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In view of the significant increase in research activity and publications in functionally graded materials
(FGMs) and structures in the last few years, the present article is an attempt to identify and highlight
the topics that are most relevant to FGMs and structures and review representative journal publications
that are related to those topics. A critical review of the reported studies in the area of thermo-elastic and
vibration analyses of functionally graded (FG) plates with an emphasis on the recent works published
since 1998. Because of the extensive growth in the body of knowledge in FGMs in the last two decades,
it is prudent to reduce the review to a manageable level by concentrating on the FG plate problems only.
The review carried out here, is concerned with deformation, stress, vibration and stability problems of FG
plates. This review is intended to give the readers a feel for the variety of studies and applications related
to graded composites. An effort has been made here, to include all the important contributions in the cur-
rent area of interest. The critical areas regarding future research needs for the successful implementation
of FGM in design are outlined in the conclusions.
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1. Introduction

In the development of our society and culture, materials have
played an essential role. The scientific use of available base mate-
rials into various inorganic and organic compounds has made the
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Fig. 1. Representation of modern material hierarchy.

Fig. 2. Schematic of continuously graded microstructure with metal-ceramic constituents (a) Smoothly graded microstructure (b) Enlarged view and (c) Ceramic–Metal FGM.
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path for developing the advanced polymers, engineering alloys,
structural ceramics, etc. The structure of development of modern
material is illustrated in Fig. 1. Functionally graded materials (FGMs)
are the advanced materials in the family of engineering composites
made of two or more constituent phases with continuous and
smoothly varying composition [1]. These advanced materials with
engineered gradients of composition, structure and/or specific
properties in the preferred direction/orientation are superior to
homogeneous material composed of similar constituents. The
mechanical properties such as Young’s modulus of elasticity,
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Poisson’s ratio, shear modulus of elasticity, and material density,
vary smoothly and continuously in preferred directions in FGMs.
FGMs have been developed by combining the advanced engineer-
ing materials in the form of particulates, fibers, whiskers, or plate-
lets. In the continuous drive to improve structural performance,
FGMs are being developed to tailor the material architecture at
microscopic scales to optimize certain functional properties of
structures. These materials are gaining wide applications in various
branches of engineering and technology with a view to make suit-
able use of potential properties of the available materials in the
best possible way. This has been possible through research and
development in the area of mechanics of FGMs for the present
day modern technologies of special nuclear components, space-
craft structural members, and high temperature thermal barrier
coatings, etc. These materials possess numerous advantages that
make them appropriate in potential applications. It includes a po-
tential reduction of in-plane and through-the thickness transverse
stresses, improved thermal properties, high toughness, etc. FGMs
consisting of metallic and ceramic components are well-known
to enhance the properties of thermal-barrier systems, because
cracking or de-lamination, which are often observed in conven-
tional multi-layer systems are avoided due to the smooth transi-
tion between the properties of the components. By varying
Fig. 3. Some examples of FGMs (naturally occurring and engineered by humans). (
01.03.2012). (b) http://Nigb.fraunhofer.de/www/presse/jahn/9l99/dt/PIIHautmode11.dt
(date: 01.03.2012). (d) [191]. (e) http://www.science.nasa.govheadlines/y2004/13ap
Functionally-Graded-Materials-An-Introduction, (date: 01.03.2012).
percentage contents of volume fractions of two or more materials
spatially, FGMs can be formed which will have desired property
gradation in spatial directions. De-lamination has been a problem
of main concern in the reliable design of advanced fiber reinforced
composite laminates. In laminated composites, the separation of
layers caused by high local inter-laminar stresses result in destruc-
tion of load transfer mechanism, reduction of stiffness and loss of
structural integrity, leading to final structural and functional fail-
ure. To eliminate these problems, FGMs have now gained impor-
tance, and are the latest advanced materials, discovered by
material scientists for innovative engineering applications. The
most common FGMs are metal/ceramic composites, where the
ceramic part has good thermal resistance and metallic part has
superior fracture toughness. A continuously graded microstructure
with metal/ceramic constituents is represented in Fig. 2 schemati-
cally for illustration.

1.1. History of FGMs

Although the concept of FGMs, and our ability to fabricate them,
appears to be an advanced engineering invention, the concept is
not new. These sorts of materials have been occurring in nature.
Some examples for natural FGMs have been included in Fig. 3 for
a) http://www.geo.ucaIgary.ca~-macrae/tt~rigins/~arbbones/dinobone.html, (date:
thtml, (date: 01.03.2012). (c) http://www.3dham.com/microgallery/bamboo.html,
r_gradient.htm, (date: 01.03.2012). (f) http://www.docstoc.com/docs/48428855/

http://www.geo.ucaIgary.ca~-macrae/tt~rigins/~arbbones/dinobone.html
http://Nigb.fraunhofer.de/www/presse/jahn/9l99/dt/PIIHautmode11.dtthtml
http://www.3dham.com/microgallery/bamboo.html
http://www.science.nasa.govheadlines/y2004/13apr_gradient.htm
http://www.docstoc.com/docs/48428855/Functionally-Graded-Materials-An-Introduction
http://www.docstoc.com/docs/48428855/Functionally-Graded-Materials-An-Introduction
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illustration. Bones have functional grading. Even our skin is also
graded to provide certain toughness, tactile and elastic qualities
as a function of skin depth and location on the body. The FGM con-
stituents engineered by humans commonly involve two isotropic
material phases; although any numbers of chemically and spatially
compatible configurations are possible. These components often
include the engineering alloys of magnesium, aluminum, copper,
titanium, tungsten, steel, etc. and the advanced structural ceramics
such as zirconia, alumina, silicon-carbide, and tungsten-carbide.
Some examples of human engineered FGM components currently
under development are also included in Fig. 3.

1.2. Application of FGMs

FGMs have great potential in applications where the operating
conditions are severe, including spacecraft heat shields, heat ex-
changer tubes, biomedical implants, flywheels, and plasma facings
for fusion reactors, etc. Various combinations of the ordinarily
incompatible functions can be implemented to create new materi-
als for aerospace, chemical plants, nuclear energy reactors, etc. For
example, a discrete layer of ceramic material is bonded to a metal-
lic structure in a conventional thermal barrier coating for high
temperature applications. However, the abrupt transition in mate-
rial properties across the interface between distinct materials can
cause large inter-laminar stresses and lead to plastic deformation
or cracking [2]. These harmful effects can be eased by smooth spa-
tial grading of the material constituents. In such cases, large con-
centrations of ceramic material are placed at corrosive, high
temperature locations, while large concentrations of metal are
placed at regions where mechanical properties need to be high.
The application of these advanced materials was first visualized
during a space plane project in 1984 in National Aerospace Labora-
tory of Japan to avoid the stress peaks at interfaces in coated panels
for the space shuttle. Combination of materials used here served
the purpose of a thermal barrier system capable of withstanding
a surface temperature of 2000 K with a temperature gradient of
1000 K across a 10 mm thick section. Later on, its applications have
been expanded to also the components of chemical plants, solar
energy generators, heat exchangers, nuclear reactors and high effi-
ciency combustion systems. The concept of FGMs has been suc-
cessfully applied in thermal barrier coatings where requirements
are aimed to improve thermal, oxidation and corrosion resistance.
Two important research material systems in fabrication technology
FGM

Nuclear projects
(Fuel pellets, Plasma wall 

of fusion reactor) 

Communication field
(Optical fibbers, Lenses, 

Semiconductors) 

Energy sector
(Thermoelectric generators, 

Solar cells, Sensors) 

Fig. 4. Potential fields for the a
of FGMs are: Alumina ‘Al2O3’ [3] and Zirconia ‘ZrO2’ [4] exterior
protective ceramic layers on Ni-superalloy ‘NiCrAlY’ based sub-
strates. Consequently, coatings were deposited by different metal-
lurgical techniques. In thermoelectric field, the concept of graded
material, such as doped BiTe/PBFe has been implemented for appli-
cation in sensors and thermogenerators with metal–semiconduc-
tor transition with improved efficiency. FGMs can also find
application in the communication and information techniques.
Abrasive tools for metal and stone cutting are other important
examples where gradation of surface layer has improved perfor-
mance. As a final observation concerning FGMs, it can be noted
that these graded materials concept has demonstrated that compo-
sitional micro/macrostructure gradient can not only dismiss unde-
sirable effects such as stress concentration, but can also generate
unique positive function [4]. The concept of FGMs is applicable
to various fields as illustrated in Fig. 4.

1.3. Effective material properties (homogenization) of FGMs

The fabrication of the FGMs can be considered by mixing two
discrete phases of materials, for example, a distinct mixture of a
metal and a ceramic. Often, the accurate information of the shape
and distribution of particles may not be available. Thus the effec-
tive material properties, viz. elastic moduli, shear moduli, density,
etc. of the graded composites are being evaluated based only on
the volume fraction distribution and the approximate shape of
the dispersed phase. Several micromechanics models have been
developed over the years to infer the effective properties of macro-
scopically homogeneous composite materials. The analytical ap-
proaches, both finite element methods and micromechanical
models are frequently used for FGM modeling. The most important
subjects of FGM modeling are: elastic strain, elastic stress, plastic
yielding and deformation, creep at elevated temperature, crack
propagation, etc. The various analytical approaches available in
the literature for FGM modeling are presented in the following
sections.

