Solutions : CE 434 Midsem Examination

Q.4:

Given:

V =1900 vph; h = 2 sec; G = 40 sec; Y = 5 sec; L = 3 sec; R = 35sec; Effective green, g = G+Y-L = 40+5-3 = 42 sec Cycle time C = 40+5+35 = 80sec g/C = 42/80 = 0.525Saturation Flow, S = 3600/h = 1800 vph Capacity, c = S x $\frac{g}{c}$ = 1800x0.525 = 945 vph $\frac{V}{c}$ = 1900/945 = 2.010 (>1 i.e. Overflow Delay)

(i) Cumulative no. of vehicles arriving at 90 min (point A in Fig.) = 1900 x 1.5 = 2850 veh Cumulative no. of vehicles departing at 90 min (point B in Fig.) = 945 x 1.5 = 1417.5 veh No. of vehicles in queue at 90 min = A-B = 2850 - 1417.5 = 1432.5 veh

(ii) Solution: Actual Waiting Time

If vehicle arrives at 20th min (at C);

Vehicle will be discharged at point D = $\frac{\frac{20}{60} \times 1900}{945} \times 60 = 40.21$ min Time in waiting = 40.21 - 20 = 20.21 min If vehicle arrives at 40th min (at E);

Vehicle will be discharged at point F = $\frac{\frac{40}{60} \times 1900}{945} \times 60 = 80.42$ min

Time in waiting = 80.42 - 40 = 40.42 min

Waiting time between 20 min and 40 min = (20.21+40.42)/2 = 30.315 min

Alternate Solution (Approximate): Assuming the analysis period is 20-40 min.

Total Delay = Uniform Delay (UD) + Overflow Delay(OD)

UD =
$$\frac{c}{2}(1 - \frac{g}{c}) = \frac{80}{2}(1 - \frac{42}{80}) = 19$$
 sec
OD = $\frac{T1+T2}{2}(\frac{V}{c} - 1) = \frac{20+40}{2}(2.010-1) = 30.3$ min = 1818 sec

Total Delay = 19 + 1818 = 1837 sec = **30.62 min**

Q.5:

Phases (i)	i	1			2		3			4		
Lane no		1	2	3	4	5	6	7	8	9	10	
Lane flows (unadjusted)	fl	275.0	125.0	350.0	202.5	247.5	220.0	100.0	280.0	135.0	165.0	
Lane flows (adjusted)	fi	290.0	125.0	440.0	211.5	301.5	232.0	100.0	352.0	141.0	201.0	

No	Phases	i	1	2	3	4		
1	Critical flows (Vci=max(fa,fb))	Vci	440.0	301.5	352.0	201.0		
2	Total critical flows (Sum of all Vci)	Vc	1294.5	,	veh/hr/lane			
3	Saturation flow (s=3600/h)	S	1800.0	veh/hr				
4	Cycle time	С	79.6	sec				
5	Total effective green time Tg = C - NL	Тg	63.6	sec				
6	Actual green time Gi = Tg / Vc * Vci	Gi	22.0	15.0	10.0			
4	Cycle time	С	77.0	sec				

	Phases (i)	i	1			2	2		3		4	
	Lane no		1	2	3	4	5	6	7	8	9	10
7	Effective green time g1 = G1 + Y - L	gi	21.0	21.0	21.0	14.0	14.0	17.0	17.0	17.0	9.00	9.00

Sample calculation : Phase 1

Lane Flow (unadjusted)

Lane $1 = (750 \times 0.2) + (750 \times (1 - 0.2 - 0.3))/3 = 275$ Lane $2 = (750 \times (1 - 0.2 - 0.3))/3 = 125$ Lane $3 = (750 \times 0.3) + (750 \times (1 - 0.2 - 0.3))/3 = 350$ Lane Flow (adjusted for turning movements)

Lane $1 = (750 \times 0.2 \times 1.1) + (750 \times (1 - 0.2 - 0.3))/3 = 290$ Lane $2 = (750 \times (1 - 0.2 - 0.3))/3 = 125$ Lane $3 = (750 \times 0.3 \times 1.4) + (750 \times (1 - 0.2 - 0.3))/3 = 440$

Q.6:

Given:

 $\label{eq:spectral_states} \begin{array}{l} v = 25 \text{ m/s} \\ h = 2 \text{ s/veh} \\ S = 3600/h = 1800 \text{ vph/lane} \\ L = 2 \text{ sec} \\ t\text{-ideal} = dist/v \\ t \text{ actual} = t\text{-ideal} - Q \text{ x h} - L \quad (L=0 \text{ for signals other than the 2nd signal}) \end{array}$

Signal no	Ref	cycle time	green time	Q	Dist, d (m)	v (m/s)	t-ideal = d/v	t-actual = t-ideal - Qxh	Cum t-actual
2	1	60	25	2	400	25	16	10	10
3	2	60	25	2	200	25	8	4	14
4	3	60	30	0	600	25	24	24	38

Performance evaluation:

- (a) Speed of platoon = 25 m/s Band Width = 15 sec Capacity of band width (Assuming 1 lane) = $\left(\frac{BW}{C} \times s\right) = \left(\frac{15}{80} \times \frac{3600}{2}\right) = 337.5$ veh/hr/lane
- (a) Speed of platoon = 20 m/s Band Width = 8sec Capacity of band width (Assuming 1 lane) = $\left(\frac{BW}{C} \times s\right) = \left(\frac{8}{80} \times \frac{3600}{2}\right) = 180$ veh/hr/lane

