Visco-elastic Layers

Visco-elastic Solutions

- Solutions are obtained by elastic viscoelastic correspondence principle by applying laplace transform to remove the time variable
- Two methods of characterising viscoelastic materials:
 - Mechanical model
 - Creep compliance curve

Spring - Elastic

Elastic: Stress α Strain

 $\sigma = \mathsf{E}\,\epsilon$

Dashpot - Viscous

$$\sigma = \lambda \frac{\partial \varepsilon}{\partial t}$$

Maxwell Model

 T_1 is retardation time.

When, t = 0, ε = 0; when t = ∞ , ε = σ/E_1

When, t = T_1 , ε = 0.632 σ/E_1

Therefore, T1 is the time to reach 63.2% of total retarded strain.

Kelvin Model

$$\sigma = E_{1}\varepsilon + \lambda_{1}\frac{\partial\varepsilon}{\partial t}$$

$$\lambda_{1}\frac{\partial\varepsilon}{\partial t} = \sigma - E_{1}\varepsilon$$

if a constant Stress is applied,

$$\int_{0}^{\varepsilon} \frac{\partial \varepsilon}{\sigma - E_{1}\varepsilon} = \int_{0}^{t} \frac{\partial t}{\lambda_{1}}$$

$$\int_{0}^{\varepsilon} -\frac{1}{E_{1}} \ln(\sigma - E_{1}\varepsilon) = \int_{0}^{t} \frac{t}{\lambda_{1}}$$

$$\ln\!\left(\frac{\sigma - E_1 \varepsilon}{\sigma}\right) = -\frac{E_1 t}{\lambda_1}$$

$$\frac{\sigma - E_1 \varepsilon}{\sigma} = e^{-E_1 t/\lambda_1} = e^{-t/T_1}$$
$$\varepsilon = \frac{\sigma}{E_1} \left[1 - \exp\left(\frac{-t}{T_1}\right) \right]$$

Burgers Model

$$\mathcal{E} = \frac{\sigma}{E_o} \left(1 + \frac{t}{T_o} \right) + \frac{\sigma}{E_1} \left(1 - \exp\left(\frac{-t}{T_1} \right) \right)$$

Three components of strain:

- 1. Elastic strain
- 2. Viscous strain
- 3. Retarded elastic strain

Three Components of Strain

Generalised Model

Under a constant stress, the strain in a generalised model is given by

$$\varepsilon = \frac{\sigma}{E_o} \left(1 + \frac{t}{T_o} \right) + \sum_{i=1}^n \frac{\sigma}{E_i} \left[1 - \exp\left(\frac{-t}{T_i}\right) \right]$$

Creep compliance:

 $D(t) = \varepsilon(t)/\sigma$

 $\varepsilon(t)$ = time dependent strain under constant stress

:
$$D(t) = \frac{1}{E_o} \left(1 + \frac{t}{T_o} \right) + \sum_{i=1}^n \frac{1}{E_i} \left[1 - \exp\left(\frac{-t}{T_i}\right) \right]$$

Example on Creep Compliance

E is in kN/m² *T* is in second D(t) is in m²/kN Determine the creep compliance at various times and plot the creep compliance.

Time	D(t)	Time	D(t)	
0		2		
0.05		3		
0.1		4		
0.2		5		
0.4		10		
0.6		20		
0.8		30		
1.0		40		
1.5		50		

Collocation Method

- The creep compliance of visco-elastic materials are determined from creep tests.
- Computed and actual responses are collected at predetermined time responses.
- A 1000 s creep test with compliances measured at 11 different time durations of 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30 and 100 s is recommended.
- Instead of determining both T_is and E_is, several arbitrary values of T_is are assumed and corresponding E_is are found by solving simultaneous equations.
- Retardation times Ti of 0.01, 0.03, 0.1, 1, 10, 30 and ∞ seconds are specified.

Elastic Solutions

 Given the creep compliance of each viscoelastic material at a given time, the viscoelastic solution at that time can be easily obtained from the elastic solutions:

Visco-elastic solutions from elastic solutions

Given the creep compliance of each visco-elastic material at a given time, obtain the visco-elastic solutions at that time from the elastic solutions using Burmister's two-layer theory.

$$\mu_1 = 0.5, n_1 = 254 \text{ mm}$$

 $\mu_2 = 0.5, \ h_2 = \infty$

Creep Compliance Values of the Layers

Time, s	0.01	0.1	1	10	100
D(t) of Layer 1, ×10 ⁻⁶ /kPa)	0.15	0.17	0.39	1.34	2.66
D(t) of Layer 2, ×10 ⁻⁶ /kPa)	0.15	1.06	2.83	10.61	15.94

Time – Temperature Superposition

Time – temperature shift factor is defined as

$$a_T = \frac{t_T}{t_{T_o}}$$

Where, t_T = time to obtain creep compliance at temperature T

 t_{To} = time to obtain creep compliance at temperature T_o

Time – Temperature Superposition

Laboratory tests on asphalt mixes have shown that a plot of log a_T varies linearly with temperature.

By substituting equation (A) for t in the creep compliance equation, creep compliance at temperature T can be obtained.

Analysis of Moving Loads

Load has practically no effect at *A* when it is at a distance of 6*a*.

The intensity of load at A reaches a maximum value of p (contact pressure) when the wheel is exactly above the point.

The intensity of load at *A* reaches zero again when the wheel is beyond a distance of 6*a*.

Analysis of Moving Loads

By taking the speed of vehicle, *v*, as 17.7 m/s (64 km/hr) and the radius of contact, *a*, as 153 mm, the duration of load, *d*, can be computed as

 $d = (12 a)/v = (12 \times 0.153)/17.7 = 0.1 s$

Non-linear Layers

- Modulus of elasticity (E) of non-linear layers depends on the stress level
- The relation between E and the stress level depends on the type of material
- For granular materials the following relation is used: $E = K_1 \theta^{K_2}$

Where,

 K_1 and K_2 are the parameters of the material to be calibrated

 $\theta = \text{sum}$ of normal stresses and weight of layered systems

i.e.,
$$\theta = \sigma_x + \sigma_y + \sigma_z + \gamma z (1 + 2K_o)$$

 K_o = coefficient of earth pressure at rest = 0.6

Non-linear Layers

• For fine grained soils the following relation is used:

$$E = K_1 + K_3(K_2 - \sigma_d) \quad \text{when } \sigma_d < K_2$$
$$E = K_1 - K_4(\sigma_d - K_2) \quad \text{when } \sigma_d > K_2$$

The parameters, K_1 , K_2 , K_3 and K_4 are determined in a tri-axial resilient modulus test by plotting resilient modulus (M_R) versus deviator stress (σ_d) as shown in the figure

 $\sigma_d = \sigma_1 - \sigma_3$ and $\sigma_2 = \sigma_3$ on a tri-axial specimen.

Approximate Method for Non-linear Elastic Solutions

• Divide the non-linear layer into sub layers of 50 mm thick or less and use the stress at mid height of each layer for computing E value.

• As further approximation, the stress at mid height of a non-linear layer could be used for computing E

Demonstration of KENLAYER