

Dss ¼ b
Z

ZsC33Zt
s dz ¼ b

XNL

l¼1

C33

H1 H3 H2 H4

H5 H4 H6

H3 H5

sym H7

2
664

3
775 ðC11Þ

�m ¼ b
XNL

l¼1

ql

H1 0 H2 H3 H4 0 0
H1 0 0 0 H2 H3

H3 H4 H5 0 0
H5 H6 0 0

H7 0 0
H3 H4

sym H5

2
6666666664

3
7777777775

ðC12Þ

In Eqs. (C3)–(C12), for a given layer l,

Hk ¼
1
k

hk
l � hk

l�1

� �
ðC13Þ

where

NL = total number of layers of a cross-section
k = constant varying from 1 to 10
hl = distance from the neutral axis to the top of a layer, l
hl�1 = distance from the neutral axis to the top of layer l-1 or
bottom of layer l
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