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Abstract 
 

In this paper, we analyze the boundary value problems (BVPs) of a finite 
length laminated cylinders under thermoelastic loads using a semi analytical 
cum numerical approach. Exact elasticity equations are used in the analysis 
without any assumptions to determine the accurate stresses. Examples covered 
are diaphragm supported isotropic, orthotropic and laminated composite 
cylinder under symmetric thermal load which is considered as a two 
dimensional (2D) plane strain problem of thermoelasticity in (r, z) direction. 
The boundary conditions are satisfied exactly by taking an analytical 
expression in axial (z) direction in terms of Fourier series expansion. 
Fundamental (basic) dependent variables are chosen in the radial coordinate of 
the cylinder. First order simultaneous ordinary differential equations are 
obtained as mathematical model which are integrated through an effective 
numerical integration technique by first transforming the BVP into a set of 
initial value problems (IVPs). The numerical results obtained are also first 
validated for their accuracy with 1D solution of an infinitely long cylinder.  
 
Keywords: A. Laminate; B. Thermal properties; C. Computational 
mechanics; C. Deformation; C. Structural composites. 

 
 
Introduction 
Thermal stresses are of great practical importance, especially in large composite 
cylinders such as steam-turbine rotors, heavy shafts and large turbine discs. In all 
these cases, heating or cooling must be gradual in order to reduce the temperature 
gradient in the radial direction. Moreover, determination of the stresses and 
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deformation in thin and thick orthotropic laminated cylindrical shells subject to 
thermal loading is a major activity in the design of equipments such as pressure 
vessels, nuclear reactors, piping, boilers and heat exchangers. Composite cylinders are 
also widely used in various aerospace engineering applications such as aerospace 
vehicles, heat shields for re-entry vehicles, etc. and need accurate analysis of 
deformations and stresses induced by thermal loading. The classic thermal stress 
problem of infinitely long cylinders made of elastic isotropic materials has been 
studied by many long back. Kent [1] presented solutions for the stresses in solid and 
hollow spheres and long cylinders in which the temperature is a function of both 
radial coordinate and time and obtained solution by substituting in the already 
available formulae. Poritsky [2] gave complete 2D analytical solution related to 
steady-state temperature stresses in a cylindrical tube of mercury boilers where the 
tubes are exposed to the flame and receive radiation on one side only. Jaeger [3] gave 
analytical results for thermoelastic problems of infinitely long solid and hollow 
cylinders at constant temperature and for the case of periodic surface temperature 
distribution under the condition of plane stress using series of Bessel functions. Yang 
and Lee [4] obtained a series solution for thick- walled cylinders subjected to a 
temperature distribution which varied both radially and axially. The solution is based 
on 3D linear theory of thermoelasticity with appropriate approximations by neglecting 
small terms. Kalam and Tauchert [5] analysed stresses in a hollow orthotropic elastic 
cylinder due to a steady-state plane temperature distribution T(r,θ) using the Airy 
stress function. Iyengar and Chandrashekhara [6] gave a three-dimensional rigorous 
solution for determining thermal stresses in a finite length solid cylinder due to a 
steady state axisymmetric temperature field over one of its end surfaces.  
 In this paper, governing differential equations from exact theory of 3D 
thermoelasticity, which govern the behaviour of a finite length circular 
orthotropic/laminated cylinder in a state of plane strain in (r, z) under temperature 
loading which is a function of both radial and axial coordinates, are taken. By 
assuming a global analytical solution in the longitudinal direction which satisfies the 
two end boundary conditions exactly, the 2D generalized plane strain problem is 
reduced to a 1D problem in the radial direction. The equations are reformulated to 
enable application of an efficient and accurate numerical integration technique for the 
solution of the BVP of a cylinder. In addition, one dimensional elasticity equations of 
an infinitely long axisymmetric cylinder are utilized to reformulate the 1D 
mathematical model suitable for numerical integration. These equations are 
summarized in the Appendix I and II. This has been done with a view to check and 
compares the results of the present formulation of finite length cylinder under uniform 
internal/external thermal load, when the length of the cylinder tends to infinity. 
 
 
Formulation 
Basic governing equations of an symmetric cylinder [7] in cylindrical coordinates are 
(Fig.1).  
 
