Stresses and Strains in
flexible Pavements
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Multi Layered Elastic System



Assumptions in Multi Layered

Elastic Systems
The material properties of each layer are homogeneous
— property at point A, is the same at B,

Each layer has a finite thickness except for the lower
layer, and all are infinite in lateral directions.

Each layer is isotropic, that is, the property at a specific
point such as A;is the same in every direction or
orientation.

Full friction is developed between layers at each
interface.

Surface shearing forces are not present at the surface.

The stress solutions are characterized by two material
properties for each layer, i.e., (u, E).



Stresses in Layered Systems

« At any point, 9 stresses exist. They are 3 normal
stresses (o,, 0,, 0;) and 6 shearing stresses
(T =Tz Z-rz‘_Ttrf th =1, )

« At each point in the system there exists a certain
orientation of the element such that the shearing
stresses acting on each face are zero.

— The normal stresses under this condition are principal
stresses and are denoted by o,(major), o,
(intermediate) and o3 (minor).



Computation of Strains

€, = (Gz —IU(Gr +Gt))
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One —Layer Systems

- If, one-layer system is assumed as a homogeneous half space,
Boussinesq equations can be applied.

« Half space is an infinite large area with infinite depth with a top plane on
which loads are applied.

« Boussinesq equations are developed for computing stresses in a
homogeneous, isotropic and elastic media due to a point load at the
surface.

o,=K 52 P
Z '
3 1 z o
K = \/ é z
27 [1+(r/ z) ]5/2 r

— Stress is independent of the properties of the transmitting medium.

— Maximum stress occurs on the vertical plane passing through the point of
load application, on a particular horizontal plane.

— Pressure is maximum at shallow depths, theoretically becoming zero at
infinite depth. But, for all practical purposes, o,is taken as zero when zis
sufficiently large.



One —Layer Systems

Load is not a point load — it is distributed over an elliptical area. This
contact area can be approximated to a circular shape.

Variation of stress follows the same general pattern

Vertical stress resulting from uniformly distributed circular load may
be obtained by integration of Boussinesq equation.

Love has obtained the following closed from equation for the vertical
stress beneath the centre of the loaded area:

o.=p|l- <
Z (a2+Z2)3/2

Newmark has developed charts for foundation work for computing
stresses




One —Layer Systems

Foster and Ahlvin (1954) developed charts for computing vertical, tangential
and radial stresses. The charts were developed for u = 0.5.

This work was subsequently refined by Ahlvin and Ulery (1962) allowing for
evaluation of stresses and strains at any point in the homogenous mass for

any u.

Due to axis symmetry, there are only three normal stresses, o,, o,and o,
and one shear stress 7,..

One-layer theory can be applied as an approximation for a conventional
flexible pavement with granular base/subbase with a thin asphaltic layer on
a stiff subgrade comparable to the base/subbase. (i.e., E.//E,= 1)

The deflection that occurs within the pavement (4,) is neglected and
therefore, the pavement surface deflection (4,) is equal to the deflection on

the top of subgrade (4,) Ar
Ap=Ag+ A, el
4,=0 E,, u,, h, A,
Therefore, A4, =4 <

) E,, i, h=a 4




Charts for One-layer Solutions
by Foster and Ahlvin (1954)

These are applicable for u = 0.5
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Radial stresses due to circular loading. (Alter Foster and Ahlvin,
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Tables for One-layer Solutions
by Ahlvin and Ulery (1962)



TABLE 2.1. Summary of One-Layer Elastic Equations® (after Ahlvin and Ulery)

Parameter General Case Special Case (u = 0.5)
Vertical stress o, = p[4d + B] (same)
Radial horizontal stress o, = pl2ud + C + (1 — 2u)F] o, = pld + C]
Tangential horizontal stress o, = p[2ud — D + (1 — 2u)E] o, = pl4 — D]
Vertical radial shear stress 7., = 7., = pG | (same)

1 15
Vertical strain € = u [(1 — 2u)4 + B] €; L B
E, E,
( 1 1.
Radial horizontal strain € = m [(1 — 2u)F + C] € = 1.5 C
E, E,
1 1.
Tangential horizontal strain €, = m [(1 — 2u)E — D)] € = — o D
E1 El
1 1. H
Vertical deflection A, = p(_-}:_p)_a iA + (0 —wH| A = 2ee iA + —
El a E1 a 2
Bulk stress 0 =0, + o + o
Bulk strain € = €+ €& + €
Vertical tangential shear
stress T2 = 72 = 0 % [o,(€,) is principal stress (strain)]
— g)? 2
Principal stresses 01,2,3 = (0: + o) + \/((72' 7:)" + Q771
Maximum shear stress Tmax = e




