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a b s t r a c t

A detailed characterization of potential structural damage is essential to performance-based seismic
design. The Park–Ang damage index is selected in this work as the seismic damagemeasure, since it is one
of the most realistic measures of structural damage. Response spectra constitute the most common tool
used for characterizing the seismic hazard at a site, and these spectra represent the demand on single-
degree oscillators. To use these spectra for estimating the Park–Ang damage index demand on an MDOF
system, three equivalent single-degree system-based approximate schemes are proposed. These schemes
are tested on three moment resisting frames under several ground motion scenarios. The effectiveness of
an equivalent system scheme is measured by comparing with the estimates from a nonlinear response-
history analysis of the MDOF model. These schemes are tested for both global and storey-level damage
indices. Variation of the non-dimensional parameter β is also considered in these case studies. Overall, all
the three schemes are found to be effective with varying degrees of accuracy. The proposed methods are
recommended for damage-based seismic design and performance evaluation of structures because these
schemes can use response spectra for demand estimation and reduce computation cost.

© 2011 Elsevier Ltd. All rights reserved.
1. Performance-based seismic design

For over more than a decade now, performance-based seismic
design (PBSD) has been at the forefront of earthquake engineering
research. One of the prime aspects of PBSD is the realistic charac-
terization of seismic structural damage and its direct incorporation
in the design or performance evaluation methodology. In addition,
a major emphasis is also placed on the consideration of all the un-
certainties in the design and evaluation (or lifecycle engineering,
formore advanced design approaches). The variousmodes of char-
acterizing the seismic damage potential lead to various PBSD ap-
proaches. The SEAOC Vision 2000 document [1], which was one of
the first major publications providing a roadmap for prospective
PBSD approaches, listed three broad categories for advanced seis-
mic design approaches:

(i) Displacement-based design.
(ii) Energy-based design.
(iii) Comprehensive design considering lifecycle cost.
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It should be noted that these three approaches can also be adopted
for a performance-based seismic performance evaluation proce-
dure. So far, the most commonly proposed (and even adopted in
some cases) approach for PBSD is the displacement-based design
approach in which a structure is designed for a target inelastic
displacement, maximum (inelastic) interstorey drift, ductility de-
mand, etc. [2]. For performance assessment of structures, the same
parameters are used to define various performance levels or limit
states. Among many research publications on displacement-based
design methods, a small set [3–7] can be selected to represent a
variety of approaches. Although an inelastic displacement-based
approach to structural damage is more realistic than elastic and
force-based methods, many researchers argued that the energy
dissipated due to cyclic–plastic deformations in a structure dur-
ing earthquakes (that is, hysteretic energy) is a better indicator of
seismic structural damage [8–10], because the dissipated energy is
a cumulative parameter as opposed to an instantaneous parame-
ter, such as peak roof displacement. Ghosh and Collins [10], in their
work on developing a reliability-based method considering hys-
teretic energy demand, suggested that more complex damage pa-
rameters, such as the Park–Ang damage index [11], which combine
the cumulative energy demand with the ductility demand, would
eventually prove to be even bettermeasures of seismic damage po-
tential. The effectiveness of using the Park–Ang and other similar
damage indices has been supported by many researchers from the
mid-1980s, although not always in the context of PBSD.

http://dx.doi.org/10.1016/j.engstruct.2011.04.023
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The first significant step in such a design method is the
estimation of the demand due to the design ground hazard.
With the computing facilities available today, this estimation of
the Park–Ang damage index demand is not difficult, although
it is computation-intensive, because the estimation involves a
nonlinear response-history analysis (NLRHA) of the multi-degree-
of-freedom (MDOF) model of the structure under consideration. In
the conventional force-based design procedure, the computation
on the designer’s part is greatly reduced by the use of response
spectra and an equivalent single-degree-of-freedom (ESDOF)
idealization of the structure. Although this idealization gives only
an approximate estimate of the actual demand, most probably
it is also the reason for the huge popularity of the conventional
design procedure. Such an idealization will also be useful in
Park–Ang damage index-based performance evaluation and design
checking methodology. Researchers have developed methods for
constructing response spectra – both in the deterministic and in
the probabilistic domains – for various inelastic parameters. For
example, Datta andGhosh [12] constructed uniformhazard spectra
for the Park–Ang damage index (DPA). The present work proposes
various equivalent systems schemes for DPA, which can be used
in conjunction with such response spectra in a performance-
based design or performance evaluation procedure based on the
Park–Ang damage index.

The proposed equivalent single-degree idealization schemes
are based on nonlinear static pushover analyses (NSPA) of different
types. Details of these schemes are presented in Section 3, after a
brief review of literature related to damage indices and equivalent
systems methodology (Section 2). The proposed schemes are
tested on symmetric building frames of three-, nine- and twenty-
storey configurations and equivalent system estimates for a global
DPA are compared with the estimates from the NLRHA using the
MDOF model (Section 4). Section 5 presents similar case studies
to check the effectiveness of the schemes for different values of
the non-dimensional parameter β . The proposed schemes, with
suitable modifications, are also checked for estimating DPA based
on maximum interstorey drift. Significant conclusions based on
this work are presented in Section 7.