Equilibrium equations  



On Accurate Stress Determination 9 
 

 

 
0

0

rr zr

zr z zr

r z r

r z r

−∂ ∂+ + =
∂ ∂

∂ ∂+ + =
∂ ∂

θ
σ σσ τ

τ σ τ
  (1a) 

 
Strain displacement relations 
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Stress-strains-temperature relations for cylindrically orthotropic material 
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Stresses in terms of strains can be written as follows 
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Stresses in terms of displacement components can be cast as follows: 
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and boundary conditions in the longitudinal and radial directions are, 

 0, ,      0;zat z l u σ= = =  i r rz o r rzat r=r ,    σ =τ =0;  at  r=r ,    σ = τ =0   (2)  
 
in which l is the length, ri is the inner radius and ro is the outer radius of a hollow 
cylinder. 
 Radial direction r is chosen to be a preferred independent coordinate. Four 
fundamental dependent variables, viz., displacements, u and w and corresponding 
stresses, rσ and rzτ  that occur naturally on a tangent plane r = constant, are chosen in 
the radial direction. Circumferential stress θσ and axial stress zσ  are treated here as 
auxiliary variables [8] since these are found to be dependent on the chosen 
fundamental variables. A set of four first order partial differential equations in 
independent coordinate r which involve only fundamental variables is obtained 
through algebraic manipulation of Eqs. (1a) and (1f). These are, 
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and the auxiliary variables, 
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 A longitudinally sinusoidal/uniform and through thickness logarithmic variation 
of temperature is assumed as follows [14], 
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 A longitudinally sinusoidal/uniform and through thickness linear type variation of 
temperature is assumed as follows [15], 
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where T0 is initial reference temperature, T1 and T2 are average and difference in rise 
in temperature of top and bottom surfaces of cylinder. 
 Variations of the four fundamental dependent variables which completely satisfy 
the boundary conditions of simple (diaphragm) supports at z = 0, l can then be 
assumed as, 
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 Substitution of Eq. (7) in Eqs. (3a-d) and Eqs. (4a-b) and simplification resulting 
from orthogonality conditions of trigonometric functions leads to the following four 
simultaneous ordinary differential equations involving only fundamental variables. 
These are,  
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Solution 
The above system of first order simultaneous ordinary differential equations (8a-d) 
together with the appropriate boundary conditions at the inner and outer edges of the 
cylinder (Eq (2)), forms a two-point BVP. However, a BVP in ODEs cannot be 
numerically integrated as only a half of the dependent variables (two) are known at 
the initial edge and numerical integration of an ODE is intrinsically an IVP. It 
becomes necessary to transform the problem into a set of IVPs. The initial values of 
the remaining two fundamental variables must be selected so that the complete 
solution satisfies the two specified conditions at the terminal boundaries during the 
process of integration [8]. This technique has been successfully applied and explained 
in detail to solutions of plate’s problems [9, 10, 11, 12, and 13] in the past. However, 
problems related to cylindrical coordinates are uncovered in that literature. Fourth 
order Runge-Kutta algorithm with modifications suggested by Gill [16] is used for the 
numerical integration of the IVPs. A Fortran code is written for analyzing the 
problems. 
 
 
Results and discussion 
Non dimensionalized parameters are defined as follows for thermal loading, viz., 
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 A hollow cylinder is analysed by taking two h/R ratios of 1/5 and 1/50 which 
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assumed as 0 °C. Material properties for cylindrically orthotropic material are taken 
as follows. (Kalam and Tauchert [5]) 
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 Radial and hoop quantities are maximum at z = l/2 whereas axial quantities are 
maximum at z = 0, l. Radial stresses and radial displacements, presented in Tables 1-
2, for temperature variations described by Eqs. (5) and (6) for isotropic and 
orthotropic cylinders are compared with the plane strain elasticity solution for 
infinitely long cylinder, the solution given by Timoshenko and Goodier [14]. Eq. (13) 
shows analytical solution for radial stress, hoop stress and radial displacement from 
exact theory of elasticity for infinitely long cylinder under plane strain state given in 
Timoshenko and Goodier [14]. These are used to validate and check the present 
results throughout wherever applicable.  
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 In these numerical computations, the following properties for isotropic material 
are used.  