1.3.1. Self consistent estimates [5–7]
This method describes its estimates through the solution of an

elastic problem in which an ellipsoidal inclusion is embedded in
a matrix possessing the effective material properties of the com-
posites. This method assumes that each reinforcement inclusion
is embedded in a continuum material whose effective properties
s 
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pplication of FGMs [192].



Fig. 5. Two-phase material with (a) skeletal microstructure, and (b) particulate microstructure [48].
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are those of the composite. This method does not distinguish be-
tween matrix and reinforcement phases and the same overall mod-
uli are predicted in another composite in which the roles of the
phases are interchanged. This makes it particularly suitable for
determining the effective moduli in those regions which have an
interconnected skeletal microstructure as shown in Fig. 5a. This
is a rigorous analytical method applicable to two-phase isotropic
composite materials.

1.3.2. Mori–Tanaka scheme [8,9]
Such a method works well for composites with regions of the

graded microstructure have a clearly defined continuous matrix
and a discontinuous particulate phase as illustrated in Fig. 5b. This
method assumes a small spherical particle embedded in a matrix.
The matrix phase (denoted by the subscript 1), is assumed to be
reinforced by spherical particles of a particulate phase (denoted
by the subscript 2). K1, G1 and V1 represents the bulk modulus,
the shear modulus and the volume fraction of the matrix phase
respectively; whereas K2, G2 and V2 denote the corresponding
material properties and the volume fraction of the particulate
phase. It should be noticed that V1 + V2 = 1. The effective mass den-
sity at a point can be given by the rule of mixture (q = q1V1 + q2V2).

1.3.3. Composite sphere assemblage model [10,11]
In this model, the effective properties of isotropic composite

materials have been determined analytically, which is based on
the simplifying assumption that the composite material is filled
with a fractal assemblage of spheres embedded in a concentric
spherical matrix of different diameters such that the spheres com-
pletely fill the volume of the composite.

1.3.4. Composite cylindrical assemblage model [12,13]
This model is used for orthotropic composites and requires both

the reinforcing fiber and matrix are isotropic, while the representa-
tive volume elements (RVEs) microstructure is transversely isotropic
in material planes that are perpendicular to the fiber direction.

1.3.5. The simplified strength of materials method [14,15]
This is a popular modeling method due to its ease of implemen-

tation and computational efficiency. This method assumes that the
matrix phase is reinforced with, and ideally bonded to, a periodic
array of square fibers. This method can also be used to estimate
the orthotropic strengths of fiber reinforced composite laminate
from the strength properties of the fiber and matrix constituents
and the fiber volume fraction.

1.3.6. The method of cells [16]
This is similar to Chamis’s method [14] of simplified strength of

materials, but more computationally rigorous since it assumes a
representative volume element that involves a larger portion of
matrix material.

1.3.7. Micromechanical models [17,18]
These models of representative volume elements may be con-

structed via FE simulations for either isotropic or orthotropic com-
posite materials. Methods involving FE models attempt to
accurately simulate the realistic microstructure of the RVE, and
determine the thermo-mechanical response due to applied loads
such that the effective material properties may be calculated for
various volume fractions of constituent reinforcement. In this
manner, various sets of curve fitted data may be collected for dif-
ferent material combinations. This is perhaps the most accurate
method, since the microstructure under consideration is directly
modeled via three-dimensional finite elements. Unfortunately,
one drawback to this method is that multiple models must be
constructed in order to determine material properties for various
constituent material volume fractions; although this can be
alleviated with proper computer software that can automate the
process.

1.4. Mathematical idealization of FGMs

Although FGMs are highly heterogeneous, it will be very useful
to idealize them as continua with their mechanical properties
changing smoothly with respect to the spatial coordinates. The
homogenization schemes are necessary to simplify their compli-
cated heterogeneous microstructures in order to analyze FGMS in
an efficient manner. Closed-form solutions of some fundamental
solid mechanics problems can be obtained by this idealization
and also it will help in evolving and developing numerical models
of the structures made of FGMs. It is worth noting that, the distri-
bution of material in FG structures may be designed to various spa-
tial specifications. A typical FGM represents a particulate
composite with a prescribed distribution of volume fractions of
constituent phases. The material properties are generally assumed
to follow gradation through the thickness in a continuous manner.
Two types of variations/gradations are popular in the literature
which covers most of the existing analytical models.

1.4.1. The exponential law
This particular idealization for FGM modeling is very common

in the fracture mechanics studies [19]. For a structure made of
FGM with uniform thickness ‘h’, the typical material properties
‘P(z)’ at any point located at a distance ‘z’ from the reference sur-
face is given by;

PðzÞ ¼ Pt exp �k 1� 2z
h

� �� �
; where; k ¼ 1

2
ln

Pt

Pb

� �
ð1Þ
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1.4.2. The power law
This is more common in the stress analysis of FGM [19] and gi-

ven by;

PðzÞ ¼ ðPt � PbÞ
z
h
þ 1

2

� �k

þ Pb ð2Þ

Here ‘P(z)’ denotes a typical material property, viz., Young’s modulus
of elasticity (E), shear modulus of elasticity (G), Poisson’s ratio (t),
material density (q), etc. of the structures made of FGM. ‘h’ is the to-
tal thickness of structure. ‘Pt’ and ‘Pb’ are the material properties at
the top-most (z = +h/2) and bottom-most (z = �h/2) surfaces. ‘k’ in
the exponential model, and ‘k’ in the power model are the material
grading indexes respectively. Working range of these material grad-
ing indexes depend upon the design requirements.

2. Research studies reported on FG plates

Pagano [20,21], Srinivas and Rao [22] and Srinivas et al. [23]
developed the exact solutions of simply supported laminated
plates by using 3D elasticity theory. Their benchmark solutions
have proved to be very useful in assessing the accuracy of various
2D approximate plate theories by various researchers [24–31].
Their methods are valid for laminated plates and shells, where
the material properties are piecewise constant, but not applicable
for finding solutions of plate problems with continuous in-homo-
geneity of material properties such as FGMs. The concept of FGMs
was proposed in 1984 by Japanese material scientists [32]. Contin-
uous changes in the composition, microstructure, porosity, etc. of
these materials result in the gradients of the properties such as
mechanical strength, thermal conductivity, and fracture toughness.
Suresh and Mortensen [19] provided an excellent introduction to
the fundamentals of FGMs. They published a very detailed litera-
ture review in FGM technology. Since then, numerous investigators
have attempted variety of analytical, numerical methods for study-
ing the mechanical, thermal and dynamic responses of structures
made of FGMs. Birman and Byrd [33] have documented an exhaus-
tive literature review of developments in FGM research addressing
the recent progress in the characterization, modeling, and analysis
of FGMs. Several topics relevant to theory and applications of FGMs
are reflected in this review paper. It includes homogenization of
particulate FGM, heat transfer issues, stress, stability and dynamic
analyses, testing, manufacturing, design, applications, and fracture
studies of FGMs. Here, the literature review is focussed on the re-
search works in the area of thermo-elastic static, vibration and sta-
bility analyses of functionally graded (FG) plates published since
1998.

2.1. Thermo-elastic static analysis of FG plates

A review of the current state of the art in analytical and numer-
ical thermo-elastic static studies of FG plates is presented. The
integration of thermal protection system (ceramic) and load bear-
ing mechanical component (metal) into a single construction is a
desirable feature of FGMs. A candidate for FGM system for a partic-
ular application must exhibit its ability to resist thermal and
mechanical loadings simultaneously.

The thermo-elastic behavior of FG rectangular ceramic–metal
plates was presented using a four-noded rectangular isoparametric
plate FE by Praveen and Reddy [34] based on first order shear defor-
mation theory (FOST) including the von Karman nonlinear effects.
This formulation accounts for the transverse shear strains, rotary
inertia and moderately large rotations of FG plates. This is one of
the earliest and widely used studies related to thermoelastostatic
and thermoelastodynamic responses of FG plates subjected to
pressure loads and through-thickness varying temperature fields.
The FG plate was considered to be a single layer plate of uniform
thickness, and its material properties were assumed to vary
through the thickness in terms of a simple power law distribution.
The general conclusion of this study was that, the response of the
plates with material properties between those of the ceramic and
metal is not intermediate to the responses of the ceramic and me-
tal plates individually. Praveen and Reddy’s formulation for rectan-
gular FG plates was extended to an axi-symmetric formulation by
Reddy et al. [35] for circular and annular FG plates in bending. They
developed exact relationships between the bending solutions of
the FOST and the classical plate theory (CPT). The solutions for the
deflection, force resultants, and moment resultants were given in
terms of corresponding equivalent quantities of isotropic plates
based on CPT. The formulation adopted by Praveen and Reddy in
1998 was further extended by Reddy [36] for studying the static
behavior of FG rectangular plates based on a third order shear defor-
mation theory (TSDT). He derived the displacement based plate fi-
nite element models consistent with the TSDT (conforming
element with eight degrees of freedom, and a nonconforming ele-
ment with seven degrees of freedom per node) for the analyses of
FG plates. This formulation accounts for the thermo-mechanical
coupling, time dependency, and the von Karman type geometric
nonlinearity. He has presented the Navier solutions based on the
linear TSDT. Nonlinear static and dynamic finite element results
based on the FOST were also presented in the study to show the ef-
fects of volume fractions and modulus ratio of the constituents on
deflections and transverse shear stresses.