2. Review of related research work

2.1. Damage indices for structures

The philosophy of PBSD, and even the conventional seismic
designmethods, allow controlled damage to occur in a structure in
the case of a moderately strong to a very strong earthquake, while
resisting collapse. Such a philosophy needs proper quantification
of damage in analysis and design processes and a ‘damage index’
is that necessary numerical quantification of the seismic damage
in a structure. In most cases, damage indices are dimensionless
parameters intended to range between 0 (for an undamaged
structure) to 1 (for a fully damaged or collapsed structure),
with intermediate values giving some measure of the degree of
partial damage. The earliest damage indices were mostly based
on displacement or rotational ductility only. For example, Banon
et al. [13] used the rotational ductility (µθ ) at the end of a structural
member as its damage index:

µθ =
θm

θy
= 1 +

θm − θy

θy
(1)

where θm is themaximumrotation (including both elastic andplas-
tic rotations) under an earthquake and θy is the yield rotation, con-
sidering the member’s antisymmetric double-curvature bending
with the point of contraflexure in its mid-span. Such ductility-
based damage indices fail to take into account the effects of re-
peated cycling including the strength and stiffness degradations
under low-cycle fatigue. The ‘flexural damage ratio’ [13] and the
‘modified flexural damage ratio’ [14] are two other damage in-
dices that also suffer from these shortcomings. One of the earliest
cumulative damage parameters was the ‘normalized cumulative
rotation’ [13], which is defined as the ratio of the sum of all plas-
tic rotations (except for unloading parts) in inelastic springs to the
yield rotation. Several other researchers [15–17] also defined simi-
lar displacement/rotation-based cumulative damage indices,while
some others [18,19] followed a low-cycle fatigue-based approach
to define damage indices in terms of the number of cycles to failure.

Around the same period, some other researchers [8,20] sug-
gested incorporating cumulative hysteretic energy demand in
the damage index. Park and Ang [11] defined a damage index
combining both ductility and cumulative hysteretic energy de-
mand:

DPA =
dm
du

+
β

Vydu

∫
dEh (2)

where du = ultimate deformation (capacity) under monotonic
static loading, dm = maximum deformation (demand) under dy-
namic loading, dEh = incremental hysteretic energy (demand),
Vy = yield strength, and β = a non-negative non-dimensional
parameter. Also

du = µdy (3)

where µ is the ductility capacity and dy is the yield displacement.
The Park–Ang damage index has been used in various forms over
the last two and a half decades, according to the specific require-
ments. One of the most important modifications of this index was
suggested in the third edition of the structural analysis program
IDARC [21], where, for example, amember-level indexwas defined
as

DPA =
θm − θr

θu − θr
+

β

Myθu

∫
dEh (4)

where θ represents themember end rotation, θr = recoverable ro-
tation during unloading, and My = yield moment capacity. Unlike
the original definition (Eq. (2)), this definition assigns ‘0’ to the un-
damaged state and ‘1’ to the fully collapsed state. Storey-level and
global DPA values were also defined in this work, which were ob-
tained asweighted averages of the component levelDPA, where the
weighting factorswere based on the Eh dissipation. Thesemodified
definitions are most commonly used in today’s applications of DPA.

A comparison of the effectiveness of different damage indices
can be found in many research publications [9,22–25], and DPA
is recommended as the preferred damage index. Kunnath and
Jenne [24] estimated damage potential from various indices and
compared them with experimental observations. The Park–Ang
damage index correlated best with laboratory results. Further
details on the comparison of different structural damage indices
are available in the work of Williams and Sexsmith [26].
With its effectiveness in representing the actual damage state
of the structure, its wide applicability to RC, steel [27] and
timber [28] structures, and its applicability to different hysteresis
characteristics, the Park–Ang damage index is the most preferred
choice for structural damage index.

2.2. Equivalent system methodology

An equivalent single-degree-of-freedom (ESDOF) system is a
simplistic representation of the actual MDOF model of a structure,
based on properties of the real structure, such that the ESDOF
system is capable of representing certain response(s) of the MDOF
structure. Equivalent systems are used primarily in order to avoid
the computation-intensive NLRHA ofMDOF systems and to be able
to use response spectra in day-to-day design and evaluation tasks.
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Fig. 1. Bilinear approximation of the pushover curve.

This concept of an ‘equivalent’ or ‘generalized’ system is nothing
new and various alternative equivalent systemmethods have been
proposed over the years [29,30,3,31,4,32]. The primary objective of
most of these works was to estimate the displacement or ductility
demand in a structure, and this was achieved by assuming a time-
invariant deformation shape (φ) of the structure. In most cases,
this shape was based on the fundamental (elastic) mode shape of
the structure, or on the deformation shape based on a nonlinear
static pushover analysis. The concept of modal pushover analysis
(MPA) [33] extended this to use more than one (the fundamental)
mode shape in constructing the equivalent system and it improved
the displacement and force estimates, particularly for mid-rise to
high-rise structures. Later, MPA-based techniques [34,35] were
also successfully applied to obtain equivalent systems for plan-
asymmetric building structures. Examples also exist [36] for
equivalent systems for plan-asymmetric structures that are not
based on MPA, but on simple pushover analysis. Makarios [37]
proposed a method for optimizing the nonlinear ESDOF system for
obtaining displacement demands in RC framed structures.

As many researchers argued in favour of energy-based de-
sign methods, equivalent systems were also proposed for estimat-
ing hysteretic or other energy demands in structures [38,39,10].
Prasanth et al. [40] used MPA-based equivalent systems to es-
timate hysteretic energy demands in framed structures and
Rathore et al. [41] used both MPA- and 2D-MPA-based equiv-
alent systems for estimating Eh demands in plan-asymmetric
buildings. Although, satisfactory methods are available now for
constructing equivalent systems in order to estimate both dis-
placement/ductility and cumulative energy demands in symmetric
and asymmetric frame systems, there has not been any detailed
work trying to obtain equivalent systems for estimating damage
indices combining the two types of seismic demand. The only sig-
nificant work using equivalent systems to estimate a Park–Ang (or
similar) damage index was that by Fajfar and Gašperešič [38]. In
their proposed ‘N2’ method for RC structures, they used an NSPA-
based ESDOF system to obtain the Park–Ang damage index, both at
themember level and at the global level. Themember-level defini-
tion of the damage index was similar to Eq. (2), with the displace-
ments and forces replaced by rotations andmoments, respectively:

DPA =
θm

θu
+

β

Myθu

∫
dEh. (5)

The globalDPA was obtained fromaweighted average similar to the
IDARC formulation [21]. They used this equivalent system to obtain
DPA estimates for both RC frames and shear walls. However, the
focus of their work was not on measuring the effectiveness of the
ESDOF system, and no detailed results were presented comparing
the MDOF response to the ESDOF-based estimates. The authors,
nonetheless, commented on the inefficiency of the ESDOF systems,
particularly as regards not being able to incorporate the higher
mode effects. Also, they did not elaborate on the basis of selecting
deformation shapes (φ) for different structure types. Incorporating
concepts developed over the last decade, the authors of the present
work provide a detailed comparison among three alternative
equivalent systems, judged by their closeness to the MDOF system
response, for a variety of scenarios (where considerable higher
mode effects are expected).

