

## Introduction

Adverse Impacts
Requirements

## Adverse Impacts

- Congestion
- Parking takes considerable street space leading to the lowering of the road capacity
- Speed will be reduced
- Journey time and delay will also subsequently increase
- Operational cost of the vehicle increases leading to great economical loss to the community
- Safety
- Careless maneuvering of parked vehicles causes accidents
- Obstruction to fire fighting operations


## Adverse Impacts

- Environmental pollution
- Stopping and starting of vehicles while parking and unparking results in noise and fumes
- Affect the aesthetic beauty of the buildings
- Cars parked at every available space creates a feeling that building rises from a plinth of cars.


## Parking requirements

- Residential plot area
- Less than 300 sq.m require only community parking space.
- For residential plot area from 500 to 1000 sq.m
- Minimum $1 / 4^{\text {th }}$ of the open area should be reserved for parking
- Offices may require at least one space for every 70 sq. m. as parking area
- One parking space is enough for 10 seats in a restaurant
- Cinema halls need to keep 1 parking space for 20 seats.


# Type of Parking 

On-Street
Off-Street

## On street parking

- General
- Vehicles are parked on the sides of the street
- Parking bay standard by IRC

Car
$5 \times 2.5 \mathrm{~m}$
Truck
$3.75 \times 7.5 \mathrm{~m}$

- Common types
- Parallel parking
- $30^{\circ}$ parking
- $45^{\circ}$ parking
- $60^{\circ}$ parking
$-90^{\circ}$ or Right angle parking


## On street parking

- Parallel parking
- Vehicles are parked along the length of the road
- No backward movement involved while parking or unparking the vehicle
- Most safest parking from the accident perspective
- Consumes the maximum curb length and therefore only a minimum number of vehicles can be parked for a given kerb length
- Least obstruction to the on-going traffic since least road width is used


## On street parking

- Parallel Parking


Illustration of parallel parking

Length required to park N vehicles

$$
L=N 5.9
$$



## On street parking

- $30^{\circ}$ parking
- Vehicles parked at $30^{\circ} \mathrm{w}$. r. to the road alignment
- Accommodate more vehicles than parallel parking
- Delay caused to the traffic is minimum and better maneuverability



## On street parking

- $30^{\circ}$ parking


For $N$ vehicles, $L=A C+(N-1) C E=5 N+0.58$


## On street parking

- $45^{0}$ parking
- More number of vehicles can be parked
- Compared to parallel parking and $30^{\circ}$ parking, more number of vehicles can be accommodated
- Length of parking space
$-L=3.54 N+1.77$



## On street parking

- $60^{\circ}$ parking
- Vehicles are parked at $60^{\circ}$ to the direction of road
- More number of vehicles can be accommodated
- Length required to park $N$ vehicles

$$
\mathrm{L}=2.89 \mathrm{~N}+2.16
$$



## On street parking

- Right angle parking
- Bays perpendicular to the direction of the road
- Consumes maximum width
- Kerb length required is very little
- Vehicles need complex maneuvering
- may cause severe accidents
- causes obstruction to the road traffic
- Can accommodate maximum number of vehicles for a given kerb length


## On street parking

- Right angle parking
- Length available for parking N vehicle


Illustration of $30^{\circ}$ parking
$-L=2.5 \mathrm{~N}$


## Off street parking

- Off-street Parking
- Areas exclusively allotted away from the main stream of traffic


Illustration of off-street parking

## Off street parking



Off street parking - MLCP




## Parking statistics

## Accumulation

Load
Index

Volume
Duration
Turnover

## Parking statistics

1. Parking accumulation

- Number of vehicles parked at a given instant of time
- Expressed thorough accumulation curve by plotting the number of bays occupied with time

2. Parking volume

- Total number of vehicles parked at a given duration
- Does not account for repetition of vehicles


## Parking statistics

3. Parking load

- Area under accumulation curve
- Product of the number of vehicles occupying the parking area at each time interval and the time interval
- Expressed as vehicle hours.

