
Stress, strain, principal axes, stress transfomation, 
and mohr circle
Consider a the state of stress of a body in a generic lab frame x-y-z

sl =

slxx slxy slxz

slxy slyy slyz

slxz slyz slzz

.

If we want to find the corresponding stress components in a different frame of reference, the the stress components in that frame
sg is given by:

sg = Rsl RT .
Here, in the simplest case of two dimensional stresses Islxz = slyz = 0M the rotation matrix is given by:

R =

cosHqL sinHqL 0
-sinHqL cosHqL 0

0 0 1
.

Here q is the rotation of the new frame of reference about the z axis. Upon transformation the stress components become.

Rot@θ_D :=
Cos@θD Sin@θD 0
−Sin@θD Cos@θD 0

0 0 1
;

σlab =

σlxx σlxy 0

σlxy σlyy 0

0 0 σlzz

;

σg@θ_, σlab_D :=

Collect@Rot@θD.σlab.Transpose@Rot@θDD êê FullSimplify êê TrigReduce, 8Cos@2 θD, Sin@2 θD<D;
MatrixForm@σg@θ, σlabDD
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We will now use these relations to obtain the mohr circle. The center of the circle is given by:

C = 
slxx+slyy

2
,

and the radius of the mohr circle is given by, 

R = Jslxx-slyy

2
N
2
+ slxy

2 .

MohrCenter@σ_D :=
Hσ@@1, 1DD + σ@@2, 2DDL

2

MohrRadius@σ_D := . σ@@1, 1DD − σ@@2, 2DD
2

2

+ σ@@1, 2DD2

Note that the center and the radius is completely independent upon the frame of reference we use to obtain the co-ordinates of the
stresses.



MohrCenter@σg@θ, σlabDD êê FullSimplify
MohrRadius@σg@θ, σlabDD êê FullSimplify
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Sample Mohr circle is drawn here for sxx = 1, sxy = 3, andsyy = 2.

ParametricPlotA
EvaluateA8σg@θ, σlabD@@1, 1DD, σg@θ, σlabD@@1, 2DD< ê. 9σlxx → 1, σlyy → 2, σlxy → 3=E,

8θ, 0, π<, AxesLabel → 8"normal stress", "shear stress"<,
PlotLabel → "\t \t Mohr Circle for different values of σ",
AspectRatio → 1, PlotStyle → 8Thickness@0.01D, Hue@1D<E
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Now we will draw a well illustrated proper Mohr circle which also tells us (in graphical form) the way to draw the Mohr circle
and the way to interpret the principal directions. This procedure draws the Mohr circle by taking the stress components in a given
(lab) frame x-y-z as its input. The following discussion is heavily borrowed from Prof. Craig Carter's course available at: http-
://pruffle.mit.edu. 

2   Lecture-1-Sep.nb



mohr@off_, rad_D :=

8Red, Thick, Circle@8off, 0<, radD< s12graph@s11_, s12_D := 8Darker@OrangeD,

Arrow@88s11, s12<, 80, s12<<D, Text@s12, 80, s12<, 8−2.5, −1.5<, Background → WhiteD<
s22graph@s22_, s12_D := 8Blue, Arrow@88s22, −s12<, 8s22, 0<<D,

Text@s22, 8s22, 0<, 80, −1<, Background → WhiteD<
s11graph@s11_, s12_D := 8Darker@GreenD, Arrow@88s11, s12<, 8s11, 0<<D,

Text@s11, 8s11, 0<, 80, 1<, Background → WhiteD<
diametergraph@s11_, s12_, s22_D := 8Line@88s22, −s12<, 8s11, s12<<D<
anglegraph@twotheta_, radius_, offset_D :=

8Purple, Dashed, Circle@8offset, 0<, 1.2 ∗ radius, 80, twotheta<D,
Text@Style@"θ = " <> ToString@twotheta ∗ 180 ê PiD, MediumD,
8offset, 0< + 1.2 ∗ radius ∗ 8Cos@twotheta ê 2D, Sin@twotheta ê 2D<, Background → WhiteD<

titlegraph@s11_, s12_, s22_D := Text@MatrixForm@
88Text@Style@s11, Darker@GreenD, LargeDD, Text@Style@s12, Darker@OrangeD, LargeDD<,
8Text@Style@s12, Darker@OrangeD, LargeDD, Text@Style@s22, Blue, LargeDD<<DD