Mian and Spencer [37] presented a set of exact solutions of the
3D elasticity equations for traction-free rectangular and circular
isotropic FG plates from the corresponding planar problems. They
derived an exact solution of 3D elasticity equations for isotropic
linearly elastic, inhomogeneous materials actually generalized
from the solutions for stretching and bending of symmetrically
inhomogeneous plates. The investigators showed that the exact
3D solutions are generated by 2D solutions of the thin-plate equa-
tions for a homogeneous plate. They actually developed a proce-
dure for constructing the exact solutions of the linear elasticity
equations of the plates in an inhomogeneous isotropic material
assuming the elastic modulii depend in any specified manner on
a specific direction.

Oatao and Tanigawa [38] have analysed the problems of tran-
sient thermal stresses in rectangular FG plates due to non-uniform
heat flow. The same authors have also published the exact solu-
tions for transient temperature and stress problems in a thick sim-
ply supported FGM strip [39]. The FG strip, assumed in the state of
plane strain, was subjected to heat flow resulting from a sudden
application of non-uniform surface temperatures. Further, Ootao
et al. [40] applied a genetic algorithm to an optimization problem
of material composition for step-formed FG plates, analyzing it as a
laminated composite plate consisting of numerous layers with
homogeneous and different isotropic material properties. The ther-
mal stress components for infinitely long FG plate were formulated
under the mechanical condition of being traction-free. They have
carried out the numerical calculations using a genetic algorithm
methodology accounting the effect of the temperature dependency
of material properties without assuming a distribution function of
material composition.

Cheng and Batra [41] have derived field equations for a FG plate
and further these equations were simplified for a simply supported
polygonal plate. They established an exact relationship between
the deflection of a simply supported FG polygonal plate given by
the FOST and TSDT to that of an equivalent homogeneous Kirchhoff
plate. The effective material properties at a point of FG plate was
assumed to be governed by the rule of mixture, and the volume
fraction of the ceramic phase to follow a power law distribution
through plate thickness. The same authors [42] studied the 3D
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thermo-mechanical deformations of an isotropic linear thermo-
elastic FG elliptic plates, rigidly clamped at all the edges using
the asymptotic expansion method considering the material prop-
erties having power-law dependence on the thickness coordinate.
They obtained a closed form solution which shows that the distri-
bution of the in-plane displacements and transverse shear stress
along the thickness of a FG plate do not agree with those assumed
in classical and shear deformation plate theories. Furthermore, a
new set of field equations in terms of displacement and stress po-
tential functions for inhomogeneous plates was presented and
reformulated by Cheng [43] employing mixed Fourier series tech-
nique to solve the equations. Solution for nonlinear bending of
transversely isotropic symmetric shear-deformable FG plates is at-
tempted in this paper. A further advancement in FG plate analysis
was provided by Reddy and Cheng [44] to address the 3D thermo-
elastic behavior of simply supported FG rectangular plates under
thermal and mechanical loads on its top and/or bottom surfaces.
Using an asymptotic expansion approach for the heat conduction
problem, the distributions of temperature, displacements and
stresses in the plate were calculated for different volume fraction
of ceramic constituent in this paper. The interesting conclusion
of this study was that while the standard assumption of a constant
through-the-thickness deflection is acceptable in the case of
mechanical loads, it may become invalid in the case of thermal
loading.

Han et al. [45] proposed analytical and numerical methods for
analyzing the response of FG plate to an incident pressure wave
using the Fourier transform techniques. They also characterized
the material property of FGM excited by a pressure wave, whose
elastic constants and mass density vary quadratically in the thick-
ness direction. The propagation of stress waves in a FG plate is
computed in this study. Further, Han and Liu [46] presented a com-
putational method to investigate the simple harmonic waves in FG
plates by varying the volume fraction of the constituents assuming
the material properties as a quadratic function in the thickness
direction. The displacements and stresses in the frequency domain
and time domain were obtained using inverse Fourier integration.

Woo and Meguid [47] have studied the nonlinear deformations
of thin FG plates and shallow shells based on the von Karman clas-
sical nonlinear plate theory under thermo-mechanical loads. The
solution was obtained with double Fourier series for deflections
and for the stress functions. A comparison between stresses and
displacements in purely ceramic, purely metallic, and FG plates
are presented in this study. The authors concluded that, the deflec-
tions in a FG plate even with a small volume fraction of ceramic are
significantly smaller than those in the pure metallic plate. Further-
more, while the stress distributions in isotropic metallic or ceramic
plates are linear functions of the thickness coordinate, they be-
come nonlinear in a FG plate, reflecting a nonuniform property dis-
tribution through the thickness. This observation reflects the
previously emphasized potential for a better ‘‘tailoring’’ of FGM
structures compared to their homogeneous counterparts.

Vel and Batra [48] presented the exact 3D elasticity solutions of
the static thermo-mechanical problems of a simply supported rect-
angular thin and thick FG plates. The thermal and mechanical loads
were imposed to the top and bottom surfaces of the plate either
individually or simultaneously. Suitable temperature and displace-
ment fields identically satisfying the boundary conditions at the
edges were used to reduce the governing equations (partial differ-
ential equations) to a set of coupled ordinary differential equations
in the thickness coordinate, subsequently solved by employing the
power series method. The key assumptions in this study were that
the FG plate had smoothly varying material properties graded
through the thickness (no discrete jumps) and infinitesimally
small, homogeneous, isotropic and perfectly bonded adjoining lay-
ers. The homogenization schemes employed in the paper included
the Mori–Tanaka method, the self-consistent scheme, and a combi-
nation of these two methods. They assumed the distribution of
ceramic and metallic phases through the thickness to follow a
power law for material volume fractions. The exact solutions of
displacements and stresses were then used to assess the accuracy
of the solutions obtained by CPT, FOST and TSDT for FG plates. Fur-
ther, Vel and Batra [49] have also presented the analytical solutions
of the 3D transient heat conduction problem for a rectangular sim-
ply supported FG plate, based on the uncoupled, quasi-static linear
thermo-elasticity theory. The uniform temperatures are prescribed
at the edges and either time-dependent temperature or heat flux is
considered on the top and the bottom surfaces of the FG plate. The
transient thermally induced stresses in FG plates were related to
the mode of the application of thermal load in this study. The
authors concluded that rapidly applied temperature boundary con-
ditions could result in thermal stresses in an Al/SiC FG plate
exceeding the steady-state counterparts by the factor of 8. The
stresses produced by a transient heat flux were smaller than the
steady-state stresses.

Pitakthapanaphong and Busso [50] studied the stress distribu-
tion and the effect of material grading in a three-layered plate con-
sisting of a FGM layer sandwiched between ceramic and metal
layers subjected to a uniform thermal load. They also accounted
the plastic effects in the metal phase. The results were validated
by making a comparison with the finite element results. The criti-
cal temperature corresponding to the onset of plasticity was deter-
mined as a part of the solution. The stress distribution was shown
to be effectively controlled by an appropriate gradation in the FGM
layer.

Both, the nonlinear bending and buckling behavior of FG plates
were considered by Shen and his collaborators. In particular, non-
linear bending of thin FG rectangular plates clamped along a pair of
opposite edges and with various conditions on the other pair of
edges was studied by Yang and Shen [51]. They used von Karman
nonlinear plate theory in this study. The solution was obtained
by a semi-analytical perturbation technique combined with the
one-dimensional differential quadrature approximation and the
Galerkin procedure. An elastic foundation was included into con-
sideration. The loads could include transverse pressure as well as
in-plane compression and the authors emphasized that classical
buckling can occur only in clamped plates, while plates with other
boundary conditions receive transverse deflections, even if the ap-
plied load is small, as a result of the bending-stretching coupling.
The analysis was further extended by the same authors [52] to
the geometrically nonlinear shear-deformable plates subject to
thermo-mechanical loads and under various boundary conditions
using Reddy’s TSDT. Boundary conditions applied on the FG plates
are shown to have a profound effect on deflections with a pair of
in-plane movable and a pair of in-plane immovable edges sub-
jected to a simultaneous effect of an elevated temperature and
transverse pressure. Other paper of this research group dealing
with various aspects of thermo-mechanical responses of FG plates
includes [53]. Shen [54] has also presented the post-buckling re-
sponses of simply supported FG plates subjected to the combined
action of mechanical, electrical and thermal loads. Huang et al.
[55] have presented the exact 3D elasticity solutions of FG thick
plates resting on Winkler–Pasternak type elastic foundation con-
sidered as the boundary condition. The material properties of FG
plate were assumed to be varying exponentially through the thick-
ness. The governing set of PDEs are solved using the state space
method by reducing it to ordinary differential equations in the
thickness coordinate by expanding the state variables into infinite
dual series of trigonometric functions. The effects of foundation
stiffness, loads, and material grading index on mechanical re-
sponses of the plates are studied in this paper. The main conclusion
of this study is that, the mechanical behavior of the plate with the
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softer surface supported by elastic foundation differ significantly
from that of the plate with the harder surface subjected to the
same foundation, especially for the thick plates. The same problem
using a higher order shear deformation theory (HOST) and general
von Karman-type relations is presented by Shen and Wang [56]
for nonlinear bending analysis. The FG plate is exposed to elevated
temperature and is subjected to a transverse uniform or sinusoidal
load combined with initial compressive edge loads. The main con-
clusion of this study is that the effect of material grading becomes
weaker for the plate supported on an elastic foundation. The char-
acteristics of nonlinear bending are significantly influenced by
foundation stiffness, temperature rise, transverse shear deforma-
tion, the character of in-plane boundary conditions and the
amount of initial compressive load.