3. Proposed equivalent system schemes

The equivalent system schemes (ESS) proposed in this work are
based on NSPA of the MDOF model of the structure, following the
methodologies proposed and used byQi andMoehle [3] and Collins
et al. [4] among others. Three different ESDOF schemes are used
in this work. The basic formulation of a generalized or equivalent
system starts from the dynamic response of a planar MDOF
cantilever-type structure subjected to horizontal base motion üg :

mü + cu̇ + r = −mιüg (6)

where m is the mass matrix, c is the damping matrix, u is the
lateral displacement vector, ι is the influence vector, and r is
the restoring force vector. The generalized system replaces the
displacement vector uwith a single displacement, for example the
roof displacement D, by assuming a time-invariant displacement
profile or shape vector φ:

u(t) = φD(t). (7)

In addition, themulti-degree dynamic equation is premultiplied by
the same shape vector to obtain the following equation:

φTmφD̈ + φT cφḊ + φT r = −φTmιüg . (8)

If the same shape vector is also assumed for the nonlinear static
pushover analysis of the structure, then the restoring force vector
can be represented by the base shear (V ). On the basis of a bilinear
idealization of the V versus D pushover curve (Fig. 1), one can
express the base shear as a function of the roof displacement:

V = KG(D) (9)

where K is the initial slope of the pushover curve and G(.) is
the scalar mathematical function of D describing the shape of the
pushover curve (which can also include trilinear and curvilinear
shapes). This reduces Eq. (8) to the equation of equilibrium for a
single-degree-of-freedom system:

M∗D̈ + C∗Ḋ + K ∗G(D) = −L∗üg (10)

where M∗
= φTmφ, C∗

= φT cφ, K ∗
= φTK f, and L∗

= φTmι. f is
the force vector used in the nonlinear static pushover analysis (see
Eq. (13), later). The force–deformation relation for this equivalent
system can be further generalized to a hysteretic one:

M∗D̈ + C∗Ḋ + K ∗G(D, sign Ḋ) = −L∗üg . (11)

This is the equation of motion of an inelastic single-degree system
with massM∗, damping C∗ and linear elastic stiffness K ∗. Dividing
both sides of this equation by the mass of the ESDOF system, the
dynamic equilibrium can be written in an alternative format:

D̈ + 2ζω∗Ḋ + (ω∗)2G(D, sign Ḋ) = −Γ ∗üg (12)

where Γ ∗
= L∗/M∗, (ω∗)2 = K ∗/M∗, and 2ζω∗

= C∗/M∗.
This is the equation of motion of an inelastic SDOF oscillator with



2512 S. Ghosh et al. / Engineering Structures 33 (2011) 2509–2524
linear elastic frequency ω∗ and damping ratio ζ . After obtaining
the equivalent system parameters the DPA demand for the actual
structure (DPA–ES) is obtained from an NLRHA of the equivalent
system(s) as per Eq. (11) or (12), using the proper ground motion
scale factor.

The properties of the ESDOF system depends on the assumed
shape vector φ and how the pushover curve is approximated. The
three different equivalent system schemes (ESS) adopted in this
work, based on the general methodology presented in this section,
are:

1. ESS1: This scheme is based on the assumption that the
fundamental mode dominates the structural response to the
extent that other modes’ contributions can be neglected. Thus,
the ESDOF system is obtained assuming φ = φ1 in Eq. (7),
where φ1 is the fundamental mode shape of the structure
(normalized to a roof displacement = 1). Like the concepts
of modal pushover analysis, this scheme involves the implicit
assumption that the structure retains the elastic (fundamental)
mode shape even when it displays an inelastic response. The
lateral force distribution for the NSPA is obtained as

f = mφ. (13)

The NSPA is conducted up to a 2.5% maximum interstorey
drift as suggested in various previous works [10,40,41]. The
pushover plot is approximated by a bilinear V versus D relation
with strain-hardening. The bilinear approximation is obtained
by equating the area under the pushover curve, the origin, the
elastic slope and the maximum displacement point (D2.5), as
shown in Fig. 1. D2.5 is the roof displacement corresponding
to 2.5% maximum interstorey drift. Parameters K , α (strain-
hardening stiffness ratio), Vy, and Dy are obtained from the
bilinear plot.

2. ESS2: This equivalent system scheme uses the concept of modal
pushover analysis and uses multiple modal ESDOF systems
similarly to the method proposed by Prasanth et al. [40].
Elastic mode shapes are obtained from an eigenvalue analysis
of the original structure and then NSPA is conducted for each
mode, similarly to what is recommended for a single mode
in ESS1. An equivalent single-degree system is obtained for
each mode shape. Since DPA includes both peak response (in
the displacement/ductility part) and cumulative response (in
the hysteretic energy part), NLRHA-based responses ofmultiple
modal ESDOF systems are combined differently for these two
parts. For the peak response part, say for a roof displacement
D, an SRSS combination of modal ESDOF peak responses is
used, since the modes for the test structures are found to
be well-separated [33]. A CQC-based combination can also be
used with a wider scope of application. The Eh demand on
the structure is obtained by a simple summation of individual
hysteretic energy demands of modal equivalent systems [40].
In these combinations, only the first two modal ESDOF systems
are used for the three-storey test frame and the first five
ESDOF systems are used for the nine- and twenty-storey test
frames (discussed later). On the basis of recommendations from
previous research works [33,40,41], even five modes may be a
conservative assumption. In retrospect, one can interpret ESS1
as a first-mode-only variant of ESS2.