8 2 -6 2 10  KN/m   0.3  2.306 10 1/ Cr z r zr z r zE E Eθ θ θ θν ν ν α α α= = = × = = = = = = × °  

 
 Three sets of numerical results are presented in tables 1-3 for clear comparison, i. 
e., (1) results from the present 2D finite length cylinder formulation, (2) 
Computations on the analytical formulae available for infinitely long cylinder under 
plane strain condition given in Timoshenko and Goodier [14] and (3) results from the 
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present 1D infinitely long cylinder for which formulation is given in Appendix which 
forms BVP of plane strain situation. 
 When the cylinder is subjected to a sinusoidal pressure load, the results within the 
limited central length zone only are compared with the plane strain one dimensional 
solutions, while in the case of an uniformly distributed load over the entire length of 
the cylinder, such comparisons are valid for most of the length of the cylinder except 
near the end supports. 
 
A few cases out of the extensive numerical experiments carried out in the present 
study. 

• Through thickness variations of basic dependent variables for sinusoidal 
temperature variation of Type-I are shown in Figs. 2 for h/R = 1/5 for finite 
length orthotropic cylinders of l/R ratios = 4 and 40. 

• Figs. 3-4 shows through thickness variation of quantities for uniformly 
distributed thermal load of Type-II for h/R = 1/5 and in Fig. 5 for h/R=1/50. 

• Fig. 6 shows through thickness variation of quantities for uniformly 
distributed thermal load of Type-IV for h/R = 1/5. 

• Through thickness variation of basic dependent variables for sinusoidal 
temperature variation of Type-I are shown in Fig. 7 for h/R = 1/5 for finite 
length (00/900) layered orthotropic cylinders of l/R ratios = 4 and 40. 

• Distribution of axial displacement w  and shear stress rzτ  through thickness in 
two layer orthotropic composite cylinder (0/90) for temperature variation 
Type-I and h/R=1/5 are shown in Fig. 8.  

• Distribution of radial displacement u  and radial stress rσ  through thickness in 
two layer orthotropic composite cylinder (0/90) for temperature variation 
Type-I and h/R=1/50 are shown in Fig. 9.  

• Distribution of axial displacement w  and shear stress rzτ  through thickness in 
two layer orthotropic composite cylinder (0/90) for temperature variation 
Type-I and h/R=1/50 are shown in Fig. 10.  

• Distribution of radial displacement u  and radial stress rσ  through thickness in 
two layer orthotropic composite cylinder (0/90) for temperature variation 
Type-III and h/R=1/5 are shown in Fig. 11.  

• Distribution of axial displacement w  and shear stress rzτ  through thickness in 
two layer orthotropic composite cylinder (0/90) for temperature variation 
Type-III and h/R=1/5 are shown in Fig. 12.  

• Distribution of radial displacement u  and radial stress rσ  through thickness in 
two layer orthotropic composite cylinder (0/90) for temperature variation 
Type-III and h/R=1/50 are shown in Fig.13.  

• Distribution of axial displacement w and shear stress rzτ  through thickness in 
two layer orthotropic composite cylinder (0/90) for temperature variation 
Type-III and h/R=1/50 are shown in Fig. 14.  

• Distributions of radial and shear stresses are parabolic whereas radial 



On Accurate Stress Determination 15 
 

 

displacement, hoop stress and axial stress are linear through thickness. Axial 
displacement is constant through the thickness for all cases. 

• It is seen in Tables 1-3 that for isotropic and orthotropic cylinders with l/R = 
40, representing an infinitely long cylinder, the results are close to the plane 
strain analytical elasticity solution given by Timoshenko and Goodier [14]. 

• For uniformly distributed thermal load, a convergence study is carried out by 
taking different number of harmonic terms in Fourier series. A detailed 
convergence study is shown in Tables 4-5 for l/R ratios = 4, 40 and for h/R = 
1/5 for temperature variation Type-II.  

• From observation of the numerical results obtained in the present analysis, it 
was found that l/R ratios affect the rate of convergence. Fast convergence is 
obtained for l/R = 4 compared to l/R=40.  

• It can be seen from Table 3 that for an isotropic cylinder of h/R=1/5, radial 
displacement converges at N = 23 for l/R = 4, and N = 40 for l/R = 40; axial 
displacement at N = 27 for l/R = 4 and N = 65 for l/R = 40.  

• It can further be seen from Table 6 that for an orthotropic cylinder of h/R = 
1/5, radial displacement converges at N = 19, axial displacement at N = 27 for 
l/R = 4. Poor convergence is seen for shear and radial stresses in both the 
cases. Results presented here are for harmonics N = 103 terms both for l/R = 4 
and l/R = 40. 