Zhong and Shang [57] presented the 3D analysis for a rectangu-
lar plate made of orthotropic FG piezoelectric material, simply sup-
ported along its four edges. The mechanical and electrical
properties of the material were graded according to the exponen-
tial-law along the thickness direction. They considered the mate-
rial properties used by Cheng and Batra [41] for presenting the
3D asymptotic approach to inhomogeneous and laminated piezo-
electric plates.

Pan [58] derived an exact solution for simply supported rectan-
gular FG anisotropic laminated plate using the pseudo-Stroh for-
malism extending the Pagano’s solution to the FG plates. Further,
Pan and Han [59] also derived an exact solution for simply sup-
ported FG and layered magneto-electro-elastic plates.

Ma and Wang [60] investigated the axi-symmetric large deflec-
tion nonlinear problems of bending and buckling behavior of sim-
ply supported and clamped FG circular plates based on the classical
nonlinear von Karman plate theory, under mechanical, thermal and
combined thermal–mechanical loadings. The axi-symmetric ther-
mal post-buckling behavior of FG circular plate is also investigated
in this study. The mechanical and thermal properties of FGM are
assumed to vary continuously through the thickness of the plate,
and obey a simple power law of the volume fraction of the constit-
uents. Governing equations were numerically solved using a shoot-
ing method. The effects of material constants and boundary
conditions on the temperature distribution, nonlinear bending,
critical buckling temperature and thermal post-buckling behavior
of the FG plate were studied in this paper. The same authors, in
2004 further published their study of both axi-symmetric bending
behavior due to a uniform pressure and buckling behavior due to
radial compression applied to circular FG plates by modeling it
on the basis of TSDT and CPT. They showed that the CPT can ade-
quately predict the response of FG plates of typical dimensions.

The thermal stresses in a ceramic–metal plate subjected to
through-thickness heat flux using the Mori–Tanaka scheme and
the classical laminated plate theory (modified to deal with inelastic
deformations) was examined by Tsukamoto [61].

Bilgili et al. [62] studied the non-homogeneous rubber-like slab
considering shear strains subjected to a thermal gradient in the
thickness direction. They found in their study that it is possible
to design a FG rubberlike material with a minimal effect of temper-
ature on the magnitude of shear stresses.

A 3D elasticity bending solution for the stresses in a simply sup-
ported FG plate subjected to transverse loading was also presented
by Kashtalyan [63]. He assumed the Young’s modulus of the FG
plate to vary exponentially through the thickness with constant
Poisson’s ratio. His approach makes use of general solution of the
equilibrium equations for inhomogeneous isotropic media devel-
oped earlier by Plevako [64].

Qian et al. [65] studied the transient thermo-elastic deforma-
tions of a thick FG plate with boundary conditions either simply
supported or clamped. The stresses and deformations due to the
simultaneous application of the transient thermal and mechanical
loads were computed keeping the plate edges at uniform temper-
ature. They modeled FG the plate by a HOST and solutions obtained
by mesh-less local Petrov–Galerkin (MLPG) method. They found that
the centroidal deflection and the axial stress induced at the cen-
troid of the top surface of the plate are significantly influenced
by boundary conditions applied at the plate edges. Furthermore,
it was found that inertia forces often have a negligible effect on
deformations and stresses of thick FG plates generated by transient
thermal loads. Qian et al. [66] further presented the plane strain
static thermostatic deformations of a thick rectangular simply sup-
ported FG elastic plate using the same methodologies. They as-
sumed material modulii to vary only in the thickness direction.
The plate material is made of two isotropic randomly distributed
constituents and the macroscopic response is also modeled as iso-
tropic. Displacements and stresses computed in the study were
found to agree very well with those obtained from the 3D exact
solutions of the problem.

Croce and Venini [67] developed a hierarchic family of finite
element for the analysis of rectangular FG plates based on varia-
tional formulation arising from the Reissner–Mindlin’s plate theory
by assuming material properties to vary with a simple power rule
of mixture in terms of volume fractions of the constituent. Chinosi
and Croce [68] have further approximated the problem with a sim-
ple locking-free discontinuous Galerkin finite element of noncon-
forming type, choosing a piecewise linear nonconforming
approximation for both rotations and transversal displacement.
The capability of the proposed element to capture the properties
of plates of various grading, subjected to thermo-mechanical loads
was discussed with the help of several numerical simulations in
this study.

Lanhe [69] derived equilibrium and stability equations of a
moderately thick rectangular simply supported FG plate under
thermal loads based on the FOST. He assumed the power law var-
iation of material properties along thickness of plate. The buckling
temperatures are derived in this study considering two types of
thermal loading, viz. uniform temperature rise and temperature-
gradient through the thickness.

Elishakoff [70] performed a 3D flexural analysis of clamped FG
plates under uniformly distributed load based on the linear theory
of elasticity and applying the Ritz energy method. They empha-
sized on the significant effect of material grading in particular, by
showing the deformations and axial stresses in a FG ceramic–metal
plate do not necessarily exist between the values of pure ceramic
and pure metal plate.

Ferreira et al. [71,72] have investigated the static deformations
of simply supported FG plates using TSDT and a meshless method
considering the collocation multi-quadric radial basis functions
(RBFs). The effective material properties were calculated by using
the rule of mixtures and the Mori–Tanaka scheme.

Ramirez et al. [73] presented an approximate solution for the
static analysis of 3D, anisotropic, elastic FG plates by a discrete
layer approach incorporating the transition functions reflecting
the effect of material gradation into the governing equations. In
the numerical examples for simply supported graphite/epoxy FG
plates, significant decrease in deflections and in-plane normal
stresses were observed by the proper gradation of the material.
They have also examined the homogeneous, graded, and bi-layer
plates in order to study the potential advantages of using FGM.

The bending problem of simply supported FG sandwich cera-
mic–metal panels has been considered by Zenkour [74]. The panels
made of isotropic and homogeneous ceramic core and FGM facings
were studied, assuming the power law variation of ceramic and
metal constituents through the thickness. The formulations were
done by the CPT, FOST, and a ‘‘sinusoidal’’ version of a shear defor-
mation plate theory. Zenkour [75] further presented the static re-
sponse of FG plates using a generalized shear deformation plate
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theory considering the effective material properties vary according
to the power-law through thickness. Further the same author,
Zenkour [76] has presented the 2D trigonometric solution for FG
plate bending problems assuming their material properties to vary
exponentially in thickness direction. The influences of aspect ratio,
side-to-thickness ratio and the exponentially graded parameter on
the plate bending response were investigated by him. Zenkour [77]
has also studied the static response of FG plates subjected to
hygro-thermo-mechanical loadings and resting on elastic founda-
tion using the sinusoidal plate theory. The stress and displacement
response of the plates have been analyzed under uniform loading.
The author concluded in this study that the bending response of
the FG plate deteriorates considerably with the increase in temper-
ature and moisture concentration.

Yang et al. [78] studied the effect of uncertainties in the mate-
rial properties and loading on the bending response of thick FG
plates subjected to lateral pressure and uniform temperature.
The analysis was conducted using the Reddy’s TSDT combined with
a first-order perturbation technique accounting for the random
nature of the problem.

Bhangale and Ganesan [79] carried out the static analysis of
simply supported FG and layered magneto-electro-elastic plates
exponentially graded in the thickness direction. They assumed ser-
ies solution in the plane of the plate and adopted finite element
procedure across the thickness of the plate accounting for coupling
between magnetic, elasticity, and electric three-dimensional ef-
fects. The magneto electric coupling is neglected in the study. This
study may be very useful for characterizing the FG magneto-elec-
tro-elastic system to be used in sensors or actuators.

Prakash and Ganapathi [80] investigated numerically the super-
sonic flutter of flat FG plates operating in a thermal environment.
The analysis was conducted using a FOST and accounting for the ef-
fect of temperature on material properties.

GhannadPour and Alinia [81] carried out the large deflection
analysis of rectangular FG plates under pressure loads using the
von-Karman nonlinear theory. The mechanical properties of the
plate were assumed graded through the thickness by a simple
power law distribution in terms of the volume fractions of constit-
uents. The effects of material properties on the stress field through
the thickness were studied in this paper.

A FG plate theory for an unusual application has been developed
by Hsieh and Lee [82]. The investigators applied the von Karman
plate theory to elliptical FG plates, rigidly fixed around a boundary
that was allowed to be slightly disturbed (i.e., not perfectly elliptical
in shape). A perturbation technique was used to obtain the approx-
imate solutions of the governing equations for displacements.