3. ESS3: Similarly to ESS1, ESS3 is also based on a single equivalent
system. However, the shape vector is not a modal one. The
NSPA is conducted using the lateral force distribution (f)
recommended by IBC 2006 [42]. Thus, obtaining ESS3 does not
need any eigenvalue analysis. The shape vector (φ) is obtained
from the deformation shape during the linear elastic response
inNSPA. In terms of bilinearization, obtaining the ESDOF system
parameters, and estimating the structure’s DPA demand, the
same steps are followed as in ESS1.
Table 1
ESDOF parameters for the three ESS for the case study frames.

Mode ω∗ (rad/s) M∗ (kNs2/m) Γ ∗

3-storey
1 5.68 912 1.27
2 17.5 2200 0.330
IBC 5.68 912 1.27

9-storey

1 2.78 2000 1.37
2 7.34 1730 0.531
3 15.2 2890 0.241
4 18.2 4150 0.116
5 27.6 7480 0.057
IBC 3.11 1250 1.49

20-storey

1 1.65 2330 1.38
2 4.76 1960 0.576
3 8.23 1780 0.330
4 11.4 2010 0.222
5 15.3 2430 0.152
IBC 1.90 1320 1.56

Table 1 shows sample values of ESDOF parameters for the
three different ESS for the three test structures. Note that only
Mode 1 data are used by ESS1 while ESS2 uses data for Modes
1–5. The ESDOF parameters corresponding to ‘IBC’ is for ESS3. The
test structures considered in the three case studies in the next
three sections are the ‘‘pre-Northridge’’ design of the three-, nine-,
and twenty-storey ‘‘SAC Steel’’ moment frame buildings from Los
Angeles, USA. These frames have been used in various similar
research works in the recent past [33,34,43,10,40], and the details,
that are available in a report [44], are avoided here for brevity.
Since these are symmetric-in-plan buildings, only theNorth–South
frame of each building is considered for analysis.

4. Case studies I: for a global DPA

For the first set of case studies checking the effectiveness of the
proposed ESS, the modified Park–Ang damage index for the MDOF
model of the study frame is defined as

DPA =
Dm − Dy

Du − Dy
+

β

VyDu

∫
dEh (14)

where Dm = maximum roof displacement based on NLRHA of
the MDOF model, Dy = yield roof displacement based on the
bilinearized pushover plot, and Du = roof displacement capacity
= µDy with µ being the pre-determined displacement ductility
capacity. It should be noted that ideally Eq. (14) should be applied
to a cantilever with Dm and Dy representing its displacements at
the free end. This concept is extended here to a planarmulti-storey
frame as the behaviour of the planar frame subjected to horizontal
earthquake excitation is similar to that of a vertical cantilever
fixed at the base. An alternative definition for Dy can be based
on the first yield from a NLRHA. This first yield (formation of the
first plastic hinge for these structures) will vary depending on the
ground motion selected for the NLRHA. Since the denominators in
Eq. (14) should represent capacity parameters for the structure, a
Dy based on the NSPA of the structure is preferred to ensure that
these capacity parameters remain properties of the structure only,
and not of the ground motion considered. Three different ductility
capacities are considered in all the case studies: 4, 6, and 7.5. In Eh,
the total hysteretic energy demand in all the plastic hinge locations
is included. On the basis of the recommendation of Park et al. [27],
the factor β for steel structures is considered as 0.025. In Section 5,
the sensitivity of these ESS toβ is studied in detail. The definition as
per Eq. (14) is termed the ‘global’DPA, because it considers only the
roof displacement and the total energy demand for the structure.
Further studies on amore localized damage index are presented in
Section 6.
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Table 2
Details of the strong motion records used.

No. Earthquake Date Station Orientation

1 Chi-Chi Sep 21, 1999 Yunlin–Tsaoling 090
2 Northridge Jan 17, 1994 Sylmar Olive View Med. FF 360
3 Chi-Chi Sep 21, 1999 Taichung Wufeng School 090
4 Cape Mendocino Apr 25, 1992 Cape Mendocino 000
5 Loma Prieta Oct 18, 1989 UCSC Station 16 000
6 San Fernando Feb 09, 1971 Pacoima Dam 165
7 Tabas Sep 16, 1978 9101 Tabas LN
8 Northridge Jan 17, 1994 Tarzana Cedar Hill Nursery A 090
9a Northridge Jan 17, 1994 Sylmar Converter 142

10 Northridge Jan 17, 1994 Newhall Fire Station 360
11 Northridge Jan 17, 1994 Newhall Fire Station 090
12 Parkfield Jun 28, 1966 Parkfield
13 Kobe Jan 16, 1995 KJMA 000
14 Northridge Jan 17, 1994 Sylmar Olive View Med. FF 090
15 Kobe Jan 16, 1995 KJMA 090
16 Loma Prieta Oct 18, 1989 UCSC Station 16 090
17 Northridge Jan 17, 1994 Arleta Nordhoff Fire Station 090
18a Northridge Jan 17, 1994 Newhall Fire Station 090
19 Tabas Sep 16, 1978 9101 Tabas TR
20 Gazli May 17, 1976 Karakyr 090
a 9 gives the velocity-corrected data for the same record as 18.
Table 3
Comparison of MDOF- and ESDOF-based DPA estimates for all ESS for the three-storey building, with β = 0.025.