 
 

Table 1: Non-dimensional radial stress rσ (z=l/2) and radial displacement u  (z=l/2) 
through thickness for diaphragm supported elastic isotropic cylinder under 
temperature variation Type-I for υ=0.3 and h/R=1/5. 
 

Present-Finite length cylinder Present 
infinitely 

long 
cylinder 
and  [14] 

Present-Finite length cylinder Present 
infinitely 

long 
cylinder 
and  [14] 

r  (z=l/2)σ  

 
u  (z=l/2)  

 

r  
  l/R      l/R    

 1 4 10 50 200  1 4 10 50 200  
0.9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1279 0.4044 0.4176 0.4199 0.4200 0.4200 

0.92 -0.0209 -0.0151 -0.0148 -0.0147 -0.0147 -0.0147 0.1577 0.4316 0.4445 0.4468 0.4469 0.4469 
0.94 -0.0342 -0.0259 -0.0253 -0.0252 -0.0252 -0.0252 0.1828 0.4544 0.4671 0.4693 0.4694 0.4694 
0.96 -0.0411 -0.0327 -0.0320 -0.0319 -0.0319 -0.0319 0.2035 0.4730 0.4855 0.4877 0.4878 0.4878 
0.98 -0.0428 -0.0359 -0.0354 -0.0353 -0.0353 -0.0353 0.2199 0.4876 0.5000 0.5021 0.5022 0.5022 

1 -0.0405 -0.0361 -0.0356 -0.0355 -0.0355 -0.0355 0.2323 0.4983 0.5106 0.5127 0.5128 0.5128 
1.02 -0.0350 -0.0334 -0.0330 -0.0330 -0.0330 -0.0330 0.2408 0.5053 0.5175 0.5196 0.5197 0.5197 
1.04 -0.0273 -0.0281 -0.0280 -0.0279 -0.0279 -0.0279 0.2456 0.5087 0.5209 0.5230 0.5231 0.5231 
1.06 -0.0184 -0.0207 -0.0206 -0.0206 -0.0206 -0.0206 0.2466 0.5086 0.5208 0.5230 0.5230 0.5231 
1.08 -0.0090 -0.0112 -0.0112 -0.0112 -0.0112 -0.0112 0.2441 0.5052 0.5175 0.5197 0.5197 0.5198 
1.1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2379 0.4987 0.5110 0.5132 0.5133 0.5133 
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Table 2: Comparison of non-dimensional radial displacement u  (z=l/2) and radial 
stress rσ (z=l/2) through thickness for diaphragm supported elastic isotropic cylinder 
under thermal loading of Type-I and II and for h/R=1/5 with elasticity plane strain 
solution for infinitely long cylinder and finite cylinder from the present work. 
 

 
Present - Finite length cylinder u  (z=l/2)  

Present 
infinitely 

long 
cylinder 
and  [14] 

Present- Finite length cylinder  

r  (z=l/2)σ  

Present 
infinitely 

long 
cylinder 
and  [14] 

 Sinusoidal 
temperature (i) 

 

Uniformly distributed 
temperature (ii) 

Sinusoidal 
temperature (i) 

 

Uniformly 
distributed 

temperature (ii) 

r  
l/R=4 l/R=40 l/R=4 l/R=40 l/R=4 l/R=40 l/R=4 l/R=40 

0.9 0.4044 0.4199 0.4239 0.4192 0.4200 0.0000 0.0000 0.0000 0.0000 0.0000 
0.92 0.4316 0.4468 0.4499 0.4463 0.4469 -0.0151 -0.0147 -0.0136 -0.0149 -0.0147 
0.94 0.4544 0.4693 0.4716 0.4691 0.4694 -0.0259 -0.0252 -0.0231 -0.0255 -0.0252 
0.96 0.4730 0.4877 0.4892 0.4877 0.4878 -0.0327 -0.0319 -0.0290 -0.0323 -0.0319 
0.98 0.4876 0.5021 0.5029 0.5023 0.5022 -0.0359 -0.0353 -0.0320 -0.0356 -0.0353 

1 0.4983 0.5127 0.5130 0.5129 0.5128 -0.0361 -0.0355 -0.0324 -0.0359 -0.0355 
1.02 0.5053 0.5196 0.5195 0.5199 0.5197 -0.0334 -0.0330 -0.0303 -0.0333 -0.0330 
1.04 0.5087 0.5230 0.5226 0.5233 0.5231 -0.0281 -0.0279 -0.0260 -0.0281 -0.0279 
1.06 0.5086 0.5230 0.5224 0.5233 0.5231 -0.0207 -0.0206 -0.0195 -0.0207 -0.0206 
1.08 0.5052 0.5197 0.5191 0.5201 0.5198 -0.0112 -0.0112 -0.0109 -0.0113 -0.0112 
1.1 0.4987 0.5132 0.5127 0.5136 0.5133 0.0000 0.0000 0.0000 0.0000 0.0000 

