
Visco-elastic Layers



Visco-elastic Solutions

• Solutions are obtained by elastic – visco-
elastic correspondence principle by 
applying laplace transform to remove the 
time variable

• Two methods of characterising visco-
elastic materials:

– Mechanical model

– Creep compliance curve



Spring - Elastic
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Dashpot - Viscous
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Viscous: Stress α time rate of strain
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Maxwell Model
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Kelvin Model
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if a constant Stress is applied,

T1 is retardation time.

When, t = 0, ε = 0; when t = ∞, ε = σ/E1

When, t = T1, ε = 0.632 σ/E1

Therefore, T1 is the time to reach 63.2% 

of total retarded strain.



Burgers Model
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Three components of strain:

1. Elastic strain

2. Viscous strain

3. Retarded elastic strain



Three Components of Strain
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Generalised Model
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Under a constant stress, the strain in a 

generalised model is given by 

Creep compliance:

D(t) = ε(t)/σ

ε(t) = time dependent strain under constant stress
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Example on Creep Compliance
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Determine the creep compliance at various 

times and plot the creep compliance.

E is in kN/m2

T is in second

D(t) is in m2/kN
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Collocation Method

• The creep compliance of visco-elastic materials are 
determined from creep tests.

• Computed and actual responses are collected at 
predetermined time responses.

• A 1000 s creep test with compliances measured at 11 
different time durations of 0.001, 0.003, 0.01, 0.03, 0.1, 
0.3, 1, 3, 10, 30 and 100 s is recommended.

• Instead of determining both Ti s and Ei s, several 
arbitrary values of Ti s are assumed and corresponding 
Ei s are found by solving simultaneous equations.

• Retardation times Ti of 0.01, 0.03, 0.1, 1, 10, 30 and ∞
seconds are specified.



Elastic Solutions

• Given the creep compliance of each visco-
elastic material at a given time, the visco-
elastic solution at that time can be easily 
obtained from the elastic solutions:



Visco-elastic solutions from elastic solutions

a = 254 mm

p = 690 kPa

µ1 = 0.5, h1 = 254 mm

µ2 = 0.5, h2 = ∞

15.9410.612.831.060.15D(t) of Layer 2, ×10-6 /kPa)

2.661.340.390.170.15D(t) of Layer 1, ×10-6 /kPa)

1001010.10.01Time, s

Creep Compliance Values of the Layers

Given the creep compliance of each 

visco-elastic material at a given time, 

obtain the visco-elastic solutions at that 

time from the elastic solutions using 

Burmister’s two-layer theory.



Time – Temperature Superposition
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Time – temperature shift factor is defined as

Where, tT = time to obtain creep compliance at temperature T

tTo = time to obtain creep compliance at temperature To
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Laboratory tests on asphalt mixes have shown that a plot of log aT varies 

linearly with temperature.
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Time – Temperature Superposition

(A)

By substituting equation (A) for t in the creep compliance equation, creep 

compliance at temperature T can be obtained.



Analysis of Moving Loads
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Load has practically no effect at 

A when it is at a distance of 6a. 

××××

A

The intensity of load at  A reaches 

a maximum value of p (contact 

pressure) when the wheel is 

exactly above the point.
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A
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The intensity of load at  A reaches 

zero again when the wheel is 

beyond a distance of 6a.



Analysis of Moving Loads
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When t = 0, L(t) = p

t = ±d/2, L(t) = 0

By taking the speed of vehicle, v, as 17.7 m/s (64 km/hr) and the radius of 

contact, a, as 153 mm, the duration of load, d, can be computed as 

d = (12 a)/v = (12×0.153)/17.7 = 0.1 s



Non-linear Layers
• Modulus of elasticity (E) of non-linear layers depends on 

the stress level

• The relation between E and the stress level depends on 
the type of material

• For granular materials the following relation is used:

Where,

K1 and K2 are the parameters of the material to be 
calibrated

θ = sum of normal stresses and weight of layered 
systems

i.e., θ = σx+σy+σz+γz(1+2Ko)

Ko = coefficient of earth pressure at rest = 0.6
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Non-linear Layers

• For fine grained soils the following relation is used:

E = K1 + K3(K2-σd) when σd<K2

E = K1 – K4(σd - K2) when σd>K2

The parameters, K1, K2, K3 and K4 are determined in a tri-axial resilient 

modulus test by plotting resilient modulus (MR) versus deviator stress (σd) as 
shown in the figure

σd = σ1 - σ3 and σ2 = σ3 on a tri-axial specimen.

K1

K2

K3

1

K4

1
MR

σd

In layered systems,

σd = σ1 – 0.5(σ2 + σ3) + γz(1-Ko)

Ko = 0.8



Approximate Method for Non-linear 

Elastic Solutions

• Divide the non-linear layer into sub layers of 50 mm thick or less and 
use the stress at mid height of each layer for computing E value.

• As further approximation, the stress at mid height of a non-linear 
layer could be used for computing E
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Demonstration of KENLAYER