Record No. µ = 4.0 µ = 6.0 µ = 7.5
MDOF ESS1 ESS2 ESS3 MDOF ESS1 ESS2 ESS3 MDOF ESS1 ESS2 ESS3

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 0.993 1.00 1.00 1.00 0.599 0.703 0.709 1.00 0.461 0.542 0.547 1.00
3 1.00 1.00 1.00 1.00 0.605 0.832 0.833 1.00 0.466 0.641 0.641 1.00
4 0.844 1.00 1.00 1.00 0.508 0.758 0.763 1.00 0.391 0.583 0.587 1.00
5 0.763 1.00 1.00 1.00 0.463 0.883 0.884 1.00 0.358 0.681 0.682 1.00
6 1.00 1.00 1.00 1.00 0.742 0.899 0.902 1.00 0.572 0.693 0.695 1.00
7 1.00 1.00 1.00 1.00 0.639 1.00 1.00 1.00 0.493 0.833 0.834 1.00
8 1.00 1.00 1.00 1.00 0.627 0.769 0.798 0.831 0.483 0.592 0.616 0.639
9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.832 0.832 0.969

10 1.00 1.00 1.00 1.00 0.844 0.872 0.874 1.00 0.650 0.672 0.674 1.00
11 0.288 0.573 0.582 1.00 0.174 0.346 0.352 0.634 0.134 0.267 0.271 0.487
12 1.00 1.00 1.00 1.00 0.706 1.00 1.00 1.00 0.543 0.994 0.994 1.00
13 0.708 0.901 0.911 0.969 0.429 0.546 0.552 0.582 0.331 0.422 0.426 0.448
14 0.798 1.00 1.00 1.00 0.480 0.653 0.654 1.00 0.370 0.503 0.503 1.00
15 0.736 1.00 1.00 1.00 0.444 0.678 0.681 0.665 0.343 0.523 0.525 0.512
16 0.444 0.612 0.612 0.988 0.268 0.368 0.368 0.593 0.206 0.283 0.284 0.456
17 0.380 0.392 0.393 1.00 0.229 0.236 0.237 0.664 0.176 0.182 0.182 0.511
All the NLRHA and NSPA conducted for the three case
studies presented in this paper are performed using the analysis
platform DRAIN-2DX [45]. The moment frames are modelled
using elastic–perfectly plastic steel with a yield stress of 345
MPa (50 ksi). Beam and column members are modelled with
a Type 02 nonlinear beam–column element with proper P–M
interactions at each possible plastic hinge locations. A Rayleigh
damping of 5% is assigned to the first two modes of vibration. The
rigid floor diaphragm effect is assumed for all the floors where
masses are lumped. The stiffness contribution from the gravity
frames, flexibility of the joint panel zones, strength and/or stiffness
degradation in successive displacement cycles, and secondary
moment effects are neglected.

In order to measure the effectiveness of an ESS, the ESDOF
demand (DPA–ES) is compared with the MDOF demand (DPA–M),
under various groundmotion scenarios. The effectiveness of an ESS
is measured by a bias factor

N =
DPA–M

DPA–ES
(15)

for every structure, for every ground motion scenario and for the
selected µ values. A total of 20 strong ground motion records are
considered for this study. It should be noted that 20 records may
not be sufficient to avoid the sensitivity of the result statistics to
record selection. A larger set of ground motions, with specific em-
phasis on the nature of earthquake and ground characteristics,
would produce better statistics that can be directly used in de-
sign standards. However, considering that the primary objective
of the case studies presented here is to check the effectiveness of
the ESS for a variety of records, frame heights, ductility range, and
β values, and over a large range of DPA demands, the sample re-
sults presented in this paper are deemed adequate. Table 2 pro-
vides details of these records. These records are identified later
using only the serial number that appears corresponding to each
record in this table. For the nine- and twenty-storey frames, many
times the original records do not cause any damage (DPA–M = 0), or
cause a negligible amount of damage (DPA < 0.100) which is not of
interest from the perspective of a damage-based/inelastic de-
sign/performance evaluation approach. Therefore, the original
ground motions are suitably scaled up in order to produce signif-
icant damage in the structure so that these can be included in the
ESS statistics. Nevertheless, only (scaled) records 1–17 are used for
the three-storey frame, (scaled) records 1–13, 18, and 19 are used
for the nine-storey frame, and (scaled) records 1–8 and 18-20 are
used for the twenty-storey frame. To maintain some uniformity,
all the original acceleration data are scaled by a factor of 1.5 for the
different case studies presented here. Table 3 presents a sample
comparison between the Park–Ang damage index estimated using
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Table 4
Bias factor (N) values for all ESS for the three-storey building, with β = 0.025.

Record No. µ = 4.0 µ = 6.0 µ = 7.5
ESS1 ESS2 ESS3 ESS1 ESS2 ESS3 ESS1 ESS2 ESS3

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 0.993 0.993 0.993 0.852 0.844 0.599 0.852 0.844 0.461
3 1.00 1.00 1.00 0.727 0.727 0.605 0.727 0.727 0.466
4 0.844 0.844 0.844 0.670 0.665 0.508 0.670 0.665 0.391
5 0.763 0.763 0.763 0.524 0.524 0.463 0.525 0.524 0.358
6 1.00 1.00 1.00 0.825 0.823 0.742 0.826 0.824 0.572
7 1.00 1.00 1.00 0.639 0.639 0.639 0.592 0.591 0.493
8 1.00 1.00 1.00 0.815 0.785 0.754 0.816 0.785 0.756
9 1.00 1.00 1.00 1.00 1.00 1.00 1.20 1.20 1.03

10 1.00 1.00 1.00 0.968 0.966 0.844 0.968 0.965 0.650
11 0.502 0.494 0.288 0.503 0.495 0.275 0.503 0.495 0.275
12 1.00 1.00 1.00 0.706 0.706 0.706 0.547 0.547 0.543
13 0.785 0.777 0.731 0.785 0.776 0.737 0.785 0.776 0.739
14 0.798 0.798 0.798 0.735 0.735 0.480 0.735 0.735 0.370
15 0.736 0.736 0.736 0.655 0.652 0.668 0.655 0.653 0.669
16 0.726 0.725 0.449 0.727 0.726 0.451 0.727 0.726 0.452
17 0.970 0.967 0.380 0.969 0.967 0.345 0.969 0.966 0.345
Table 5
Bias factor (N) values for all ESS for the nine-storey building, with β = 0.025.