 
 
 

Table 3: Comparison of non-dimensional radial displacement u  (z=l/2) and radial 
stress rσ (z=l/2) through thickness for diaphragm supported elastic orthotropic 
cylinder under thermal loading of Type-I and II and for h/R=1/5 with elasticity plane 
strain solution for infinitely long cylinder and finite cylinder from the present work. 
 

 Present u  (z=l/2)  Present 
infinitely 

long 
cylinder 

Present r  (z=l/2)σ  Present 
infinitely 

long 
cylinder 

 Sinusoidal 
temperature (i) 

Uniformly 
distributed 

temperature (ii) 

Sinusoidal 
temperature (i) 

 

Uniformly 
distributed 

temperature (ii) 

r  
l/R=4 l/R=40 l/R=4 l/R=40 l/R=4 l/R=40 l/R=4 l/R=40 

0.9 0.0149 0.0160 0.0162 0.0164 0.0198 0.0000 0.0000 0.0000 0.0000 0.0000 
0.92 0.0368 0.0379 0.0379 0.0381 0.0392 -0.0304 -0.0302 -0.0277 -0.0299 -0.0270 
0.94 0.0551 0.0562 0.0563 0.0564 0.0558 -0.0506 -0.0504 -0.0458 -0.0499 -0.0452 
0.96 0.0703 0.0714 0.0715 0.0715 0.0698 -0.0624 -0.0621 -0.0567 -0.0616 -0.0559 
0.98 0.0826 0.0837 0.0837 0.0837 0.0814 -0.0670 -0.0668 -0.0615 -0.0663 -0.0603 

1 0.0921 0.0932 0.0932 0.0931 0.0908 -0.0656 -0.0655 -0.0609 -0.0650 -0.0594 
1.02 0.0990 0.1001 0.1002 0.1000 0.0981 -0.0592 -0.0592 -0.0555 -0.0589 -0.0539 
1.04 0.1035 0.1046 0.1047 0.1045 0.1035 -0.0488 -0.0489 -0.0461 -0.0486 -0.0446 
1.06 0.1057 0.1068 0.1069 0.1067 0.1070 -0.0350 -0.0351 -0.0334 -0.0350 -0.0322 
1.08 0.1058 0.1068 0.1074 0.1067 0.1088 -0.0186 -0.0187 -0.0180 -0.0186 -0.0172 
1.1 0.1037 0.1048 0.1082 0.1046 0.1090 0.0000 0.0000 0.0000 0.0000 0.0000 
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Table 4: Values of non-dimensional basic dependent variables at r = R for diaphragm 
supported finite length isotropic cylinder of ratio h/R = 1/5 under uniformly 
distributed loading for temperature variation Type-II-a convergence study for l/R 
ratios = 4, 40. 
 

