UTILITY THEORY

- Each alternative has attractiveness or utility associated with it
- Decision maker is assumed to chose that alternative which yields the highest utility
- Utilities are expressed as sum of measured attractiveness and a random term
- Measured attractiveness is a function of the attributes of the alternative as well as the decision maker's characteristics

UTILITY THEORY CONTINUED

$$U_{ji} = V_{ji} + \varepsilon_{ji}$$
$$V_{ji} = \beta' Z_{ji} \qquad Z_{ji} = (X_{ji}, S_i)$$

Where,

 U_{ii} =utility of alternative *j* for individual *i*

 V_{ii} = measured attractiveness of alternative *j* for individual *i*

 ε_{jj} = random part

 Z_{ji} = column vector of characteristics of the individual *i* and attributes of the alternative *j*

 β = column vector of parameters

UTILITY THEORY CONTINUED

The alternative *j* is chosen by *i* when

 $U_{ji} > U_{li}$ for all $l \neq j$

The probability P_{ji} for the j^{th} alternative to be chosen is $P_{ji} = \Pr[V_{ji} + \varepsilon_{ji} > V_{li} + \varepsilon_{li}] \quad \text{for all } l \neq j$ $= \Pr[(\varepsilon_{li} - \varepsilon_{ji}) < (V_{ji} - V_{li})]$

UTILITY THEORY CONTINUED

If ε s are independently and identically *Weibull* distributed i.e.,

$$\Pr(\varepsilon_{j} < \varepsilon) = \exp\left(-e^{-(\varepsilon + \alpha_{j})}\right) \text{ then } P_{jj} = \frac{e^{V_{jj}}}{\sum_{\text{all } I} e^{V_{lj}}}$$

i.e.,
$$P_{ji} = \frac{e^{\beta' z_{ji}}}{\sum_{l=1}^{J} e^{\beta' z_{li}}}$$

TYPICAL UTILITY FUNCTIONS

V_{Car}= - 0.023*TIME -0.021*COST +0.003*INCOME -0.001

V_{Bus}= -0.023**TIME* -0.021**COST*-0.001**INCOME*

V_{Train}= -0.023**TIME* -0.021**COST*+0.003

TIME and COST are generic variables INCOME is alternative specific variable

VARIABLES CAN ENTER IN Three WAYS

• Generic Variable

-Variable that appears in the utility functions of all alternatives in a generic sense and has same coefficient estimate for all the alternatives

• Alternative Specific Variable

-Variable that appears only in the utility function of those alternatives to which it is specific and has different coefficient estimate for each of the alternatives

- Alternative Specific Constant
 - -Takes care of unexplained effects

MAXIMUM LIKELIHOOD ESTIMATION

Likelihood function:-

 $\mathsf{L} = \mathsf{f}(x_1) f(\mathsf{x}_2) \dots f(\mathsf{x}_n)$

 $f(x) = \text{probability function of random variable } X \text{ with a single parameter} \theta$

 x_1, x_2, \dots, x_n = sample of *n* independent values of X

If L is a differentible function of θ , a necessary condition for L to have maximum is

$$\frac{\partial L}{\partial \theta} = 0$$

LIKELIHOOD FUNCTION FOR LOGIT MODEL

$$L = \prod_{i=1}^{N} P_{1i}^{f_{1i}} P_{2i}^{f_{2i}} \dots P_{Ji}^{f_{Ji}}$$

Where, f_{jj} is the observed frequency for individual *i* to choose alternative *j*

J = number of alternatives

N = number of individuals

The log-likelihood function is

$$\ln L = \sum_{i=1}^{n} \sum_{j=1}^{J_i} f_{ji} \ln P_{ji} = \sum_i \sum_j f_{ji} \ln \frac{e^{\beta' z_{ji}}}{\sum_l e^{\beta' z_{li}}}$$
$$= \sum_i \sum_j f_{ji} \beta' z_{ji} - \sum_i \sum_j f_{ji} \ln \left(\sum_l e^{\beta' z_{li}}\right)$$

The log-likelihood function is maximised by differentiation

$$\frac{\partial \ln L}{\partial \beta} = \sum_{i} \sum_{j} f_{ji} z_{ji} - \sum_{i} \sum_{j} f_{ji} \left(\sum_{l} e^{\beta' z_{li}} \right)^{-1} \sum_{l} e^{\beta' z_{li}} z_{li}$$

$$= \sum_{i} \sum_{j} f_{ji} (z_{ji} - \overline{z}_{i}) = 0$$
 (A)