Chi and Chung [83,84] obtained the closed-form solutions based
on CPT and Fourier series expansion for a rectangular simply sup-
ported FG plate of medium thickness subjected to transverse loads.
They assumed the elastic modulus reflecting the actual volume
fraction of constituent phases varying through the thickness
according to a power law, sigmoid, or exponential function of the
plate thickness. Poisson’s ratio is kept unaffected by material grad-
ing in the study. Subsequently, the analytical closed-form solutions
of the FG plates were proved by comparing the numerical results
with finite element method. Chung and Chen [85] further analysed
the transversely loaded laminated FG plates with two simply sup-
ported opposite edges and two free edges. Two configurations of
the plates were considered by them. The first involves a two-layer
plate in which an FGM layer is coated on a homogeneous substrate,
named an FGM-coated plate. The other involves a three-layer plate
in which an FGM is employed for the inter-medium layer and dif-
ferent homogeneous materials are in the top and bottom layers,
named an FGM-undercoated plate. The Young’s modulus of FG
plate is assumed to vary in the thickness direction as a sigmoid
function, and the Poisson’s ratio kept constant. The differences be-
tween the flexibility behaviors of FGM-coated and undercoated
plates are investigated in this study by evaluating the deflections,
strains, and stresses.

Navazi et al. [86] studied the nonlinear cylindrical bending of a
FG plate using the von Karman strains to construct the nonlinear
equilibrium equations of the plates subjected to in-plane and
transverse loadings. The authors concluded that the FG plates exhi-
bit different behavior from plates made of pure materials in cylin-
drical bending, and the linear plate theory which neglects the
membrane action is inadequate for analysis of FG plates even in
the small deflection range.

Pai and Palazotto [87] introduced a sub-lamination theory for
analyzing the response of FG plates. Essentially the through-thick-
ness gradation was divided into individual sub-layers to increase
the degrees of freedoms and improve the numerical accuracy.
The sub-lamination theory was formulated in generalized sense
to satisfy assumptions of either CPT or more complicated higher
order shear deformable plate theories. Further, the governing
equations for a plate composed of several sub-laminates converges
to the usual governing equations of plate theories when the num-
ber of sub-laminate layers equals one. The theory was shown to
match the exact solutions of plates extremely well to include the
prediction of mode shapes.

Sladek et al. [88] carried out the static and dynamic analyses of
FG plates by the MLPG method. The Reissner–Mindlin plate bend-
ing theory was employed to describe the displacement field.
Numerical solutions were presented for simply supported and
clamped plates.

Chung and Che [89] analysed elastic, rectangular, and simply
supported FG plates with medium thickness subjected to linear
temperature change in thickness direction. They assumed the
Young’s modulus and Poisson’s ratio of the FG plates to remain
constant throughout the entire plate. However, the coefficient of
thermal expansion of the FG plate varies continuously throughout
the thickness direction in relation to the volume fraction of constit-
uents defined by power-law, sigmoid, and exponential functions.

Abrate [90,91] studied the problems of static deflections, free
vibrations, and buckling of FG plates considering the material
properties vary through the thickness. He demonstrated that FG
plates behave more like homogeneous plates than originally
thought. He showed that if the reference surface is chosen judi-
cially such that the bending-stretching coupling disappears, the
in-plane and bending stiffness matrices derived from the new ref-
erence surface are the only material parameters required to solve
the governing equations for plate deflections and vibrations. It is
shown in the study that, all other parameters remaining the same,
the static deflections, critical buckling load parameter and natural
frequencies of FG plates are always proportional to those of homo-
geneous isotropic plates and that the proportionality constant can
be easily be predicted. Therefore, one can predict the behavior of
FG plates knowing that of similar homogeneous plates. This new
approach was shown to the dramatically simplify the analyses
while simultaneously matching identically the results published
by other investigators for FG plates assuming both CPT and HOST.

Zhang and Zhou [92] analysed the FG thin plates based on the
physical neutral surface concept using CPT (assuming that there
is no stretching–bending coupling effect in the constitutive equa-
tions in both small and large deflection problems). Some typical
analytical solutions which include bending, vibration, bucking
and nonlinear bending problems are presented in this paper. The
authors emphasized that the physical neutral surface thin plate
theory has more merits in the engineering application, because it
is easier and simpler than classical laminated plate theory based
on geometric middle surface.

Fares et al. [93] presented a 2D theory of FG plates using a
mixed variational approach. This theory accounts for a displace-
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ments field in which the in-plane displacements vary linearly
through the plate thickness, while the out-of-plane displacement
is a second-degree function of thickness coordinate. They illus-
trated the influence of the transverse normal strain on the bending
and vibration of the FG plates.

Khabbaz et al. [94] predicted the large deflection and through
the thickness stress of FG plates using the energy concept based
on FOST and TSDT. They studied the responses as a function of
plate thickness and index of power law model which was consid-
ered for the through-thickness variation of the FG plate properties.
They showed that these models are capable of predicting the ef-
fects of plate thickness on the deformation and the through-thick-
ness stresses.

Recently, Aghdam et al. [95] presented a static analysis for
bending of moderately thick FG clamped sector plates, based on
FOST, by adopting an iterative procedure using the extended Kant-
orovich method. The authors have compared their solutions with
the solutions of finite element code ANSYS, and obtained the close
agreement. To model FG sector in ANSYS, the thickness of the sec-
tor was divided into 100 layers with isotropic material properties.
The material properties of these isotropic layers gradually changes
based on the FG power law model of distribution.

A 3D analysis of simply supported FG rectangular plates sub-
jected to thermo-mechanical loads have also been presented by
Alibeigloo [96]. The thermal and thermo-elastic constants of the
plate were assumed to vary exponentially through the thickness,
and the Poisson’s ratio was held constant. Analytical solutions for
the temperature, stress and displacement fields were derived by
using the Fourier series expansion and state-space method. He
concluded that the Influence of in-homogeneity is more in the case
of thermal loading than that of due to mechanical loads. Further,
Alibeigloo and Simintan [97] also investigated the axi-symmetric
static analysis of FG circular and annular plates imbedded in piezo-
electric layers with various boundary conditions based on 3D the-
ory of elasticity using differential quadrature method (DQM).

Vaghefi et al. [98] presented 3D solutions for static analysis of
thick FG plates by adopting MLPG method assuming the exponen-
tial function for the variation of Young’s modulus through the
thickness of the plate.

Sepahi et al. [99] examined the effects of three-parameter elas-
tic foundation on axi-symmetric large deflection responses of a
simply supported annular FG plate. The plate was loaded trans-
versely with uniform load, non-uniform temperature, and also
with the combined thermo-mechanical loads. The mechanical
and thermal properties of the FG plate are assumed to be graded
in the thickness direction according to a simple power law distri-
bution in terms of the volume fractions of the constituents. They
modeled the FG plate based on FOST in conjunction with nonlinear
von Karman assumptions. The effects of nonlinear foundations
stiffness, material grading index, and temperature, on the axi-sym-
metric large deflection response of the FG plate were studied in
this paper.

Cheng and Cao [100] have carried out a 3D analysis of FG plates
with medium components and different micro net structures using
a new microelement method for the analyses of FG structures.
Accuracy of this method is established by comparing the stress
contour charts in the plane of FG plates with different net micro-
structures with the 3D elasticity analytical solutions for FG rectan-
gular plates. The distributions of the macro mechanical responses
along the thickness and plane direction are calculated by the
microelement method in this paper.

Abdelaziz et al. [101] have studied the bending response of FG
sandwich plate using two variables refined plate theory (RPT) orig-
inally developed by Shimpi [102] for isotropic plates, and was ex-
tended by Shimpi and Patel [103] for orthotropic plates.
Carrera et al. [104] studied the effects of stretching of thickness
in FG plates and shells deriving the advanced theories for bending
analysis adopting Reissner mixed variational approach. This was
done by removing or retaining the transverse normal strain term
in the kinematics assumptions of various refined plate/shell theo-
ries. They have compared the plate/shell theories keeping constant
transverse displacement component with the corresponding mod-
els containing linear to fourth order expansion terms in the thick-
ness direction. Single-layered and multilayered FG structures have
been analysed in this study implementing various plate/shell mod-
els. The importance of the transverse normal strain effects in pre-
diction of mechanical stresses for FG plates was pointed out in
their work. In fact, this work is an extension of several other papers
published using Carrera’s unified formulations (CUFs), as described
in Carrera et al. [105], Brischetto [106] and Brischetto and Carrera
[107]. The similar works following the Reissner mixed variational
approach and using Reddy’s TSDT is carried out by Wu and Li
[108,109].

Neves et al. [110] presented the static deformations of square
FG plates using the radial basis function collocation method, on
the basis of a sinusoidal shear deformation formulation for plates,
and accounting for through-the-thickness deformations. The gov-
erning equations and the boundary conditions are obtained by
CUF, and further interpolated by collocation with radial basis func-
tions. The authors noticed the effect of considering the non-zero
transverse normal deformations are significant. Further, Neves
et al. [111,112] have published two more papers on the quasi-3D
sinusoidal and hyperbolic shear deformation theories for the bend-
ing and free vibration analysis of FG plate accounting through
thickness deformations following the similar approach.

