Tutorial Sheet =1
Instructor: Siddhartha Ghosh

1. Determine the deflection of the free end of the steel rod shown in Fig. 1 under the given load ($\mathrm{E}=$ 200 GPa).

Fig. 1
2. A uniform timber pile which has been driven to depth L in clay carries an applied load of F at top. This load is resisted entirely by friction along the pile, which varies in the parabolic manner $f=\mathrm{ky}^{2}$ (origin at bottom). Show that total shortening of the pile is FL/4AE. AE is the axial rigidity of the pile.
3. Show that the total elongation of a slender elastic bar of constant cross sectional area A , length 2 L , unit weight γ is given by following expression when it is rotated in a horizontal plane with an angular velocity of ω radians per second about its middle point.

$$
\Delta=\frac{2 \gamma \omega^{2} L^{3}}{3 E g}
$$

$\mathrm{E}=$ Modules of elasticity and $\mathrm{g}=$ acceleration due to gravity.
4. The rigid bar BDE (Fig. 2) is supported by two links AB and CD . Link AB is made of aluminum ($\mathrm{E}=70 \mathrm{GPa}$) and has a cross-sectional area of $500 \mathrm{~mm}^{2}$; link CD is made of steel ($\mathrm{E}=200 \mathrm{GPa}$) and has a cross-sectional area of $600 \mathrm{~mm}^{2}$. For the 30 kN force shown, determine the deflection of point B, D and E .
5. A composite bar as shown in Fig 3 is firmly attached to unyielding supports at the ends and is subjected to the axial load F . If the aluminum is stressed to 70 MPa , what is the stress in the steel?.

Fig. 2

Fig. 3
6. Determine the stresses in each wires supporting the rigid bar shown in Fig. 4 if $\mathrm{F}=20 \mathrm{kN}$.
7. The rigid bar ABCD is suspended from three identical wires as shown in Fig. 5. Knowing that $a=$ $2 b$, determine the tension in each wire caused by the load P applied at C .

Fig. 4
Fig. 5

8. A rod consisting of two cylindrical portion AB and

BC (Fig. 6) is restrained at both ends. Portion AB is made of steel ($\mathrm{E}=200 \mathrm{GPa}, \alpha=11.7 \times 10^{-6} /{ }^{\circ}$
C) and portion BC of brass ($\mathrm{E}=105 \mathrm{GPa}, \alpha=20.9 \times 10^{-6} /{ }^{\circ} \mathrm{C}$). Knowing that the rod is initially unstressed, determine (a) the normal stresses induced in portions AB and BC by a temperature rise of $50^{\circ} \mathrm{C}$, (b) the corresponding deflection of point B .
9. A rigid floor slab with mass of $3,200 \mathrm{~kg}$ rests on three columns as shown in Fig. 7. What is the compressive stress in each of the members (a) at installation and (b) after a temperature decrease of

Fig. 6
Fig. 7
10. The bar shown in Fig. 8 is cut from a 10 mm thick piece of steel. At the change in cross-section at A and B the approximate stress concentration factors are 2.25 and 2 , respectively. What is the maximum force F the bar can be subjected? Take allowable stress for axial tension in the bar as 150 MPa.

Fig. 8