4. Average parking duration

- Ratio of total vehicle hours to the no. of vehicles parked

$$
\text { Average Parking Duration }=\frac{\text { Parking Load }}{\text { Parking Volume }}
$$

## Parking statistics

5. Parking Turnover

- Ratio of number of vehicles parked in a duration to number of parking bays available

$$
\text { Parking Turnover }=\frac{\text { Parking Volume }}{\text { No.of bays available }}
$$

- Expressed as vehicles/bay/time duration


## Parking statistics

6. Parking index

- Ratio of no. of bays occupied in a time duration to the total available

$$
\text { Parking Index }=\frac{\text { Parking Load }}{\text { Parking Capacity }} \times 100
$$

- Also called occupancy or efficiency
- An aggregate measure of how effectively the parking space is utilized


## Parking statistics

Numerical Example


## Parking statistics

## Solution

1. Accumulation curve


Parking aceumulation eurve

## Parking statistics

| Statistics | Computation |
| :---: | :---: |
| 2. Parking volume | 5 vehicles/ 2 hour 2.50 veh./hr |
| 3. Parking load | $\begin{aligned} & (1+2+1+0+1+2+3+1) 15 / 60 \\ & =11 \times 15 / 60 \\ & 2.75 \text { veh-hour } \end{aligned}$ |
| 4. Av. parking duration | 2.75 veh hours / 5 vehicle 33.0 mts |
| 5. Parking turnover | 5 veh/ 2 hours per 3 bays 0.83 veh/hr/bay |
| 6. Parking index | $\begin{gathered} \frac{2.75 \text { veh. hours }}{3 \times 2 \text { veh. hours }} \times 100 \\ 45.8 \% \end{gathered}$ |

Statistics
Computation

45.8 \%
2. Parking volume
3. Parking load
4. Av. parking duration
5. Parking turnover
6. Parking index

## 1. Accumulation curve

# Parking Surveys 

In-Out<br>Fixed Period<br>License Plate

## Parking surveys

- General
- To collect the parking statistics

1. in-out survey
2. fixed period sampling
3. license plate method of survey

## Parking surveys - In-out survey

- Procedure

1. Count the no of vehicles at the beginning
2. Count the no of vehicles entering the parking area at each time interval
3. Count the no of vehicles leaving the parking area at each time interval
4. Count the no of vehicles at the end of the time period

- Discussion
- Details of any specific vehicle used that parking lot cannot be obtained
- Parking duration and turn over is not obtained
- Not suitable for on-street parking, good for off-street parking


## Parking Surveys - Fixed Period Sampling

- Procedure
- All vehicles are counted at the beginning of the survey
- Count is taken again at the end of fixed time intervals (15/30/60 mts)
- Discussion
- Similar to in-out survey
- Suitable for both on-street and off-street parking areas
- Needs less manpower
- Will miss short-term parking


## Parking Surveys - License Plate Method

- Procedure
- Every parking bay is monitored at the end of every interval
- License plate number is noted down for each bay
- Discussion
- Most accurate and almost exhaustive data
- Duration of every individual vehicle using each bay is available
- Shorter time interval reduces chance of missing short-term parking
- This method is most labor intensive


## In-out survey

## Numerical Example

1. From an in-out survey conducted for a parking area
2. $\operatorname{Size}=40$ bays
3. Initial count $=\mathbf{2 5}$
4. Time interval $=5 \mathrm{mts}$
5. Table gives survey data
6. Find the accumulation, total parking load, average occupancy and efficiency of the parking lot

In-out survey data

| Time | In | Out |
| :---: | :---: | :---: |
| 5 | 3 | 2 |
| 10 | 2 | 4 |
| 15 | 4 | 2 |
| 20 | 5 | 4 |
| 25 | 7 | 3 |
| 30 | 8 | 2 |
| 35 | 2 | 7 |
| 40 | 4 | 2 |
| 45 | 6 | 4 |
| 50 | 4 | 1 |
| 55 | 3 | 3 |
| 60 | 2 | 5 |

## In-out surveys: Example solution

| Time | In | Out | Accumulation |
| :---: | :---: | :---: | :---: |
| $(1)$ | $(2)$ | $(3)$ | $(4)$ |
| 5 | 3 | 2 | 26 |
| 10 | 2 | 4 |  |
| 15 | 4 | 2 |  |
| 20 | 5 | 4 |  |
| 25 | 7 | 3 |  |
| 30 | 8 | 2 |  |
| 35 | 2 | 7 |  |
| 40 | 4 | 2 |  |
| 45 | 6 | 4 |  |
| 50 | 4 | 1 |  |
| 55 | 3 | 3 |  |
| 60 | 2 | 5 |  |

## In-out surveys: Example solution

| Time | In | Out | Accumulation |
| :---: | :---: | :---: | :---: |
| $(1)$ | $(2)$ | $(3)$ | $(4)$ |
| 5 | 3 | 2 | 26 |
| 10 | 2 | 4 | 24 |
| 15 | 4 | 2 | 26 |
| 20 | 5 | 4 | 27 |
| 25 | 7 | 3 | 31 |
| 30 | 8 | 2 | 37 |
| 35 | 2 | 7 | 32 |
| 40 | 4 | 2 | 34 |
| 45 | 6 | 4 | 36 |
| 50 | 4 | 1 | 39 |
| 55 | 3 | 3 | 39 |
| 60 | 2 | 5 | 36 |