  l/R = 4    l/R = 40   
N u∑  w∑  rσ∑  rzτ∑  u∑  w∑  rσ∑  rzτ∑  

1 0.634779 -0.762446 -0.045924 0.036925 0.653079 -7.573287 -0.045230 0.003552 
5 0.513703 -0.708326 -0.039506 0.032069 0.565568 -7.034692 -0.039224 0.003575 
11 0.513877 -0.692628 -0.032892 0.011750 0.487164 -6.910668 -0.033608 -0.000101 
13 0.511101 -0.698092 -0.038183 0.019666 0.534952 -6.955767 -0.037186 0.003684 
15 0.513010 -0.694016 -0.032372 0.013588 0.494276 -6.921943 -0.034063 -0.000171 
19 0.512576 -0.694709 -0.031461 0.014334 0.498786 -6.927147 -0.034324 -0.000248 
21 0.511969 -0.696704 -0.039939 0.018023 0.525585 -6.944493 -0.036622 0.003836 
25 0.512142 -0.696444 -0.040915 0.017808 0.522810 -6.942758 -0.036470 0.003905 
29 0.512142 -0.696271 -0.041696 0.017715 0.520555 -6.941023 -0.036362 0.003957 
33 0.512229 -0.696184 -0.042238 0.017671 0.518820 -6.940156 -0.036275 0.003979 
37 0.512229 -0.696184 -0.042541 0.017647 0.517346 -6.939289 -0.036210 0.003964 
41 0.512229 -0.696097 -0.042650 0.017619 0.516219 -6.939289 -0.036145 0.003912 
49 0.512229 -0.696010 -0.042498 0.017541 0.514571 -6.938421 -0.036036 0.003712 
53 0.512229 -0.696010 -0.042303 0.017487 0.514050 -6.938421 -0.035993 0.003584 
57 0.512229 -0.695924 -0.042086 0.017422 0.513617 -6.937554 -0.035971 0.003448 
61 0.512229 -0.695924 -0.041826 0.017359 0.513356 -6.937554 -0.035928 0.003311 
65 0.512229 -0.695924 -0.041565 0.017296 0.513096 -6.937554 -0.035906 0.003179 
69 0.512229 -0.695924 -0.041305 0.017242 0.513010 -6.937554 -0.035885 0.003055 
73 0.512229 -0.695924 -0.041045 0.017173 0.512923 -6.937554 -0.035863 0.002942 
77 0.512229 -0.695924 -0.040785 0.017142 0.512836 -6.937554 -0.035841 0.002838 
79 0.512229 -0.695663 -0.030160 0.015497 0.513270 -6.935820 -0.035212 0.000758 
83 0.512229 -0.695663 -0.030356 0.015564 0.513270 -6.935820 -0.035234 0.000846 
87 0.512229 -0.695663 -0.030616 0.015588 0.513270 -6.935820 -0.035234 0.000924 
91 0.512229 -0.695663 -0.030703 0.015705 0.513270 -6.935820 -0.035256 0.000994 
95 0.512229 -0.695663 -0.030919 0.015724 0.513270 -6.935820 -0.035256 0.001056 
99 0.512229 -0.695663 -0.031223 0.015620 0.513270 -6.935820 -0.035256 0.001112 

 
 
Table 5: Values of non-dimensional basic dependent variables at r = R for diaphragm 
supported finite length orthotropic cylinder of ratio h/R = 1/5 under uniformly 
distributed loading for temperature variation Type-II-a convergence study for l/R 
ratios = 4, 40. 
 