Singha et al. [113] have studied the nonlinear behaviors of FG
plates under transverse load using a plate bending finite element
based on FOST considering the physical/exact neutral surface posi-
tion assuming the power-law gradation of material properties in
the thickness direction.

Golmakani and Kadkhodayan [114] studied the large deflection
behavior of circular and annular FG plates under thermo-mechan-
ical loading based on FOST. Material properties were assumed to be
temperature-dependent, and graded in the thickness direction
according to a simple power law distribution in terms of the vol-
ume fractions of the constituents. The von Karman nonlinear plate
theory was used to obtain the nonlinear equilibrium equations.
The solutions of these nonlinear equations were obtained by dy-
namic relaxation (DR) numerical method combined with the finite
difference technique. The effects of material grading, thermal
loads, boundary conditions and different thickness-to radius ratios
were studied in this paper. The same authors [115] have also pub-
lished a separate paper carrying out the similar studies, this time
using Reddy’s TSDT. They have compared the results of both the
plate theories, and concluded that the difference between TSDT
and FOST results becomes greater with increasing thickness-to-
external radius ratios.

Wen et al. [116] has presented the 3D analysis of isotropic and
orthotropic FG plates with simply supported edges under static
and dynamic loads. The governing equations of the 3D elastic prob-
lem for the FG plates were formulated based on the state-space ap-
proach in the Laplace transform domain, transforming it to a one-
dimensional problem, and solved using the RBF method. Two types
of FG plate (exponent-law and volume fraction law) were investi-
gated and numerical solutions were presented in the time domain.

Mantari et al. [117] have studied the bending responses of FG
plates using a HOST considering the material properties to follow
power-law distribution across thickness. Navier-type analytical
solutions were obtained for FG plates subjected to transverse bi-
sinusoidal and distributed loads.
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Akbarzadeh et al. [118] performed an analysis of coupled ther-
mo-elasticity of simply supported FG plates based on the Reddy’s
TSDT. The plate was subjected to lateral thermal shock of step
function type on the lower side and upper side of the plate having
convection with the ambient. The material properties of the FG
plate, except Poisson’s ratio, were assumed to be graded in the
thickness direction according to a power-law distribution in terms
of the volume fractions of the constituents.

2.2. Vibration and stability analyses of FG plates

The previous sections summarized some of the important
works in thermo-elastic static analysis of FG plates; this section
will present an overview of the body of the literature available
on FG plate dynamics specifically vibration and modal analyses
of FG plates.

Cheng and Batra [119] have studied the buckling and steady-
state vibrations of a simply supported FG polygonal plate resting
on an elastic foundation and subjected to uniform in-plane hydro-
static loads based on Reddy’s TSDT.

The dynamic response of initially stressed rectangular FG plates
was studied by Yang and Shen [120]. The material properties of
plate were assumed to be graded through the thickness with a
power law distribution and governed by the classical rule of mix-
tures. Various boundary conditions of plate were considered in
the analysis, viz. clamped on all sides or clamped on two sides
and simply supported on two sides. The plate was allowed to rest
on an elastic foundation and be subjected to initial in-plane uni-ax-
ial or bi-axial stresses, although both or neither of these features
needs to be included. The plate was subjected to a variety of pulse
loads, viz., constant, linear, sinusoidal, or exponential with respect
to time over a rectangular patch of the plate surface and then, it
was removed abruptly at a given time to ensure that the plate en-
tered free vibration. The CPT was used to model the dynamic and
transient responses of FG plates under these conditions. The re-
sults, as expected, were found to vary greatly depending on the
power law exponent, plate aspect ratio, foundation stiffness, shape
and duration of pulse load, and initial stress magnitude. Yang and
Shen [121] extended their previous analyses to the thick, shear-
deformable FG plates in thermal environments. They developed a
general plate theory (minus the case of an elastic foundation)
where the response of the plate could be semi-analytically deter-
mined under general load and boundary conditions, including the
case of an initially stressed plate. Yang et al. [122] further pre-
sented a large vibration analysis of pre-stressed FG laminated
plates based on Reddy’s TSDT. Some more publications dealing
with the same subject are Yang et al. [123], and Yang and Huang
[124].

Kim [125] has also developed a theoretical method, based on
Reddy’s TSDT to investigate the vibration characteristics of initially
stressed FG rectangular plates in thermal environment. He as-
sumed temperature to be constant in the plane of the plate and,
to vary in the thickness direction. Temperature dependent material
properties of plate were assumed to vary smoothly through the
thickness according to a power law distribution in terms of the vol-
ume fraction of the constituents. The equations of motion were
then solved by the Rayleigh–Ritz procedure. The effect of material
compositions, plate geometry, and temperature fields on the vibra-
tion characteristics is examined in this study.

He et al. [126] presented a FE formulation based on the CPT for
the shape and vibration control of the FG plates with integrated
piezoelectric sensors and actuators. The properties of the FG plates
were assumed to be graded in the thickness direction according to
a volume fraction power law distribution. The effects of the con-
stituent volume fraction on the FG plate responses were studied
in this paper. The authors concluded that the vibration amplitude
of the FG plate attenuates at very high rates for appropriate gain
values.

Javaheri and Eslami [127–129] studied the thermal and
mechanical buckling of FG rectangular plates based on the classical
and higher-order plate theories. The governing equilibrium and
stability equations for FG plates are derived using variational ap-
proach, identical with the equations for homogeneous plates. They
have studied the buckling behavior of simply supported FG plates
subjected to in-plane loading conditions with linear composition of
constituent materials and homogeneous plates.

The thermal buckling analysis of FG plate was performed by Na
and Kim [130] using 18-noded 3D solid finite elements, though the
sinusoidal and linear through-the-thickness temperature distribu-
tions considered in this paper do not actually reflect the actual
temperature distribution in a FG plate. Temperature-dependent
material properties were assumed to be varying continuously in
the thickness direction according to a simple power law distribu-
tion in terms of the volume fraction of a ceramic and metal. They
adopted strain mixed formulation to prevent locking as well as
maintaining kinematic stability of the finite element model for thin
plates. Subsequently, they published two more papers [131,132]
on the thermal post-buckling responses, and nonlinear bending re-
sponses of FG composite plates adopting the similar procedure. The
Green–Lagrange nonlinear strain–displacement relation was
adopted to account for large deflection due to thermal load and
the incremental formulation is applied for nonlinear analysis. Fur-
thermore, the thermal buckling and post-buckling behaviors of FG
plates due to temperature field, volume fraction distributions, and
system geometric parameters were studied, in detail.

Najafizadeh and Eslami [133,134] presented the axi-symmetric
buckling analysis of simply supported and clamped radially loaded
solid circular plate made of FGM. The equations were based on
Love–Kirchhoff hypothesis and the Sander’s nonlinear strain–dis-
placement relation. Their studies conclude that, while grading
can improve thermal properties and reduce stress concentration;
the buckling resistance of FG plates is inferior compared to the
counterpart constructed of the stiffer phase.

Chen and Liew [135] studied the buckling of FG plates subjected
to various non-uniform in-plane loads, including pin, partially uni-
form, and parabolic loads based on FOST. They obtained the shape
control of the FG plates under a temperature gradient by optimiza-
tion of the voltage distribution for the open loop control, and also
the displacement control gain values for the closed loop feedback
control. They also examined the effect of the constituent volume
fractions on the optimal voltages and gain values. Further, Chen
et al. [136] employed the element free Galerkin method to analyse
buckling of piezoelectric rectangular FG plates subjected to non-
uniformly distributed loads, heat and voltage. A two-step solution
procedure is adopted in this study. In the first step, pre-buckling
stresses of plates subjected to non-uniformly distributed loads
are calculated based on a plane stress condition. In the second step,
the buckling load and temperature parameters of the plates are ob-
tained based on the FOST. The authors concluded that the buckling
parameters for isotropic plates are bigger than those for FG plates.

Vel and Batra [137] extended their previous exact 3D thermo-
static analysis to the problem of free and forced vibrations of sim-
ply supported rectangular FG plates with an arbitrary variation of
properties in the thickness direction. The assumed displacement
fields that identically satisfy the simply supported boundary condi-
tions are used to reduce the governing steady state equations to a
set of coupled ordinary differential equations. The effective mate-
rial properties and the displacements were expanded as Taylor ser-
ies in the thickness co-ordinate. The obtained set of ODEs with
variable coefficients is then solved by the power series method.
The exact solutions using the 3D elasticity solutions are then used
to assess the accuracy of the results obtained by 2D plate theories,
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viz., CPT, FOST and Reddy’s TSDT for FG plates. They observed that
there are substantial differences between the exact solutions and
results obtained from the CPT even when the transverse shear
and the transverse normal stresses of the plates are computed by
integrating the 3D elasticity equations. Further, the results from
the FOST and TSDT are well comparable with the exact solution.
The FOST performs better than the TSDT for the FG plates studied
by them. These exact solutions presented by them may be consid-
ered as the benchmark results which can be used to assess the ade-
quacy of different plate theories and other approximate methods
such as the finite element method. These results have been used
by Qian and Batra [138] to validate their numerical solutions ob-
tained by them based on a higher order shear and normal deform-
able plate theory (originally derived by Batra and Vidoli [139] from
a 3D variational principle for a piezoelectric plate, named as HOS-
NDPT) and MLPG method to analyse the static and dynamic defor-
mations of simply supported FG plates. They too assumed the plate
material to be macroscopically isotropic with material properties
varying in the thickness direction only. The effective material
modulii were computed using the Mori–Tanaka homogenization
technique. This paper indicates that the application of normal
deformation theory may be justified if the side to thickness ratio
of the plate is equal to or smaller than 5. The authors also indicated
that material property variations seem to have a small effect on the
fundamental frequency of the plate.