## In-out surveys: Example solution

| Time <br> $(1)$ | In <br> $(2)$ | Out | $(3)$ | Accumulation |
| :---: | :---: | :---: | :---: | :---: |
| 5 | 3 | 2 | 26 | Occupancy <br> $(5)$ |
| 10 | 2 | 4 | 24 | $65 \longrightarrow 26 / 40^{*} 100=65 \%$ |
| 15 | 4 | 2 | 26 |  |
| 20 | 5 | 4 | 27 |  |
| 25 | 7 | 3 | 31 |  |
| 30 | 8 | 2 | 37 |  |
| 35 | 2 | 7 | 32 |  |
| 40 | 4 | 2 | 34 |  |
| 45 | 6 | 4 | 36 |  |
| 50 | 4 | 1 | 39 |  |
| 55 | 3 | 3 | 39 |  |
| 60 | 2 | 5 | 36 |  |

## In-out surveys: Example solution

| Time | In | Out | Accumulation | Occupancy |
| :---: | :---: | :---: | :---: | :---: |
| $(1)$ | $(2)$ | $(3)$ | $(4)$ | $(5)$ |
| 5 | 3 | 2 | 26 | 65 |
| 10 | 2 | 4 | 24 | 60 |
| 15 | 4 | 2 | 26 | 65 |
| 20 | 5 | 4 | 27 | 67.5 |
| 25 | 7 | 3 | 31 | 77.5 |
| 30 | 8 | 2 | 37 | 92.5 |
| 35 | 2 | 7 | 32 | 80 |
| 40 | 4 | 2 | 34 | 85 |
| 45 | 6 | 4 | 36 | 90 |
| 50 | 4 | 1 | 39 | 97.5 |
| 55 | 3 | 3 | 39 | 97.5 |
| 60 | 2 | 5 | 36 | 90 |

## In-out surveys: Example solution

| Time | In | Out | Accumulation | Occupancy | Parking load <br> $(1)$ | $(2)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | ---: |
| $(3)$ | $(4)$ | $(5)$ | $(6)$ |  |  |  |
| 5 | 3 | 2 | 26 | 65 | 130 |  |
| 10 | 2 | 4 | 24 | 60 |  | $26^{\star} 5=130$ |
| 15 | 4 | 2 | 26 | 65 |  | veh.mts |
| 20 | 5 | 4 | 27 | 67.5 |  |  |
| 25 | 7 | 3 | 31 | 77.5 |  |  |
| 30 | 8 | 2 | 37 | 92.5 |  |  |
| 35 | 2 | 7 | 32 | 80 |  |  |
| 40 | 4 | 2 | 34 | 85 |  |  |
| 45 | 6 | 4 | 36 | 90 |  |  |
| 50 | 4 | 1 | 39 | 97.5 |  |  |
| 55 | 3 | 3 | 39 | 97.5 |  |  |
| 60 | 2 | 5 | 36 | 90 |  |  |

## In-out surveys: Example solution

| Time | In | Out | Accumulation | Occupancy | Parking load |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $(1)$ | $(2)$ | $(3)$ | $(4)$ | $(5)$ | $(6)$ |
| 5 | 3 | 2 | 26 | 65 | 130 |
| 10 | 2 | 4 | 24 | 60 | 120 |
| 15 | 4 | 2 | 26 | 65 | 130 |
| 20 | 5 | 4 | 27 | 67.5 | 135 |
| 25 | 7 | 3 | 31 | 77.5 | 155 |
| 30 | 8 | 2 | 37 | 92.5 | 185 |
| 35 | 2 | 7 | 32 | 80 | 160 |
| 40 | 4 | 2 | 34 | 85 | 170 |
| 45 | 6 | 4 | 36 | 90 | 180 |
| 50 | 4 | 1 | 39 | 97.5 | 195 |
| 55 | 3 | 3 | 39 | 97.5 | 195 |
| 60 | 2 | 5 | 36 | 90 | 180 |
|  |  |  | AVG | $80.63 \%$ |  |