Record No. µ = 4.0 µ = 6.0 µ = 7.5
ESS1 ESS2 ESS3 ESS1 ESS2 ESS3 ESS1 ESS2 ESS3

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 0.806 0.800 0.646 0.808 0.802 0.648 0.809 0.802 0.649
3 0.784 0.782 0.592 0.790 0.783 0.356 0.794 0.798 0.274
4 1.57 1.45 1.53 1.57 1.45 1.53 1.57 1.45 1.53
5 1.00 1.00 1.00 0.621 0.621 0.621 0.495 0.498 0.483
6 0.920 0.897 0.920 0.921 0.898 0.922 0.922 0.898 0.923
7 1.20 1.16 1.30 1.20 1.16 1.30 1.21 1.16 1.30
8 0.799 0.756 0.640 0.802 0.757 0.643 0.803 0.754 0.644
9 0.809 0.747 0.696 0.814 0.750 0.702 0.816 0.751 0.704

10 0.949 0.912 0.974 0.952 0.914 0.977 0.953 0.915 0.978
11 0.990 0.925 0.961 0.992 0.927 0.964 0.992 0.926 0.965
12 1.00 1.00 1.00 0.731 0.731 0.731 0.701 0.707 0.563
13 0.811 0.485 0.563 0.814 0.489 0.569 0.815 0.490 0.571
18 0.985 0.920 0.953 0.986 0.921 0.955 0.987 0.922 0.956
19 0.653 0.653 0.653 0.571 0.572 0.553 0.571 0.573 0.554
Table 6
Bias factor (N) values for all ESS for the twenty-storey building, with β = 0.025.

Record No. µ = 4.0 µ = 6.0 µ = 7.5
ESS1 ESS2 ESS3 ESS1 ESS2 ESS3 ESS1 ESS2 ESS3

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 0.910 0.812 1.03 0.911 0.813 1.03 0.911 0.813 1.04
3 0.812 0.812 0.812 0.668 0.667 0.489 0.668 0.667 0.376
4 0.734 0.693 0.385 0.735 0.695 0.387 0.736 0.695 0.387
5 1.12 1.02 1.04 1.12 1.02 1.05 1.12 1.02 1.05
6 0.846 0.762 0.744 0.849 0.763 0.746 0.850 0.764 0.747
7 1.04 0.958 0.849 1.04 0.959 0.849 1.04 0.959 0.849
8 1.02 0.644 0.588 1.03 0.648 0.595 1.03 0.650 0.598

18 2.00 1.79 1.78 2.00 1.79 1.78 2.00 1.79 1.78
19 0.218 0.218 0.218 0.142 0.141 0.136 0.144 0.143 0.122
20 0.568 0.563 0.440 0.567 0.562 0.440 0.567 0.561 0.439
theMDOF and the three different ESS for the three-storey frame for
all the earthquakes and for the three selected µ values. This table
illustrates that the ESS are tested for a large range of DPA–M values
from 0.134 to 1.00. From these DPA values, the bias factor is calcu-
lated for each record and ductility capacity. Tables 4–6 present the
bias factor values in detail for each earthquake for the three test
structures. The summary statistics (Table 7), in terms of the mean,
standard deviation (SD), coefficient of variation (CoV), and maxi-
mum and minimum values, present an overall picture of the level
of accuracy for a selected ESS. A bias value of 1.0 signifies that the
ESS is as accurate as the NLRHA, from a DPA perspective. N > 1.0
signifies an underestimation by the ESS and vice versa. Overall, a
mean bias close to 1.0 and low SD and CoV values indicate that the
ESS is very effective. The summary statistics are presented sepa-
rately for the three ductility capacities. However. it can be noted
from these tables that the overall statistics are not very different
for different µ values, and one can also consider these three sets
for each ESS together.

Figs. 2–4 illustrate this bias (N) for each earthquake, where
every plot is for a selected ductility capacity of the structure. The
earthquake serial numbers are the same as those presented in
Table 2. These bar charts give a clear idea of the comparative
measure of effectiveness, among the three ESS proposed. The
vertical line at N = 1 presents the ideal response from an ESS. A
point towards right of that line indicates an underestimation by the
ESS for the record under consideration, and vice versa. These plots,
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Table 7
Bias (N) statistics summary for all ESS for the three-, nine- and twenty-storey buildings, with β = 0.025.

