CE 742 Pavement Systems Engineering

Instructor: K. V. Krishna Rao

Pavement Types and Design Factors

- Historical Developments
- Pavement Types
 - Flexible; Rigid; Semi-rigid
- Design Factors
 - Traffic & loading; Environment; Material;
 Failure criteria
- Highway and Airfield Pavements
 - Traffic loading, configuration and repetitions

Stresses and Strains in flexible Pavements

- Stresses in homogeneous mass
 - Solutions by charts
 - Solutions at axis of symmetry
- Layered Systems
 - One layer, Two Layer, Three Layer
 - Solutions by charts and Tables
 - Multi Layer Systems
 - Linear elastic, non-linear elastic and viscoelastic layers
- Computer Programs for Layered Systems

 Details of KENLAYER Program
- Fundamental design concepts

Stresses and Deflections in Rigid Pavements

- Introduction to Cement Concrete Pavements
- Environmental stresses
 - Stresses due to curling
 - Stresses due to friction
- Stresses due to loading
 - Closed form equations
 - Influence charts
 - Finite element method (KENSLAB Computer Program)
- Combination of stresses
- Design of Dowels and Joints

Analysis of Traffic Loading for Pavement Design

- Review of earlier methods
 - Equivalent single wheel load
- Wheel load configurations and legal load limits
- Equivalent Axle Load Factor (EALF)
- Equivalent Single Axle Load Approach
- Spectrum of axles approach

Material Characterisation

- Review of historical methods
- Characterisation of subgrade, subbase and unbound bases
 - CBR, resilient modulus and modulus of subgrade reaction
 - Correlations among the strength parameters
- Characterisation of asphaltic layers
 - Dynamic modulus and dynamic stiffness Modulus
 - Determining dynamic modulus from Correlations
- Distress models (Fatigue characteristics)
 - Fatigue cracking and rutting

Pavement Performance

- Distresses in flexible pavements
- Distresses in rigid pavements
- Methods of measuring distress
 - Roughness
 - Surface distress
 - Present serviceability index
 - Skid resistance
 - Deflection
- Pavement performance

Concepts of Reliability in Pavement Design

- Statistical concepts
- Variability in design parameters
- Probabilistic Methods of Design

Drainage Design

- Detrimental effects of water in pavement
- Methods of controlling water in pavements
- Drainage materials
 - Aggregates, geotextiles and pipes
 - Filter criteria
- Design procedures

Design of Flexible Pavements

- Mechanistic design procedure
- Asphalt Institute Method
- AASHTO Method
- IRC Method
- Stage Construction
- Design exercise using KENLAYER program

Design of Cement Concrete Pavement

- Mechanistic design procedure
- Portland Cement Association (PCA) Method
- AASHTO Method
- IRC Method
- Design exercise using KENSLAB program

Design of Overlays

- Types of overlays
- Design methodologies
 - Effective thickness approach
 - Deflection approach
 - Empirical mechanistic approach
- Design of asphalt overlay over asphalt pavement
- Design of asphalt overlay over CC pavement
- Design of CC overlay over asphalt pavement
- Design of CC overlays over CC pavement

Design of Bituminous Mixes

- Conventional asphalt mix design
- Superpave asphalt mix design
 - Binder grading system
 - Requirement of aggregates
 - Laboratory compaction
 - Mix design criteria

Pavement Construction & Maintenance

- Subgarde
- Subbase
- Base
 - Untreated and treated
- Interface treatments
- Binder course
- Wearing Course
- Cement concrete pavement
- Maintenance
 - Types of interventions