## License Plate : Example problem

Numerical

Example

| Bay | Time |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $0-15$ | $15-30$ | $30-45$ | $45-60$ |
| 1 | 1456 | 9813 | - | 5678 |
| 2 | 1945 | 1945 | 1945 | 1945 |
| 3 | 3473 | 5463 | 5463 | 5463 |
| 4 | 3741 | 3741 | 9758 | 4825 |
| 5 | 1884 | 1884 | - | 7594 |
| 6 | - | 7357 | - | 7893 |
| 7 | - | 4895 | 4895 | 4895 |
| 8 | 8932 | 8932 | 8932 | - |
| 9 | 7653 | 7653 | 8998 | 4821 |
| 10 | 7321 | - | 2789 | 2789 |
| 11 | 1213 | 1213 | 3212 | 4778 |
| 12 | 5678 | 6678 | 7778 | 8888 |

## License Plate : Example solution

| Bay | Time |  |  |  | Time |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $(1)$ | $(2)$ | $(3)$ | $(4)$ | $(5)$ | $(6)$ | $(7)$ | $(8)$ | $(9)$ |
|  | 15 | 30 | 45 | 60 | 15 | 30 | 45 | 60 |
| 1 | 1456 | 9813 | - | 5678 | 1 | 1 | 0 | 1 |
| 2 | 1945 | 1945 | 1945 | 1945 | 1 | 1 | 1 | 1 |
| 3 | 3473 | 5463 | 5463 | 5463 | 1 | 1 | 1 | 1 |
| 4 | 3741 | 3741 | 9758 | 4825 | 1 | 1 | 1 | 1 |
| 5 | 1884 | 1884 | - | 7594 | 1 | 1 | 0 | 1 |
| 6 | - | 7357 | - | 7893 | 0 | 1 | 0 | 1 |
| 7 | - | 4895 | 4895 | 4895 | 0 | 1 | 1 | 1 |
| 7 | 8932 | 8932 | 8932 | - | 1 | 1 | 1 | 0 |
| 9 | 7653 | 7653 | 8998 | 4821 | 1 | 1 | 1 | 1 |
| 10 | 7321 | - | 2789 | 2789 | 1 | 0 | 1 | 1 |
| 11 | 1213 | 1213 | 3212 | 4778 | 1 | 1 | 1 | 1 |
| 12 | 5678 | 6678 | 7778 | 8888 | 1 | 1 | 1 | 1 |

Present -1

Absent - 0

## License Plate : Example solution

| Bay | Time |  |  |  | Time |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $(1)$ | $(2)$ | $(3)$ | $(4)$ | $(5)$ | $(6)$ | $(7)$ | $(8)$ | $(9)$ | $(10)$ |
|  | 15 | 30 | 45 | 60 | 15 | 30 | 45 | 60 | Turn over |
| 1 | 1456 | 9813 | - | 5678 | 1 | 1 | 0 | 1 | 3 |
| 2 | 1945 | 1945 | 1945 | 1945 | 1 | 1 | 1 | 1 | 1 |
| 3 | 3473 | 5463 | 5463 | 5463 | 1 | 1 | 1 | 1 | 2 |
| 4 | 3741 | 3741 | 9758 | 4825 | 1 | 1 | 1 | 1 | 3 |
| 5 | 1884 | 1884 | - | 7594 | 1 | 1 | 0 | 1 | 2 |
| 6 | - | 7357 | - | 7893 | 0 | 1 | 0 | 1 | 2 |
| 7 | - | 4895 | 4895 | 4895 | 0 | 1 | 1 | 1 | 1 |
| 8 | 8932 | 8932 | 8932 | - | 1 | 1 | 1 | 0 | 1 |
| 9 | 7653 | 7653 | 8998 | 4821 | 1 | 1 | 1 | 1 | 3 |
| 10 | 7321 | - | 2789 | 2789 | 1 | 0 | 1 | 1 | 2 |
| 11 | 1213 | 1213 | 3212 | 4778 | 1 | 1 | 1 | 1 | 3 |
| 12 | 5678 | 6678 | 7778 | 8888 | 1 | 1 | 1 | 1 | 4 |