Where,

$$\overline{z_{i}} = \left(\sum_{l} e^{\beta' z_{li}}\right)^{-1} \sum_{j} e^{\beta' z_{ji}} z_{ji} = \sum_{j=1}^{J_{i}} P_{ji} z_{ji}$$

Using the fact that,

$$\sum_{j} P_{ji}(z_{ji} - \overline{z_i}) = 0$$

The first order condition can be rewritten as

$$\sum_{i=1}^{n} \sum_{j=1}^{J_{i}} (f_{ji} - P_{ji})(z_{ji} - \overline{z_{i}}) = 0$$

To apply Newton-Raphson method to maximise ln *L* we find the matrix of second partial derivatives by differentiating (A) with respect to the row vector β' . Accordingly,

$$\frac{\partial^2 \ln L}{\partial \beta \partial \beta'} = -\sum_i \sum_j P_{ji} z_{ji} (z_{ji} - \overline{z_i})' = -\sum_i \sum_j P_{ji} (z_{ji} - \overline{z_i}) (z_{ji} - \overline{z_i})'$$

Then, a typical iteration of Newton-Raphson algorithm would be,

$$\beta^{1} = \beta^{0} + \left[\sum_{i} \sum_{j} P_{ji}^{0}(z_{ji} - \overline{z_{i}}^{0})(z_{ji} - \overline{z_{i}}^{0})'\right]^{-1} \sum_{i} \sum_{j} (f_{ji} - P_{ji}^{0})(z_{ji} - \overline{z_{i}}^{0})$$

GOODNESS-OF-FIT STATISTICS

Logical sign

□ Significance of variable based on *t*-test

t-statistic = value of parameter/standard error of estimate

 $\Box \rho^2$ - statistic

$$\rho^2 = 1 - \frac{\ln(\hat{\beta})}{\ln(\bar{\beta})}$$

Likelihood Ratio Test

- Two alternative models, with one being a subset of the other can be compared using likelihood ratio.
- Likelihood ratio is the ratio between the values of likelihood at convergence.
- □ The fundamental property of the likelihood ratio is that when the log of the likelihood ratio is multiplied by 2, it is distributed as χ^2 with degrees of freedom equal to the number of additional parameters in the more highly specified model

The likelihood ratio $\chi^2 = 2 \left[\ln L(\beta) - \ln L(\beta_1) \right]$ is distributed asymptotically as $\chi^2 (k - k_1)$ where, *k* is the number of parameters in β and k_1 is the number of parameters in β_1

Variable Selection Process

Sign		Decision		
	Significance	Policy	Other	
Correct sign	Significant	Include	Include	
	Not significant	Include	May reject	
Wrong sign	Significant	Big problem	Reject	
	Not significant	Problem	Reject	

DEMAND ELASTICITIES

Direct Choice Elasticity

$$E_{j}^{i}(j,k) = \frac{\Delta P_{ji}}{P_{ji}} / \Delta Z_{ji}^{k} = \frac{\partial P_{ji}}{\partial Z_{ji}^{k}} \frac{Z_{ji}^{k}}{P_{ji}} = \beta^{k} Z_{ji}^{k} (1 - P_{ji})$$

Cross Elasticity of Choice

$$E_j^i(l,k) = -\beta^k Z_{li}^k P_{li}$$

Aggregate Choice Elasticities

SUBJECTIVE VALUE OF TIME

Utility functions are normally of the following form

 $V_i = \dots + \alpha_t TIME + \alpha_c COST$

The rate at which time would be traded for cost to leave the utility function unchanged is

Thus the value of one unit of travel time is equal to α_{t}/α_{c} cost units

Prediction Success Table

• Prediction success table is a cross classification between observed choices and predicted choices

	Predicted Choices				
Observed Choices	TW	Car	PT	Row Totals	Observed
					Share
TW	25	1	4	30	30%
CAR	2	7	1	10	10%
PT	4	1	55	60	60%
Column Totals	31	9	60	100	100%
Predicted Share	31%	9%	60%		
% Correctly Predicted	83%	70%	92%		

Overall prediction success rate = 87%

INDEPENDENCE OF IRRELEVANT ALTERNATIVES

Luce's Axiom (IIA Property)

If a set of alternative choices exists, then the relative probability of choice among any two alternative is unaffected by the removal (or addition) of any set of other alternatives.

OTHER ISSUES

- **Taste Variation**
 - Segmentation
 - Random Coefficients
- **Aggregation**
- Transferability