  l/R=4    l/R=40   
N u∑  w∑  rσ∑  rzτ∑  u∑  w∑  rσ∑  rzτ∑  

1 0.117333 -0.772941 -0.083537 0.026717 0.118706 -7.729411 -0.083404 0.002662 
5 0.098667 -0.718039 -0.072691 0.026509 0.102863 -7.180391 -0.072283 0.002664 
9 0.094157 -0.711765 -0.070264 0.022460 0.099059 -7.117646 -0.069638 0.002667 
13 0.093294 -0.709804 -0.069524 0.018782 0.097373 -7.101960 -0.068481 0.002672 
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19 0.093294 -0.707059 -0.061323 0.010306 0.090431 -7.070587 -0.063409 -0.000017 
27 0.093216 -0.707451 -0.060508 0.011463 0.091333 -7.078430 -0.063997 -0.000029 
31 0.093216 -0.707843 -0.060204 0.011709 0.091608 -7.078430 -0.064177 -0.000033 
35 0.093216 -0.707843 -0.060034 0.011861 0.091843 -7.078430 -0.064319 -0.000036 
39 0.093216 -0.707843 -0.059977 0.011965 0.092039 -7.078430 -0.064433 -0.000036 
41 0.093294 -0.708235 -0.071013 0.014477 0.094353 -7.082352 -0.066528 0.002698 
45 0.093255 -0.708235 -0.070927 0.014402 0.094196 -7.082352 -0.066443 0.002693 
49 0.093255 -0.708235 -0.070795 0.014335 0.094078 -7.082352 -0.066376 0.002684 
53 0.093255 -0.708235 -0.070624 0.014269 0.093961 -7.082352 -0.066310 0.002671 
57 0.093255 -0.708235 -0.070434 0.014193 0.093843 -7.082352 -0.066263 0.002653 
61 0.093255 -0.708235 -0.070226 0.014136 0.093765 -7.082352 -0.066215 0.002629 
67 0.093216 -0.707843 -0.061058 0.012449 0.092824 -7.082352 -0.064841 0.000076 
69 0.093255 -0.708235 -0.069847 0.014003 0.093647 -7.082352 -0.066149 0.002570 
73 0.093255 -0.708235 -0.069647 0.013956 0.093569 -7.082352 -0.066111 0.002534 
77 0.093255 -0.708235 -0.069439 0.013937 0.093529 -7.082352 -0.066092 0.002495 
81 0.093255 -0.708235 -0.069259 0.013899 0.093490 -7.082352 -0.066064 0.002455 
89 0.093255 -0.708235 -0.068917 0.013842 0.093412 -7.082352 -0.066026 0.002367 
93 0.093255 -0.708235 -0.068775 0.013814 0.093373 -7.082352 -0.066007 0.002323 
95 0.093216 -0.707843 -0.062224 0.012742 0.093137 -7.082352 -0.065011 0.000362 
97 0.093255 -0.708235 -0.068832 0.013624 0.093333 -7.082352 -0.065988 0.002278 
99 0.093216 -0.707843 -0.062328 0.012809 0.093137 -7.082352 -0.065021 0.000407 
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Figure 1a: Coordinate system and geometry of cylinder. 
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Figure 1b: Finite cylinder under sinusoidal external thermal loading. 
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Figure 1c: Finite cylinder under uniformly distributed external thermal loading. 
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Figure 2: Distribution of radial displacement u and radial stress rσ  through thickness 
in orthotropic cylinder for temperature variation Type-I and h/R=1/5. 
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Figure 3: Distribution of radial displacement u  and radial stress  rσ  through 
thickness in orthotropic cylinder for temperature variation Type-II and h/R=1/5. 
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Figure 4: Distribution of axial displacement w and shear stress rzτ   through thickness 
in orthotropic cylinder for temperature variation Type-II and h/R=1/5. 
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Figure 5: Distribution of radial displacement u  and radial stress  rσ  through 
thickness in orthotropic cylinder for temperature variation Type-II and h/R=1/50. 
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Figure 6: Distribution of radial displacement u  and radial stress  rσ  through 
thickness in orthotropic cylinder for temperature variation Type-IV and h/R=1/5. 
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Figure 7: Distribution of radial displacement  u  and radial stress  rσ through 
thickness in two layer orthotropic composite cylinder (0/90) for temperature variation 
Type-I and h/R=1/5. 
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Figure 8: Distribution of axial displacement w   and shear stress rzτ   through 
thickness in two layer orthotropic composite cylinder (0/90) for temperature variation 
Type-I and h/R=1/5. 
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Figure 9: Distribution of radial displacement  u  and radial stress  rσ   through 
thickness in two layer orthotropic composite cylinder (0/90) for temperature variation 
Type-I and h/R=1/50. 
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Figure 10: Distribution of axial displacement w  and shear stress rzτ  through 
thickness in two layer orthotropic composite cylinder (0/90) for temperature variation 
Type-I and h/R=1/50. 

 

0.90 0.95 1.00 1.05 1.10

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

R
ad

ia
l s

tr
es

s 
at

 z
=l

/2

Radial distance r/R

 l/R=4
 l/R=40

 
0.90 0.95 1.00 1.05 1.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

R
ad

ia
l s

tr
es

s 
at

 z
=l

/2

Radial distance r/R

 l/R=4
 l/R=40

 
 

Figure 11: Distribution of radial displacement  u  and radial stress  rσ  through 
thickness in two layer orthotropic composite cylinder (0/90) for temperature variation 
Type-III and h/R=1/5. 
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Figure 12: Distribution of axial displacement w  and  shear stress rzτ   through 
thickness in two layer orthotropic composite cylinder (0/90) for temperature variation 
Type-III and h/R=1/5. 
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Figure 13: Distribution of radial displacement  u  and radial stress  rσ   through 
thickness in two layer orthotropic composite cylinder (0/90) for temperature variation 
Type-III and h/R=1/50. 
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Figure 14: Distribution of axial displacement w and shear stress rzτ   through 
thickness in two layer orthotropic composite cylinder (0/90) for temperature variation 
Type-III and h/R=1/50. 