## License Plate : Example solution

| Bay | Time |  |  |  | Time |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $(1)$ | $(2)$ | $(3)$ | $(4)$ | $(5)$ | $(6)$ | $(7)$ | $(8)$ | $(9)$ | $(10)$ |
|  | 15 | 30 | 45 | 60 | 15 | 30 | 45 | 60 | Turn over |
| 1 | 1456 | 9813 | - | 5678 | 1 | 1 | 0 | 1 | 3 |
| 2 | 1945 | 1945 | 1945 | 1945 | 1 | 1 | 1 | 1 | 1 |
| 3 | 3473 | 5463 | 5463 | 5463 | 1 | 1 | 1 | 1 | 2 |
| 4 | 3741 | 3741 | 9758 | 4825 | 1 | 1 | 1 | 1 | 3 |
| 5 | 1884 | 1884 | - | 7594 | 1 | 1 | 0 | 1 | 2 |
| 6 | - | 7357 | - | 7893 | 0 | 1 | 0 | 1 | 2 |
| 7 | - | 4895 | 4895 | 4895 | 0 | 1 | 1 | 1 | 1 |
| 8 | 8932 | 8932 | 8932 | - | 1 | 1 | 1 | 0 | 1 |
| 9 | 7653 | 7653 | 8998 | 4821 | 1 | 1 | 1 | 1 | 3 |
| 10 | 7321 | - | 2789 | 2789 | 1 | 0 | 1 | 1 | 2 |
| 11 | 1213 | 1213 | 3212 | 4778 | 1 | 1 | 1 | 1 | 3 |
| 12 | 5678 | 6678 | 7778 | 8888 | 1 | 1 | 1 | 1 | 4 |
|  | Accumulation |  |  |  | 10 | 11 | 9 | 11 |  |

## License Plate : Example solution

| Bay | Time |  |  |  | Time |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
|  | 15 | 30 | 45 | 60 | 15 | 30 | 45 | 60 | Turn over |
| 1 | 1456 | 9813 | - | 5678 | 1 | 1 | 0 | 1 | 3 |
| 2 | 1945 | 1945 | 1945 | 1945 | 1 | 1 | 1 | 1 | 1 |
| 3 | 3473 | 5463 | 5463 | 5463 | 1 | 1 | 1 | 1 | 2 |
| 4 | 3741 | 3741 | 9758 | 4825 | 1 | 1 | 1 | 1 | 3 |
| 5 | 1884 | 1884 | - | 7594 | 1 | 1 | 0 | 1 | 2 |
| 6 | - | 7357 | - | 7893 | 0 | 1 | 0 | 1 | 2 |
| 7 | - | 4895 | 4895 | 4895 | 0 | 1 | 1 | 1 | 1 |
| 8 | 8932 | 8932 | 8932 | - | 1 | 1 | 1 | 0 | 1 |
| 9 | 7653 | 7653 | 8998 | 4821 | 1 | 1 | 1 | 1 | 3 |
| 10 | 7321 | - | 2789 | 2789 | 1 | 0 | 1 | 1 | 2 |
| 11 | 1213 | 1213 | 3212 | 4778 | 1 | 1 | 1 | 1 | 3 |
| 12 | 5678 | 6678 | 7778 | 8888 | 1 | 1 | 1 | 1 | 4 |
|  | Accumulation |  |  |  | 10 | 11 | 9 | 11 |  |
|  | Occupancy |  |  |  | 0.83 |  |  |  |  |

## License Plate : Example solution

| Bay | Time |  |  |  | Time |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
|  | 15 | 30 | 45 | 60 | 15 | 30 | 45 | 60 | Turn over |
| 1 | 1456 | 9813 | - | 5678 | 1 | 1 | 0 | 1 | 3 |
| 2 | 1945 | 1945 | 1945 | 1945 | 1 | 1 | 1 | 1 | 1 |
| 3 | 3473 | 5463 | 5463 | 5463 | 1 | 1 | 1 | 1 | 2 |
| 4 | 3741 | 3741 | 9758 | 4825 | 1 | 1 | 1 | 1 | 3 |
| 5 | 1884 | 1884 | - | 7594 | 1 | 1 | 0 | 1 | 2 |
| 6 | - | 7357 | - | 7893 | 0 | 1 | 0 | 1 | 2 |
| 7 | - | 4895 | 4895 | 4895 | 0 | 1 | 1 | 1 | 1 |
| 8 | 8932 | 8932 | 8932 | - | 1 | 1 | 1 | 0 | 1 |
| 9 | 7653 | 7653 | 8998 | 4821 | 1 | 1 | 1 | 1 | 3 |
| 10 | 7321 | - | 2789 | 2789 | 1 | 0 | 1 | 1 | 2 |
| 11 | 1213 | 1213 | 3212 | 4778 | 1 | 1 | 1 | 1 | 3 |
| 12 | 5678 | 6678 | 7778 | 8888 | 1 | 1 | 1 | 1 | 4 |
|  | Accumulation |  |  |  | 10 | 11 | 9 | 11 |  |
|  | Occupancy |  |  |  | 0.83 | 0.92 | 0.75 | 0.92 | 2.25 |

## Thank You

tvm@civil.iitb.ac.in