µ = 4.0 µ = 6.0 µ = 7.5
ESS1 ESS2 ESS3 ESS1 ESS2 ESS3 ESS1 ESS2 ESS3

3-storey

Mean 0.889 0.888 0.822 0.771 0.766 0.636 0.771 0.766 0.563
SD 0.148 0.150 0.240 0.154 0.154 0.205 0.189 0.189 0.220
CoV 0.167 0.169 0.292 0.200 0.201 0.322 0.245 0.247 0.391
Max. 1.00 1.00 1.00 1.00 1.00 1.00 1.20 1.20 1.03
Min. 0.502 0.494 0.288 0.503 0.495 0.275 0.503 0.495 0.275

9-storey

Mean 0.952 0.899 0.895 0.905 0.851 0.832 0.896 0.842 0.807
SD 0.217 0.223 0.273 0.244 0.237 0.306 0.257 0.248 0.330
CoV 0.228 0.249 0.305 0.269 0.279 0.369 0.287 0.295 0.410
Max. 1.57 1.45 1.53 1.57 1.45 1.53 1.57 1.45 1.53
Min. 0.653 0.485 0.564 0.571 0.489 0.356 0.495 0.490 0.274

20-storey

Mean 0.933 0.842 0.809 0.915 0.823 0.773 0.916 0.824 0.763
SD 0.436 0.387 0.425 0.456 0.404 0.447 0.456 0.404 0.458
CoV 0.467 0.460 0.526 0.498 0.491 0.579 0.498 0.490 0.600
Max. 2.00 1.79 1.78 2.00 1.79 1.78 2.00 1.79 1.78
Min. 0.218 0.218 0.218 0.142 0.141 0.136 0.144 0.143 0.122
along with Tables 4–6, show that the proposed equivalent system
schemes are effective in estimating the MDOF DPA demand on the
basis of Eq. (14). Not all schemes are equally effective for each
building, each µ, and each earthquake scenario; however, in an
overall sense, these schemes are deemed to be usable in practical
applications.

The bias factor summary (Table 7) and these figures are useful
in comparing the effectiveness of different ESS in estimating the
actualDPA. For the three-storey building, all the three ESS give very
similar results in terms of the mean bias for a given µ (except
for one or two very low mean biases for ESS3, indicating a major
overestimation by that ESS). However, when their SD and CoV
are taken into consideration, ESS1 and ESS2 are found to be more
reliable. One should also note that for low µ values, the estimates
are better for all the three ESS. This is primarily because for a
majority of selected records, the three-storey building reaches
its capacity (DPA = 1.0) for both the original MDOF model and
the approximate ESS models, resulting in N = 1 (DPA ≯ 1.0). For
µ = 7.5 the mean bias moves further away from the ideal value
of 1.0 and the CoV are higher. ESS1 is found to provide the best
results among the three. However, the difference between ESS1
andESS2 is insignificant since the three-storey frame’s behaviour is
hardly affected by the second elastic mode, which is incorporated
in ESS2 in addition to the fundamental mode considered for ESS1.
For the nine-storey frame, the mean values are mostly better than
what they are for the three-storey frame. Specifically for ESS1, the
mean bias is very close to its ideal value 1.0, with ESS2 and ESS3
behind it, in that order. However, the CoV values show that all the
ESS are less consistent for the nine-storey frame compared to the
three-storey frame. ESS1 is found, again, to provide the best overall
results. Unlike the three-storey frame, results for ESS1 and ESS2 are
different, primarily in terms of the mean bias. This is because ESS2
includes highermode effects, which are not negligible for the nine-
storey frame.

A closer look at how DPA is obtained in these two schemes
explains why ESS1 gives better results even for the nine-
storey frame. The primary two components for DPA are the roof
displacement (Dm) and the hysteretic energy (Eh) demands. Earlier
studies [10,40] show that a first mode-based scheme, similar to
ESS1, underestimates the actual (that is, based on MDOF) Eh, and
this underestimation is greater for taller structures where higher
mode effects are also significant. This underestimation, specifically
for the high-rises, reduces for amulti-mode-based scheme, similar
to ESS2, because it adds the higher mode contributions to the
Eh demand of the first mode-based scheme. Roof displacement
demands, on the other hand, tend to overestimate the actual
demand and this shortcoming becomes even worse when higher
mode contributions are combined (through SRSS or CQC) with
the Dm demand from the first mode-based scheme. Obviously,
the differences between ESS1 and ESS2 are more prominent for
the taller frames. For example, ESS1 has a very acceptable mean
bias of 0.952 for the nine-storey frame with µ = 4, due to a
balancing of the underestimation of Eh and the overestimation of
Dm. Contributions from higher modes increase both Eh and Dm in
ESS2, and in turn DPA–ES. Therefore, finally the mean N goes down
for ESS2 (to 0.899 in this case), making ESS1 the best scheme,
although it may intuitively seem that the opposite is more likely
for taller frames. As µ increases, the results deteriorate for all the
ESS, for this nine-storey frame as well.

For the twenty-storey frame, similar trends continue, with ESS1
providing the best estimates overall, and ESS2 and ESS3 following
it, in that order. As one can expect (on the basis of the explanation
provided in the previous paragraph), the difference between the
results of ESS1 and ESS2 is even greater for the twenty-storey
frame. There is a significant increase in the CoV values overall,
signifying that estimates for the twenty-storey frame are less
consistent. This is also evident from the wide scatter in the bar
diagrams in Fig. 4. The maximum and minimum N values cover
a much wider range compared to the bias for the other two study
frames.

5. Case studies II: for a global DPA with different values of β

The value of the non-negative non-dimensional constant β
(Eq. (14)) may have a significant influence on the damage index
DPA [38]. β is used in the definition of DPA to account for the
material–structural behaviour under cyclic load reversals (low-
cycle fatigue). The value of this parameter is calibrated from
experimental results for the typical structural system under
considerationwith predefined collapse (and other limit states). The
calibration of β was discussed in detail by various authors, such
as Park et al. [46] and van de Lindt [28]. Also, empirical formulas
were proposed for calculating β [11]. A low value of β reduces the
influence of low-cycle fatigue and the seismic damage is governed
by the maximum displacement (or rotation) demand. When β is
high the cumulative plastic damage becomes the cause of seismic
failure. Typically, a high β value represents a poorly designed (and
detailed) structure commonly available in old building stock.