MohrPlot@σ_D := ModuleB8radius, offset, s11, s22, s12, twotheta<,

offset = MohrCenter@σD êê N;
radius = MohrRadius@σD êê N;
s11 = σ@@1, 1DD;
s22 = σ@@2, 2DD;
s12 = σ@@1, 2DD;

twotheta = ArcSinB
s12

radius
F;

If@s22 − s11 > 0, twotheta = π − twothetaD;
Graphics@8mohr@offset, radiusD, s12graph@s11, s12D, s22graph@s22, s12D,

s11graph@s11, s12D, diametergraph@s11, s12, s22D, anglegraph@twotheta, radius, offsetD<,
Axes → True, BaseStyle → 8FontFamily → "Times", Medium<, PlotRange → All,
PlotLabel → titlegraph@s11, s12, s22D, AxesOrigin → 80, 0<,

FrameLabel → Text@Style@"Mohr's Circle of Stress", LargeDDDF
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s = 884.3, −2.2<, 8−2.2, 6.4<<
MohrPlot@sD
884.3, −2.2<, 8−2.2, 6.4<<
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ü Interpretation of the principal stresses and the principal directions as the eigenvalues and the eigenvectors of the stress matrices. 

We have used the idea of the Mohr circle etc. to obtain the principal stresses. But there is a more elegant way of obtain the same.
It can be shown (we will do this in the class) that the traction on any plane with normal n is given by:

t = sn.
The traction can be broken down into two parts: i) shear traction, and ii) normal traction. When we are looking in the principal
directions we should have no shear traction. This means that the traction is purely in the normal direction, i.e., :

t = l n = sn.
Thus in this case n is the principal direction and l is the principal stress. At the same time it is also clear that n is the eigenvector
of the matrix s and l is the eigen-vector.  Thus obtaining the principal directions and principal stress is equivalent to obtaining
the eigenvectors and eigenvalues, respectively.

Once we have drawn the Mohr circle the next task is to realise where is this idea of stress transformation required. The next task
is to obtain the failure criteria. 
There are two important plastic failure criteria for homogenous , isotropic, ductile materials. It has been experimentally shown
that the ductile materials fail in shear. So with this idea the first criteria that we have is called as the Tresca criterion, and the
second is von Mises criterion.  Note that in the discussion s1, s2, ands3 are the principal stresses along on the respective planes
with the principal directions as the normals.
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ü Tresca Criterion

It has been seen that ductile materials show a permanent plastic shear deformation upon failure, so the hypothesis is that the
failure is related to the maximum shear stress. This the tresca criterion says that if,

tmax = maxJ s1-s2

2
,

s2-s3

2
,

s3-s1

2
N = tc,

then the failure occurs. Using the specific case when the body fails plastically under uniaxial loading of stress sY , the crtiteria
reduces to 

sE = maxH s1 - s2 , s2 - s3|, s1 - s3  ) = sY .

ü Von mises criterion

It has been experimentally observed that during the plastic deformation there is no volumetric change. As a result the stress tensor
is divided into two parts: i) the volumetric (V) and ii) the deviotoric (D).

s = V + D,
where, 

V = 1
3

trace HsL I, and D = s - V .

Von Mises criteria states that the yielding will occur when the deviotoric strain density reaches a critical value for the material,
i.e.,

Uo =
H1+ÓL

6 E
Hs1 - s2L2 + Hs2 - s3L2 + Hs3 - s1L2 = Uc.

Since this criteria is valid for any stress distribution, it can be used in the case of the body that fails plastically under the applica-
tion of a uniaxial load. Suppose that stress is sY , the von-mises criteria becomes:

sE = Hs1 - s2L2 + Hs2 - s3L2 + Hs3 - s1L2 = sY .