 
 
 
Conclusions 
Numerical analysis of elastic isotropic, orthotropic and laminated fiber reinforced 
composite cylinders under sinusoidal and uniformly distributed thermal loadings of 
two types are presented. Mathematical model is based on the exact theory of elasticity 
without any kinematic and kinetic assumptions. Basic equations are cast in a form 
suitable for numerical integration in the radial direction. Numerical integration 
technique adopted here is found to be very effective and accurate; as (1) it 
incorporates mixed variables both stresses and displacements in the analysis (2) 
continuity conditions through thickness for layered materials are directly satisfied 
while performing the integration. 
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Nomenclature 
 
r, , zθ  Cylindrical coordinates 
u,v,w  Displacement components 

rσ , 
θ

σ , zσ   Normal stress components parallel to r, θ, and z axis  

zrτ   Shearing stress in cylindrical coordinates 

rε , θε , zε , zrγ  Unit elongations (normal and shear strain) components in 
cylindrical coordinates 

E  Young’s modulus of elasticity 
α   Coefficient of thermal expansion per degree centigrade 
T   Temperature rise at any point in a cylinder 
ν   Poisson’s ratio 

ir  , 0r  Inner and outer radius of the cylinder 

l   Length of the cylinder 

0T ,T1,T2 Initial reference temperature 

p Uniform external pressure 

u, w   Nondimensionalized displacement components 

r z,, ,θσ σ σ  Nondimensionalized normal stress components parallel to r, θ, and 
z axis 

rzτ   Nondimensionalized shearing stress in cylindrical coordinates 

r  Nondimensionalized radius 
R 

Mean radius 0( )

2
ir r+
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Appendix I 
1d and 2d Formulation for isotropic cylinder under thermal loading  

0rr

r r

−∂ + =
∂

θ
σ σσ

 

          r

u u

r r

∂= =
∂ θε ε   (A1) 

( ) ( )1  , 1
(1 )(1 2 ) 1 2 (1 )(1 2 ) 1 2r r r
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(1 ) 1 (1 )(1 2 )

(1 2 )
1 1

1 (1 ) (1 2 ) 1

r

r r

du u TE

dr r

d u TE

dr r r r

= − +
− − − −

⎛ ⎞−⎛ ⎞ ⎛ ⎞= − + + −⎜ ⎟⎜ ⎟ ⎜ ⎟− − − −⎝ ⎠ ⎝ ⎠⎝ ⎠

σ υ α
λ υ υ λ υ υ

σ σ υ λ υ α υ
υ υ υ υ

 (A2) 

 
2D formulation for isotropic cylinder under thermal loading is, 

1

(1 ) 1 (1 ) (1 )(1 2 )r

u u w ET

r r z

ν ν ασ
ν ν ν λ ν ν

∂ ∂= − − +
∂ − − − ∂ − −

, 
1

rz

w u

r G z
τ∂ ∂= −

∂ ∂
 

2

(1 2 ) (1 2 )

(1 ) 1 (1 ) (1 )
r rz r ru w ET

r z r r r r z

σ τ σ σν υ λ υ υ αλ
υ υ υ υ

∂ ∂ − ∂ −= − − + + + −
∂ ∂ − − ∂ − −

   (A3) 

{ }
2

2

1 1 2 1 2

1 1 1
rz r

rz

( ) w ( ) u (2 -1)
E T  

r r ( ) z z z r (1- )(1-2 ) z

∂τ ∂σλ − υ ∂ ν νλ − ν ∂ υ ∂⎛ ⎞=− τ − − − −α⎜ ⎟∂ −υ ∂ −ν ∂ −ν ∂ υ υ ∂⎝ ⎠
 

E E
where =  G=

(1+ )(1-2 ) 2(1+ )
andλ

ν ν ν
  

 
 
Appendix II 
1d Formulation for orthotropic cylinder under thermal loading  

( )1
0r

r

d

dr r θ
σ σ σ+ − =  ,        r

u u

r rθε ε∂= =
∂

  (A4) 

11 12 12 22( ) ( )   ( ) ( )r r r r rC T C T C T C Tθ θ θ θ θσ ε α ε α σ ε α ε α= − + − = − + −  

11 11 12 12 21 21 22 22    r r r

du u du u
C C T C C T C C T C C T

dr r dr rθ θ θσ α α σ α α= − + − = − + −  

12 12

11 11 11

r
r

du C u C
T T

dr C C r C
= + − + θ

σ α α
, 

21 21 12 21 12
22 222

11 11 11

1r r Td C u C C C C
C C

dr r C r C r C

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= − + − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠

θασ σ
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Where,  

11 12 22 21 12,  ,     ,   ,    C
(1 ) (1 ) (1 )

r rr
r r

r r r r r r

E EE
E C C C C

E
θ θ θ θ

θ
θ θ θ θ θ θ θ
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