Solutions : CE 434 Midsem Examination

Q.4:

Given:
$\mathrm{V}=1900 \mathrm{vph} ; \mathrm{h}=2 \mathrm{sec} ; \mathrm{G}=40 \mathrm{sec} ; \mathrm{Y}=5 \mathrm{sec} ; \mathrm{L}=3 \mathrm{sec} ; \mathrm{R}=35 \mathrm{sec} ;$
Effective green, $g=G+Y-L=40+5-3=42 \mathrm{sec}$
Cycle time $\mathrm{C}=40+5+35=80 \mathrm{sec}$

$$
\mathrm{g} / \mathrm{C}=42 / 80=0.525
$$

Saturation Flow, $\mathrm{S}=3600 / \mathrm{h}=1800 \mathrm{vph}$
Capacity, $\mathrm{c}=\mathrm{S} \times \frac{g}{C}=1800 \times 0.525=945 \mathrm{vph}$

$$
\frac{V}{C}=1900 / 945=2.010(>1 \text { i.e. Overflow Delay })
$$

(i) Cumulative no. of vehicles arriving at 90 min (point A in Fig.) $=1900 \times 1.5=2850$ veh Cumulative no. of vehicles departing at 90 min (point B in Fig.) $=945 \times 1.5=1417.5$ veh No. of vehicles in queue at $90 \mathrm{~min}=\mathrm{A}-\mathrm{B}=2850-1417.5=1432.5$ veh

(ii) Solution: Actual Waiting Time

If vehicle arrives at 20th min (at C);
Vehicle will be discharged at point $\mathrm{D}=\frac{\frac{20}{60} \times 1900}{945} \times 60=40.21 \mathrm{~min}$
Time in waiting $=40.21-20=20.21 \mathrm{~min}$

If vehicle arrives at 40th min (at E);
Vehicle will be discharged at point $\mathrm{F}=\frac{\frac{40}{60} \times 1900}{945} \times 60=80.42 \mathrm{~min}$
Time in waiting $=80.42-40=40.42 \mathrm{~min}$
Waiting time between 20 min and $40 \mathrm{~min}=(20.21+40.42) / 2=\mathbf{3 0 . 3 1 5} \mathbf{~ m i n}$

Alternate Solution (Approximate): Assuming the analysis period is 20-40 min.
Total Delay $=$ Uniform Delay (UD) + Overflow Delay(OD)
$\mathrm{UD}=\frac{C}{2}\left(1-\frac{g}{C}\right)=\frac{80}{2}\left(1-\frac{42}{80}\right)=19 \mathrm{sec}$
$\mathrm{OD}=\frac{T 1+T 2}{2}\left(\frac{V}{C}-1\right)=\frac{20+40}{2}(2.010-1)=30.3 \mathrm{~min}=1818 \mathrm{sec}$
Total Delay $=19+1818=1837 \mathrm{sec}=\mathbf{3 0 . 6 2} \mathbf{~ m i n}$

Q.5:

	Phases (i)	i	$\mathbf{1}$			$\mathbf{2}$		$\mathbf{3}$			$\mathbf{4}$		
	Lane no		1	2	3	4	5	6	7	8	9		
	Lane flows (unadjusted)	fl	275.0	125.0	350.0	202.5	247.5	220.0	100.0	280.0	135.0		
	Lane flows (adjusted)	fi	290.0	125.0	440.0	211.5	301.5	232.0	100.0	352.0	141.0		
201.0													

No	Phases	i	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
1	Critical flows (Vci=max(fa,fb))	Vci	440.0	301.5	352.0	201.0
2	Total critical flows (Sum of all Vci)	Vc	1294.5	$\mathrm{veh} / \mathrm{hr} / \mathrm{lane}$		
3	Saturation flow (s=3600/h)	s	1800.0	$\mathrm{veh} / \mathrm{hr}$		
4	Cycle time	C	79.6	sec		
5	Total effective green time Tg = C - NL	Tg	63.6	sec		
6	Actual green time Gi $=\mathrm{Tg} / \mathrm{Vc}$ * Vci	Gi	22.0	15.0	18.0	10.0
4	Cycle time	C	77.0	sec		

	Phases (i)	i	1				2		3		
	Lane no		1	2	3	4	5	6	7	8	9
7	Effective green time g1 = G1 + Y-L	gi	21.0	21.0	21.0	14.0	14.0	17.0	17.0	17.0	9.00
	9.00										

Sample calculation : Phase 1
Lane Flow (unadjusted)
Lane $1=(750 \times 0.2)+(750 \times(1-0.2-0.3)) / 3=275$
Lane $2=(750 \times(1-0.2-0.3)) / 3=125$
Lane $3=(750 \times 0.3)+(750 \times(1-0.2-0.3)) / 3=350$

Lane Flow (adjusted for turning movements)
Lane $1=(750 \times 0.2 \times 1.1)+(750 \times(1-0.2-0.3)) / 3=290$
Lane $2=(750 \times(1-0.2-0.3)) / 3=125$
Lane $3=(750 \times 0.3 \times 1.4)+(750 \times(1-0.2-0.3)) / 3=440$

Q.6:

Given:
$\mathrm{v}=25 \mathrm{~m} / \mathrm{s}$
$\mathrm{h}=2 \mathrm{~s} / \mathrm{veh}$
$\mathrm{S}=3600 / \mathrm{h}=1800 \mathrm{vph} /$ lane
$\mathrm{L}=2 \mathrm{sec}$
t -ideal $=\mathrm{dist} / \mathrm{v}$
t actual $=\mathrm{t}$-ideal $-\mathrm{Q} \times \mathrm{h}-\mathrm{L} \quad(\mathrm{L}=0$ for signals other than the 2nd signal $)$

Signal no	Ref	cycle time	green time	Q	Dist, d (m)	$\mathbf{v}(\mathbf{m} / \mathbf{s})$	t-ideal = d/v	t-actual = t-ideal - Qxh	Cum t-actual
2	1	60	25	2	400	25	16	10	10
3	2	60	25	2	200	25	8	4	14
4	3	60	30	0	600	25	24	24	38

Performance evaluation:
(a) Speed of platoon $=25 \mathrm{~m} / \mathrm{s}$

Band Width $=15 \mathrm{sec}$
Capacity of band width (Assuming 1 lane) $=\left(\frac{B W}{C} \times s\right)=\left(\frac{15}{80} \times \frac{3600}{2}\right)=337.5 \mathrm{veh} / \mathrm{hr} / \mathrm{lane}$
(a) Speed of platoon $=20 \mathrm{~m} / \mathrm{s}$

Band Width $=8 \mathrm{sec}$
Capacity of band width (Assuming 1 lane $)=\left(\frac{B W}{C} \times s\right)=\left(\frac{8}{80} \times \frac{3600}{2}\right)=180 \mathrm{veh} / \mathrm{hr} /$ lane

Legond:

$$
\begin{aligned}
& x \text { axis-10 anits }=5 \mathrm{sec} \\
& \text { yaxis }-10 \mathrm{cmits}=100 \mathrm{~m}
\end{aligned}
$$

Band withs:

1. veh speed $=25 \mathrm{~m} / \mathrm{s} ;$ Band width $=15 \mathrm{see}$
2. veh speed $=20 \mathrm{~m} / \mathrm{s} ;$ Band width $=83 e e$

A1-Tiajectouy of ist vel.@ $25 \mathrm{~m} / \mathrm{s}$ s
A2-Trajectocy oflast veh@25m/s spe
B1-Teajeitouy of isveh@20m/s spoed
B2-Tiajectouy of bastveh@20mbspt