ü Concept of a failure surface

Note that we will work on the failure criterion in two-dimensions. Note that that in two dimensions, the two criteria become:
1) Tresca:

maxH s1 - s2 , s2 , s1  ) = sY .
2) von Mises

Hs1 - s2L2 + s1
2 + s2

2Ñ = sY . 
Note that this clearly creates a surface (closed curve in 2D). If you are within the surface then there is no yielding (failure),
outside the surface the body has falied plastically. We will now obtain the failure surface for Tresca-criterion

ü Failure surface for Tresca criterion for sY = 1.

f@θ_D := Max@Abs@Sin@θD − Cos@θDD, Abs@Sin@θDD, Abs@Cos@θDDD;

Lecture-1-Sep.nb   5



ParametricPlotB:
Cos@θD

f@θD
,

Sin@θD
f@θD

>, 8θ, 0, 2 π<, PlotStyle → 8Thickness@0.005D, Hue@1D<,

BaseStyle → 8FontFamily → "Times", Medium<, AxesLabel → 8"σ1", "σ2"< F
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Using Tresca criterion we get a hexagon. If the stress state of the body is within the hexagon, we will we okay. Or else there will
be failure. 

ü Failure surface for von Mises criterion with sY = 1.

g@θ_D := Cos@θD2 + Sin@θD2 − Cos@θD Sin@θD
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ParametricPlotB:
Cos@θD

g@θD
,

Sin@θD
g@θD

>, 8θ, 0, 2 π<, PlotStyle → 8Thickness@0.005D, Hue@1D<,

BaseStyle → 8FontFamily → "Times", Medium<, AxesLabel → 8"σ1", "σ2"<F
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This clearly is an inclined ellipse. So in general the major task for the failure criteria is to obtain the principal stress from the
loading. After the principal stresses are obtained, one should just verify that the point representing the state of stress should be
within the failure surface.
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ü Problems

1) The stress at a point is defined by the components sxx = 0 MPa, syy = 100 MPa, sxy = -40 MPa. Find the principal stresses
s1 and s2 and the inclination of the plane on which the maximum principal stress acts to the x plane. Use both the Mohr circle
approach and the matrix method approach.

2)  A cylindrical  steel  shaft  of  diameter  30  mm is  subjected  to  a  compressive axial  force  F = 10  kN,  a  bending  moment
M = 170 N -m, and a torque T = 200 N -m. Estimate the factor of safety against using Mises' theory if the steel has a yield
stress SY = 300 MPa. 

3)  The  stress  at  a  point  is  defined  by  the  components,
sxx = 100 MPa, szz = 100 MPa, sxy = -40 MPa, syz = 50 MPa, szx = -20 MPa.
Find the three principal stresses, and the three principal directions using appropriate functions in Mathematica. 

4) The principal stress at a point are s1 = 10 MPa, s2 = -100 MPa. Sketch Mohr's circle for this state of stress and determine
the normal stress on a plane inclined at an angle q to the principal plane 1. Hence find the range of values of q for which the
normal stress is tensile. 

5) A steel is found to yield in uniaxial tension at a stress SY = 205 MPa and in torsion at a shear stress tY = 116 MPa. Which of
the von Mises' and Tresca's criteria is more consistent with the experimental data.

6) A series of experiments is conducted in which a thin plate is subjected to biaxial tension/compression, s1, s2, the plane
surfaces of the plate being traction free (i.e. s3 = 0). Unbeknown to the experimenter, the material contains macroscopic defects
than can be idealized as a sparse distribution of small circular holes through the plate thickness. The hoop stress around the
circumference of one of these holes when the plate is loaded in uniaxial tension s is known to be

sqq = s H1 - 2 cosH2 qLL,
where the angle q  is measured from the direction of the applied stress. Show graphically the relation that will hold at yield
between the stresses s1 ands2 applied to the defective plate if the Tresca criterion applies for the undamaged material.

7)  In suitable units, the stress at a particular point in a solid is found to be:

s = 
2 1 -4
1 4 0
-4 0 1

.

Determine the traction vector on a surface with unit normal (Cos(q), Sin(q), 0), where q is a general angle in the range 0 § q § p.
Plot the variation of the magnitude of the traction vector Tn  as a function of q.

8) Using the matrix manipulation techniques of mathematica, show that the von Mises criterion is equivalent to obtaining the
shear stress on eight planes (forming an octahedron) with normals to the planes making equal angles with the principal axes.

<< Graphics`Polyhedra`;

a = 8Arrowheads@LargeD, Arrow@880, 0, 0<, 81.5, 1.5, 1.5<<D<;
b = 8Arrowheads@LargeD, Arrow@880, 0, 0<, 8−1.5, 1.5, 1.5<<D<;
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Show@Polyhedron@Octahedron, Axes → True, AxesOrigin → 80, 0, 0<, Frame → FalseD,
Graphics3D@8Thick, a<D, Graphics3D@8Thick, b<DD
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