
Beam Equation Using Singularity Functions
Beam loading can occur in the form of singularity functions. By singularity functions we mean functions with disconti-
nuity in either the slope, or the value of the function at one or more places. As discussed by Prof. S. Banerjee the 
singularities are of the following form

The singularity function can be given as:
qHxL = Xx - a\1

An example of this is a beam  of unit length subjected by a load of the form shown in the figure
In this singularity function there is a slope discontinuity in qHxL at x = 1 ê3.

The second type of singularity function would be of the form:
qHxL = Xx - a\2

In this type of singularity function a beam of unit length is subjected to a load as shown in the accompanying figure. 
There is a discontinuity in the second derivative at x = 1 ê3. 



These examples can be continued. In addition there are two very specific singularities:
1) Concentrated force, and 2) Concentrated moment

1) A concentrated force is represented by 
qHxL = Xx - a\-1

In a more mathematical definition we can represent this force as a Dirac Delta function (d)
qHxL = dHx - aL

This function is zero at any value other than a.  At x = a, function becomes infinite and overall:
Ÿ-¶
¶ dHxL „ x = 1

2) It can be easily shown that a concentrated moment is represented by a derivative of a Delta function
qHxL = Xx - a\-2 = d ' Hx - aL

Solving Beam equation with mathematica subjected to various boundary conditions

We will now solve the beam equation subject to various boundary conditions. 
Consider a beam of length L = 1 subject to a concentrated load at x = a. The beam is fixed at both ends. This means that the
displacement and the slope at x = 0 = 1 is zero. 

The beam equation for this problem will be given by:
E I d4 u

d x4 = qHxL = dHx - aL
Subject to boundary conditions:
uH0L = uH1L = 0; u ' H0L = u ' H1L = 0.

Without losing any generality we can say that EI = 1 and the length of the beam is one. We now solve this fourth order differen-
tial equation subject to these four boundary conditions using the function DSolve.

DSolve@8v''''@xD m DiracDelta@x − aD, v@0D m 0, v@1D m 0, v'@1D m 0, v'@0D m 0<, v@xD, xD êê
FullSimplify

u@x_, a_D = v@xD ê. %@@1DD;

::v@xD →
1

6
I−H−1 + aL2 x2 Hx + a H−3 + 2 xLL HeavisideTheta@1 − aD +

a2 H−1 + xL2 Ha − 3 x + 2 a xL HeavisideTheta@−aD − Ha − xL3 HeavisideTheta@−a + xDM>>

The bending moment and the shear force are obtained by taking appropriate derivatives. 

M@x_, a_D = D@u@x, aD, x, xD êê FullSimplify

V@x_, a_D = D@M@x, aD, xD êê FullSimplify

1

6
I6 Ha − xL2 DiracDelta@−a + xD −

6 H−1 + aL2 Hx + a H−1 + 2 xLL HeavisideTheta@1 − aD + 6 a2 H2 − a − 3 x + 2 a xL HeavisideTheta@−aD +
6 H−a + xL HeavisideTheta@−a + xD − Ha − xL3 DiracDelta�@−a + xDM

1

6
I18 H−a + xL DiracDelta@−a + xD −

6 H−1 + aL2 H1 + 2 aL HeavisideTheta@1 − aD + 6 a2 H−3 + 2 aL HeavisideTheta@−aD +
6 HeavisideTheta@−a + xD + 9 Ha − xL2 DiracDelta�@−a + xD − Ha − xL3 DiracDelta��@−a + xDM
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In order to understand what these loads signify we need to make a plot of the Bending Moment and Shear Force. We make it by
the following for a = 1 ê3.

Plot@M@x, 1 ê 3D, 8x, 0, 1<, BaseStyle → 8Medium, FontFamily → "Times"<,
PlotStyle → 8Red, Thick<, AxesLabel → 8"x", "MomentHxL"<D

Plot@V@x, 1 ê 3D, 8x, 0, 1<, BaseStyle → 8Medium, FontFamily → "Times"<,
PlotStyle → 8Red, Thick<, AxesLabel → 8"x", "ShearHxL"<D
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But this is unsatisfactory because this does not tell us as to at what location of the Concentrated force will we expect highest
bending moment and shear force. In order to do that we use the following neat command called Manipulate  in Mathematica. 
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Moment@a_D := Plot@M@x, aD, 8x, 0, 1<, BaseStyle → 8Medium, FontFamily → "Times"<,

PlotStyle → 8Red, Thick<, AxesLabel → 8"x", "MomentHxL"<, PlotRange → AllD
Shear@a_D := Plot@V@x, aD, 8x, 0, 1<, BaseStyle → 8Medium, FontFamily → "Times"<,

PlotStyle → 8Red, Thick<, AxesLabel → 8"x", "ShearHxL"<, PlotRange → AllD
Manipulate@Moment@aD, 88a, 1 ê 2<, 0.05, 0.95, 0.05<D
Manipulate@Shear@aD, 88a, 1 ê 2<, 0.05, 0.95, 0.05<D

a

Moment@0.75D

a

Shear@0.25D

We can change the boundary conditions and solve the problem. 