The buckling analysis of a FG plate resting on a Pasternak-type
elastic foundation was solved by Yang et al. [140] considering the
material properties of the constituent phases and the foundation
parameters as random independent variables. The plate was mod-
eled by FOST in this study and the solution of the problem utilized
the first-order perturbation procedure to account for the random-
ness of the problem.

Buckling and free vibrations of simply supported FG sandwich
ceramic–metal panels were presented by Zenkour [141] extending
his previous work of static analysis on such panels.

Sundararajan et al. [142] studied the nonlinear free vibration
characteristics of FG plates under thermal environment. The non-
linear governing equations of motion were solved using finite ele-
ment procedure coupled with the direct iteration technique. The
material properties of plate was assumed to be temperature
dependent and graded in the thickness direction according to the
power-law distribution in terms of volume fractions of the constit-
uents. The authors concluded that the temperature field and mate-
rial grading have significant effect on the nonlinear vibration of the
FG plate.

Bhangale and Ganesan [143] following their previous approach,
carried out the free vibration analysis of magneto-electro-elastic
FG plates exponentially graded in the thickness direction account-
ing for coupling between magnetic, elastic, and electric effects.

Ferreira et al. [144] used the global collocation method and
approximated the trial solution with multi-quadric RBF to analyze
the free vibrations of FG plates. The plate is modeled using the
FOST and TSDT. The effective material properties of FG plate are
derived based on the Mori Tanaka homogenization technique. They
have compared their numerical solutions with the exact 3D elastic-
ity solutions [137], and the numerical solutions based on the MLPG
formulation [138].

Woo et al. [145] presented the analytical solution for the non-
linear free vibration of FG plates using their previous approach.
The effects of material properties, boundary conditions and ther-
mal loading on the dynamic behavior of the plates were studied
in this paper. The authors concluded that the nonlinear coupling
effects play a major role in dictating the fundamental frequency
of FG plates.

Ganapathi and Prakash [146] performed a study of simply sup-
ported skew FG plates subjected to a temperature distribution ob-
tained from the heat conduction equation, varying in thickness
direction using a FOST. Both structural stability and modal fre-
quencies were simultaneously considered using a customized fi-
nite element in this study. Further, the same authors Prakash and
Ganapathi [147] have investigated the asymmetric free vibration
characteristics and thermo-elastic stability of circular FG plates
using a three-noded shear flexible plate finite element based on
the field-consistency principle. Temperature field was assumed
to be a uniformly distributed over the plate surface and varied in
thickness direction only. The material properties of FG plate were
assumed to be graded in the thickness direction according to sim-
ple power law distribution. They highlighted the variation in criti-
cal buckling load considering gradient index, temperature, radius-
to-thickness ratios, circumferential wave number and boundary
condition of the plate. Prakash et al. [148,149] have further pre-
sented the post-buckling behavior and thermal snapping behavior
of FG plates under thermal load based on their previous shear
deformable finite element approach. The nonlinear governing
equations in this case were derived based on von Karman’s
assumptions and are solved employing the direct iterative tech-
nique. The same authors [150] have further published a paper
studying the large amplitude flexural vibration characteristics of
FG plates under aerodynamic load using the same methodologies.

Wu et al. [151] obtained analytically the post-buckling response
of the FG plate, subjected to thermo-mechanical loads using fast
converging finite double Chebyshev polynomials. The mathemati-
cal formulation was based on the FOST and von-Karman nonlinear
kinematics. They indicated with the help of numerical examples
that the critical temperature and buckling loads decrease with in-
crease in volume fraction exponent of the FG plate. They observed
that the buckling and post-buckling responses of the FG plate is al-
most same for the aspect ratios more than or equal to 3 with sev-
eral volume fraction exponents.

The 3D solutions of simply-supported, FG magneto-electro-
elastic rectangular plates using a modified Pagano method were
presented by Wu et al. [152]. The material properties of FG plates
were assumed to obey a power-law distribution of the volume
fractions of the constituents through the thickness. The Pagano
method was modified in a sense that a displacement-based formu-
lation was replaced by a mixed formulation, the complex-values
solutions of the system equations were transferred to the real-val-
ues solutions, and a successive approximation method was used to
make the modified Pagano method feasible for the coupled analy-
sis of FG plates. The accuracy of the present solutions was evalu-
ated by comparing them with the available asymptotic solutions
of FG plates.

Lanhe et al. [153] extended their previous work to the dynamic
stability analysis of thick FG plates subjected to aero-thermo-
mechanical loads, using the moving least squares differential quad-
rature method. The influence of gradient index, temperature,
mechanical and aerodynamic loads, thickness and aspect ratios,
as well as the boundary conditions on the dynamic instability re-
gion are studied in this paper.

Uymaz and Aydogdu [154] presented 3D vibration solutions for
rectangular FG plates with different boundary conditions using
Ritz method with Chebyshev displacement functions, based on
the small strain linear elasticity theory, and assuming the power
law variation of the material properties through the plate
thickness.

The 3D vibration analyses of thick annular isotropic and FG
plates were performed by Efraim and Eisenberger [155]. They used
FOST in deriving the system of equations of motion for the free
vibration analyses (a set of coupled partial differential equations
with variable coefficients), and obtained the exact solutions of this
set of PDE using the exact element method and the dynamic stiff-
ness method.
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Matsunaga [156] analysed the free vibration and stability of
simply supported FG plates using a HOST. He presented the natural
frequencies and buckling stresses of plates made of FGMs by taking
into account the effects of transverse shear and normal deforma-
tions and rotatory inertia.

Khorramabadi et al. [157] have studied the free vibration of
simply supported FG plates using FOST and TSDT to understand
the effect of applying these two different shear deformation theo-
ries on inhomogeneous plates.

Ebrahimi and Rastgoo [158] investigated the free vibration
characteristics of thin circular clamped FG plates integrated with
two uniformly distributed actuator layers made of piezoelectric
material, based on CPT. The material properties were considered
smoothly graded through thickness modeled by a power-law var-
iation. The distribution of electric potential field of piezoelectric
layers was simulated by a quadratic function along the thickness.
Further, Ebrahimi et al. [159] presented the free vibration analysis
of moderately thick shear deformable annular FG plate coupled
with piezoelectric layers based on Mindlin’s FOST.

Aydogdu [160] investigated the conditions for bifurcation buck-
ling of FG plates using CPT. He found in his study that, a bending
moment is required for simply supported FG plates to remain flat
under in-plane loading.

Allahverdizadeh et al. [161,162] analysed the nonlinear free and
forced axi-symmetric vibration of a thin circular FG plate using a
semi-analytical approach. The material properties were assumed
to vary continuously through the thickness according to a power-
law distribution of the volume fraction of the constituents. The
governing equations were solved using assumed-time-mode meth-
od and Kantorovich time averaging technique for harmonic vibra-
tions. Steady-state free and forced vibration problems of FG plate
were investigated in this study. The nonlinear frequencies and
associated stresses were found at large amplitudes of vibration.
They also examined the effects of material compositions and ther-
mal loads on the vibration characteristics and stresses of FG plate.
They concluded that the natural frequencies are dependent on
vibration amplitudes, and the material index has a significant role
to play on the nonlinear response characteristics of the FG plate.

Li et al. [163] studied the free vibration of rectangular FG plates
with simply supported and clamped edges in the thermal environ-
ment based on the 3D linear theory of elasticity. The plate was sub-
jected to uniform, linear, and nonlinear temperature rise along the
thickness. The in-plane and transverse displacements of the plates
were expanded by a series of Chebyshev polynomials multiplied by
appropriate functions to satisfy the essential boundary conditions.
The natural frequencies were obtained by Ritz method. They per-
formed a detailed parametric study for FG plates.

Shariyat [164] investigated the vibration and dynamic buckling
responses of rectangular FG plates with surface-bonded or embed-
ded piezoelectric sensors and actuators subjected to thermo-elec-
tro-mechanical loading. A nine-noded second order finite
element formulation based on a HOST is used for the analysis
accounting for both initial geometric imperfections of the plate
and temperature-dependency of the material properties. Dynamic
buckling of plates already pre-stressed by other forms of loading
conditions is assumed to occur under suddenly applied thermal
or mechanical loads in this study.

Bouazza et al. [165] investigated the buckling of simply sup-
ported FG plate subjected to uniform and linear temperature rise
through the thickness based on the FOST and applying the von Kar-
man type stability and compatibility equations. They observed in
their study that transverse shear deformation has considerable ef-
fects on the critical buckling temperature of FG plate, especially for
a thick plate or a plate with large aspect ratio.