Tables for Functions Ato H

(after Ahlvin and Ulery)




Example problems on One-layer Systems

A homogeneous half space is subjected to a circular
load, 254 mm in diameter. The pressure on the circular
area is 345 kPa. The half space has an elastic
modulus of 69 MPa and a Poisson's ratio of 0.5.
Determine the vertical stress, strain and deflection at
point A, which is located 254 mm below and 508 mm
away from the centre.

A homogeneous half space is subjected to two circular
loads, each 254 mm in diameter and spaced at 508
mm on centres. The pressure on the circular area is
345 kPa. The half space has an elastic modulus of 69
MPa and a Poisson's ratio of 0.5. Determine the
vertical stress, strain and deflection at point A, which is
located 254 mm below the centre of one of the wheels.



Example Problems Continued

3. Given the following data for the pavement shown in the figure,
compute the deflection at point m, o,and & at point o and o, , ; and
T..x Al point p.
a= 152 mm; p = 552 kPa
h,=254 mm; E, = 173 MPa; u, = 0.35
E,=110 MPa; u, = 0.4

: . E,, wy hy
Coordinates of points:

m: (z=0, r=0) E,, i, h,=c
0. (z=457, r=305)
p: (z=457, r=0)




Solutions at Axis of Symmetry



Deflection of Flexible Plate

Deflection Profile




Solutions at Axis of Symmetry —
Flexible Plate

3
<
Normal stress at axis symmetry: o.=p|l-7———w
(a +Z )
. . p 21+ u) z’
Radial stress at axis symmetry: o, =—|1+2u- +
y y 2{ H (a2+zz)0'5 (a2+Z2)3/2

Strains can be computed from the following equations:

1
E=—\0.—u(lo.+o
< E( < ltl( r t))
1
E =—\0.— +
r E(Jr ﬂ(at GZ))
1
E=—\0,—u(o, +o
t E( t lLl( r z))

At the axis of symmetry, 7,,=0 and o, = ¢



Solutions at Axis of Symmetry —
Flexible Plate

Vertical deflection A, can be determined by

A, =I81dz I
) ' dz—gﬁgZ
(1+ ) pa a 1-2u . -
Az = 5 {(az +Z2)0'5 + _ [(a2 + Z2)05 _Z]} .
_ 3pa’
For u=0.5, B +20)%
2(1— 1) pa
Atz =0, A= ( g )P

1.5pa

Atz=0andu=0.5 A, =
E




Deflection of Rigid Plate

Ullidtz (1987) gave the g

A

A

distribution of pressure under
a rigid plate as:

| ‘/Steel

'f_ Deflection Profile

pa
2(a2 . r2)0.5

p(r)=

Ef—Ground Reaction

By integrating a point load
over the contact area of the
plate it can be shown that

n(l—pu*)pa
OF

A, =

1.18 pa

Ifu=05then, A =
E




Two-layer Systems

The effect of layers above subgrade is to reduce the
stress and deflections in the subgrade.

Burmister (1958) obtained solutions for two-layer
problem by using strain continuity equations.

Vertical stress depends on the modular ratio (i.e., E,/E))

Vertical stress decreases considerably with increase in
modular ratio.

For example,

for a/h,=1 and E,/E, =1, o, at interface = 65% of contact
pressure

for a/h,=1 and E,/E, = 100, o, at interface = 8% of contact
pressure



Variation of Subgrade Stress with
Modular Ratio
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Vertical Stress in a Two-layer System
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Vertical Surface Deflection in a Two-
layer System

« Burmister (1958) dveloped a chart for computing
vertical surface deflection in a two-layer system.

» The deflection factor, F., is obtained from the
chart based on the values of a’h, and E/E..

* Then the deflection is computed from the

following equations:

: . 1.5pa
— Deflection under a flexible Plate = A: = F,
2

. . 1.18 pa
— Deflection under a rigid Plate = Ay = Ep F,
2




Vertical Surface Deflections for Two Layer
Systems (Burmister, 1958)
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