ü How can we solve this same problem using the standard approach without using the singularity functions.

Clear@"Global`∗"D

The beam is divided into two parts. We have the following equations governing each section of the beam.

S1 = DSolve@8v1''''@xD m 0, v1@0D m 0, v1'@0D m 0, v1'''@aD m V1, v1''@aD m M1<, v1@xD, xD
S2 = DSolve@8v2''''@xD m 0, v2'''@aD m V2, v2''@aD m M2, v2@1D m 0, v2'@1D m 0<, v2@xD, xD
u1@x_, a_D = v1@xD ê. S1@@1DD;

u2@x_, a_D = v2@xD ê. S2@@1DD;

::v1@xD →
1

6
I3 M1 x2 − 3 a V1 x2 + V1 x3M>>

::v2@xD →
1

6
I3 M2 + 2 V2 − 3 a V2 − 6 M2 x − 3 V2 x + 6 a V2 x + 3 M2 x2 − 3 a V2 x2 + V2 x3M>>

We now obtain the slope, displacement, and the shear force at the point of application of the force. Once we obtain that we use
the continuity conditions at x = a to evaluate the four unknown constants

Slope1@x_, a_D = D@u1@x, aD, xD;

Slope2@x_, a_D = D@u2@x, aD, xD;

Mom1@x_, a_D = D@u1@x, aD, x, xD;

Mom2@x_, a_D = D@u2@x, aD, x, xD;

Shear1@x_, a_D = D@Mom1@x, aD, xD;

Shear2@x_, a_D = D@Mom2@x, aD, xD;

There are four unknown constants V1, V2, M1, and M2. We know that the moments, displacements, and slopes are continous
across the point of application of the load in the beam. Also the sum of the shear forces is equal to the applied load.
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eq@1D = V1 − V2 − 1 êê FullSimplify
eq@2D = M2 − M1 êê FullSimplify
eq@3D = Slope1@a, aD − Slope2@a, aD êê FullSimplify
eq@4D = u1@a, aD − u2@a, aD êê FullSimplify
Solution =

Solve@8eq@1D m 0, eq@2D m 0, eq@3D m 0, eq@4D m 0<, 8M1, M2, V1, V2<D êê FullSimplify

−1 + V1 − V2

−M1 + M2

1

2
H2 M2 + V2 + a H2 M1 − 2 M2 − a V1 + H−2 + aL V2LL

1

6
I3 a2 M1 − 3 M2 + 6 a M2 − 3 a2 M2 − 2 a3 V1 + 2 H−1 + aL3 V2M

99M1 → 2 H−1 + aL2 a2, M2 → 2 H−1 + aL2 a2, V1 → H−1 + aL2 H1 + 2 aL, V2 → a2 H−3 + 2 aL==

We now form a piece-wise function using the above values. 

u1@x, aD ê. Solution@@1DD êê FullSimplify;
u2@x, aD ê. Solution@@1DD êê FullSimplify;
Mom1@x, aD ê. Solution@@1DD êê FullSimplify
Mom2@x, aD ê. Solution@@1DD êê FullSimplify
Shear1@x, aD ê. Solution@@1DD êê FullSimplify
Shear2@x, aD ê. Solution@@1DD êê FullSimplify

u@x_, a_D :=
1

6
H−1 + aL2 x2 Hx + a H−3 + 2 xLL ê; 0 ≤ x < a;

u@x_, a_D :=
1

6
a2 H−1 + xL2 Ha − 3 x + 2 a xL ê; a ≤ x ≤ 1;

Moment@x_, a_D := H−1 + aL2 Hx + a H−1 + 2 xLL ê; 0 ≤ x < a;

Moment@x_, a_D := a2 H2 − 3 x + a H−1 + 2 xLL ê; a ≤ x ≤ 1;

Shear@x_, a_D := H−1 + aL2 H1 + 2 aL ê; 0 ≤ x < a;

Shear@x_, a_D := a2 H−3 + 2 aL ê; a ≤ x ≤ 1;

H−1 + aL2 Hx + a H−1 + 2 xLL

a2 H2 − 3 x + a H−1 + 2 xLL

H−1 + aL2 H1 + 2 aL

a2 H−3 + 2 aL
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Plot@Shear@x, 1 ê 3D, 8x, 0, 1<D
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