Lee et al. [166] also carried out the post-buckling analysis of FG
plates subjected to edge compression and thermal conditions
based on the FOST and the von Karman relationship. The effective
material properties of the FG plates were assumed to vary accord-
ing to the power law through thickness. A set of mesh-free kernel
particle functions were used for approximating the displacement
fields. To eliminate the membrane and shear locking effects for
thin plates, these terms were evaluated using a direct nodal inte-
gration technique. The effects of the volume fraction exponent,
boundary conditions and temperature distribution on post-buck-
ling behavior are examined in this paper.

Liu et al. [167] analysed the free vibration behavior of a FG elas-
tic rectangular plate of uniform thickness using CPT. A Levy-type
solution is obtained for plates with a pair of simply supported
edges that are parallel with the material gradient direction. The ef-
fect of in-plane material in-homogeneity on the fundamental fre-
quencies is studied in this paper.

Talha and Singh [168] investigated the free vibration and static
analysis of FG plates using an efficient C0 finite element with 13� of
freedom per node, formulated using a HOST. They further studied
the large amplitude free vibration behavior of FG plates using the
same formulation, modified to account for the large deflection re-
sponses. They used the Green–Lagrange nonlinear strain–displace-
ment relation with all higher order nonlinear strain terms for
incorporating the large deflection behavior of FG plates.

Gunes et al. [169] studied the 3D free vibration behavior of an
adhesively-bonded single lap joint with wide and narrow FG
plates. These plates were composed of ceramic (Al2O3) and metal
(Ni) phases, properties varying through the thickness. This investi-
gation was carried out using both the finite element method and
the back-propagation artificial neural network (ANN) method. They
studied the effects of geometrical parameters, viz. plate width,
thickness and overlap length on the free vibration parameters of
the adhesive joint. The effect of the similar and dissimilar material
composition variations through-the-thicknesses of both upper and
lower plates on the natural frequencies and corresponding mode
shapes of the adhesive joint were also investigated in this study.

Hoang and Nguyen [170] presented an analytical approach to
investigate the stability of FG plates under in-plane compressive,
thermal and combined loads using CPT. Geometrical nonlinearity
and initial geometrical imperfection, both are accounted suitably
in this study. Temperature independent material properties are
assumed to be graded in the thickness direction according to a
simple power law distribution in terms of the volume fractions
of constituents. The explicit expressions for the post-buckling
load–deflection curves were obtained by solving the governing
equations by Galerkin procedure. The effects of the volume fraction
index, plate geometry, in-plane boundary conditions, and imper-
fection on post-buckling behavior of the plate were studied in this
paper. Further, the same authors, Nguyen and Hoang [171], follow-
ing the similar methodology, presented an analytical study on the
buckling and post-buckling behaviors of thick FG plates resting on
elastic foundations and subjected to in-plane compressive, thermal
and thermo-mechanical loads. This analysis was carried out to
show the effects of material and geometrical properties, in-plane
boundary restraint, foundation stiffness and imperfection on the
buckling and post-buckling loading capacity of the FG plates.

Jalali et al. [172] studied the thermal stability of laminated FG
circular plates subjected to uniform temperature rise based on a
FOST. They demonstrated that, the thermal stability of FG plate is
significantly influenced by the thickness variation profile, aspect
ratio, the volume fraction index, and the core-to-face sheet thick-
ness ratio.

Hashemi et al. [173] employed an analytical method to analyse
the vibration problems of thick annular FG plates with integrated
piezoelectric layers. The plate with different boundary conditions
at the inner and outer edges is modeled on the basis of the Reddy’s
TSDT. The material properties variation of the FG plate follows a
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power-law distribution. The distribution of electric potential along
the thickness direction in the piezoelectric layer is assumed as a
sinusoidal function. In this study closed-form expressions for char-
acteristic equations, displacement components of the plate and
electric potential are derived. The natural frequencies of this
piezoelectric coupled annular FG plate are evaluated for different
thickness–radius ratios, inner–outer radius ratios, thickness of
piezoelectric, material of piezoelectric, power index and boundary
conditions in this study. Recently, the same authors [174] have
developed an exact closed-form solution for the free vibration of
piezoelectric coupled thick circular/annular FG plates subjected to
different boundary conditions on the basis of Mindlin’s FOST. The
effects of coupling between in-plane and transverse displacements
on the frequency parameters are proved to be significant in this
study. It is concluded in the paper, that the developed model can de-
scribe vibration behavior of smart FG plates in a more realistic way.

Fakhari et al. [175] presented a finite element formulation
based on a HOST to analyse the nonlinear natural frequencies
and time response of FG plate with surface-bonded piezoelectric
layers under thermal, electrical and mechanical loads. They used
von Karman relation to account for the large deflection of the plate.
In this study, the material properties of FGM were assumed tem-
perature-dependent and are graded in the thickness direction fol-
lowing a simple power law in terms of volume fraction of the
constituents.

Shahrjerdi et al. [176] have studied the free vibration of rectan-
gular simply supported FG plates using second order shear deforma-
tion theory (SSDT). Kumar et al. [177] have also carried out the
same using a HOST without enforcing zero transverse shear stress
conditions on the top and bottom surfaces of the plate. In the sim-
ilar line, Benachour et al. [178] have also evaluated the natural fre-
quency of plates made of FGMs by using a four variable refined
plate theory with an arbitrary gradient considering only the four
numbers of unknown functions taking account of transverse shear
effects and parabolic distribution of the transverse shear strains
through the thickness of the plate. The Free vibration analysis of
FG and composite sandwich plates are carried out by Xiang et al.
[179] using a displacement model consisting n-order polynomial
satisfying zero transverse shear stress boundary conditions at the
top and bottom of the plate.

Hao et al. [180] carried out the nonlinear dynamic analysis of a
cantilever FG rectangular plate subjected to the transversal excita-
tion in thermal environment using Reddy’s TSDT. This is an exten-
sion of the work carried out by Zhang et al. [181] on the chaotic
vibrations of a simply supported orthotropic FG rectangular plate
based on TSDT. Material properties of FG are assumed to be temper-
ature dependent. The equations of motion were derived by using
Hamilton’s principle, and are converted into a two-degree-of-free-
dom nonlinear system by employing Galerkin’s approach. The
authors concluded that, the nonlinear dynamic response of the can-
tilever FG rectangular plate is much more sensitive to transverse
excitation compared with that of a simply supported FG plate.

Nguyen-Xuan et al. [182] analysed the static, free vibration and
mechanical/thermal buckling problems of FG plates using the finite
element approach in which a node-based strain smoothing is
merged into shear-locking-free triangular plate elements. This
work is the extension of the earlier works carried out by the same
authors [183,184] on an edge-based smoothed finite element method
(ES-FEM) with stabilized discrete shear gap (DSG) technique using
triangular meshes (ES-DSG) to enhance the accuracy of the existing
finite element methods for analysis of isotropic Reissner/Mindlin
plates.

Jha et al. [185] have recently published a study on the evalua-
tion of natural frequency of simply (diaphragm) supported rectan-
gular FG plates based on a higher order shear and normal
deformations theory (HOSNT). The material properties such as
material density, and Young modulus of elasticity. of the graded
plates are assumed to follow the power law model through the
plate thickness. The obtained closed form solutions utilizing Navier
solution technique are in the excellent agreement of the 3D elastic-
ity solutions available in the literature.

Shen and Wang [186] have presented the small and large ampli-
tude vibrations of a FG rectangular plate resting on a Pasternak-
type elastic foundation (boundary condition) in thermal environ-
ments considering two kinds of micromechanics models of FGM
using the same methodologies. Shen has made several other pub-
lications [187–190] in the area of nonlinear bending response,
thermal post-buckling analysis, comparison of buckling and post-
buckling behavior of FG plates with or without surface bonded pie-
zoelectric actuators due to heat conduction and under different
sets of electric loading conditions using a HOST.
3. Conclusions

A review of various investigations carried out in the existing lit-
erature for the stress, free vibration and buckling analyses of FG
plates have been presented in the present article. An effort has
been made to include all the important contributions in the current
area of interest highlighting the most pertinent literature available
to research engineers studying FG plate structures. The general re-
marks from the current literature survey are as follows:

� 3D analytical solutions for FG plates are very useful since they
provide benchmark results to assess the accuracy of various
2D plate theories and finite element formulations, but their
solution methods involve mathematical complexities and are
very difficult and tedious to solve.
� In most of the 2D theories developed to predict the global

responses of FG plates, only the transverse shear deformation
effect has been considered and very few theories consider the
effect of both transverse shear and transverse normal deforma-
tions effect.
� In most of the 2D shear deformation theories developed till

date, the validation and accuracy of the global responses of FG
plates are done by comparing the results with 3D elasticity
solutions. Very limited studies are reported on comparison of
the accuracy with analytically predicted global responses of
FG plates using various higher order theories.
� Having reviewed a large segment of the FGM research available

it is apparent that nearly all the research conducted has been
purely analytical or with numerical simulation.
� Use of improved 2D theoretical models which are now seem to

provide accuracy as good as the 3D models should be pursued in
the interest of computational cost and efficient analyses.
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