Over the last two and a half decades, researchers have proposed
and used various β values, ranging from 0.025 for steel structures
and 0.05 for RC structures [27] to 0.23 for steel structures [47]
and 0.24 for RC structures [48]. For RC structures, a value of 0.15,
proposed originally by Park et al. [46], was used later in many
research works. In Section 4, β is considered to be 0.025 for steel
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Fig. 2. Bar charts for the bias factor (N) for the three-storey frame, for β = 0.025.
Fig. 3. Bar charts for the bias factor (N) for the nine-storey frame, for β = 0.025.
Fig. 4. Bar charts for the bias factor (N) for the twenty-storey frame, for β = 0.025.
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Table 8
Bias (N) statistics summary for the three-storey building with varying β values.

β µ = 4.0 µ = 6.0 µ = 7.5
ESS1 ESS2 ESS3 ESS1 ESS2 ESS3 ESS1 ESS2 ESS3

0.01

Mean 0.881 0.880 0.811 0.765 0.762 0.620 0.753 0.765 0.548
SD 0.153 0.154 0.244 0.158 0.159 0.206 0.192 0.197 0.219
CoV 0.173 0.175 0.301 0.207 0.208 0.332 0.255 0.257 0.399
Max. 1.00 1.00 1.00 1.00 1.00 1.00 1.18 1.23 1.02
Min. 0.506 0.467 0.534 0.508 0.469 0.351 0.491 0.469 0.270

0.025

Mean 0.889 0.888 0.822 0.771 0.766 0.636 0.771 0.766 0.563
SD 0.148 0.150 0.240 0.154 0.154 0.205 0.189 0.189 0.220
CoV 0.167 0.169 0.292 0.200 0.201 0.322 0.245 0.247 0.391
Max. 1.00 1.00 1.00 1.00 1.00 1.00 1.20 1.20 1.03
Min. 0.502 0.494 0.288 0.503 0.495 0.275 0.503 0.495 0.275

0.05

Mean 0.899 0.898 0.838 0.780 0.774 0.663 0.773 0.767 0.587
SD 0.140 0.143 0.232 0.147 0.147 0.205 0.173 0.173 0.219
CoV 0.156 0.159 0.277 0.189 0.190 0.310 0.224 0.225 0.374
Max. 1.00 1.00 1.00 1.00 1.00 1.00 1.12 1.12 1.02
Min. 0.509 0.499 0.308 0.511 0.499 0.295 0.511 0.500 0.296

0.075

Mean 0.911 0.910 0.853 0.790 0.781 0.690 0.776 0.767 0.610
SD 0.132 0.135 0.226 0.142 0.142 0.207 0.161 0.159 0.220
CoV 0.145 0.148 0.265 0.180 0.181 0.301 0.207 0.208 0.361
Max. 1.00 1.00 1.00 1.00 1.00 1.00 1.05 1.05 1.02
Min. 0.516 0.502 0.329 0.518 0.503 0.314 0.519 0.504 0.317

0.1

Mean 0.924 0.923 0.868 0.800 0.790 0.716 0.780 0.769 0.634
SD 0.128 0.131 0.222 0.135 0.135 0.211 0.152 0.150 0.222
CoV 0.138 0.142 0.256 0.169 0.171 0.294 0.195 0.195 0.351
Max. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01
Min. 0.522 0.505 0.350 0.524 0.507 0.334 0.525 0.507 0.337

0.25

Mean 0.955 0.953 0.914 0.863 0.859 0.848 0.826 0.804 0.773
SD 0.118 0.124 0.191 0.134 0.141 0.236 0.136 0.127 0.261
CoV 0.124 0.130 0.209 0.155 0.164 0.278 0.165 0.158 0.337
Max. 1.00 1.00 1.00 1.00 1.00 1.23 1.06 1.00 1.24
Min. 0.547 0.520 0.475 0.551 0.521 0.437 0.552 0.522 0.441
structures on the basis of the recommendation of Park et al. [27].
These values of β were used for both definitions of DPA as per
Eqs. (2) and (14). Instead of adopting or calibrating any specific
value for this parameter, the sensitivity of the proposed ESS is
studied here for the widest possible range of realistic β values.
Therefore, the case study described in Section 4 is now extended
for the following β values: 0.01, 0.05, 0.075, 0.1 and 0.25. Tables
presented in this section repeat the data for β = 0.025 from the
previous section for a better comparison. These case studies (set
II) are based on the same three building frames as the previous
set of studies discussed in Section 4, with the same set of scaled
earthquake records for each frame. The definition of DPA and the
analyses used to obtain its parameters remain unchanged.

Results obtained from these analysis are interpreted and
compared in terms of the bias factor, N . For brevity, only the
summary statistics for this factor are presented in three tables for
the three structures (Tables 8–10). Each of these summary tables
includes results for one study frame, all the three ESS, all the three
ductility capacity values and six β values. In general, the trends
observed forβ = 0.025 are repeated for otherβ values, aswell. For
all the buildings, the general trend is that the estimations improve
with each increasing β . This improvement in the DPA estimation is
evident from the mean bias increasing towards the ideal value 1.0
and a reduction in the coefficient of variation. Although this does
not happen for every increase ofβ , for everyµ, for every ESS and for
every building frame, the majority of the bias statistics summary
follows this trend. For example, for the three-storey frame, for
µ = 4, the mean bias for ESS1 increases from 0.881 for β = 0.01,
monotonically at every increase in β , to 0.955 for β = 0.25. The
coefficient of variation also reduces, monotonically, from 0.173 for
β = 0.01 to 0.124 for β = 0.25. The reduction in the CoV is
of greater importance as it indicates a better level of consistency
in estimating the real demand. For the nine- and twenty-storey
frames, the mean bias increases slightly beyond 1.0 in a few cases
at β = 0.25, indicating a minor underestimation of the actual
DPA. One should, however, note that these underestimations for
β = 0.25 are still the best estimates among all the β values in
terms the mean bias. In addition, and more importantly, the CoV
values are usually the lowest for β = 0.25. The ESS3 estimates for
higher β values are very good and deemed usable, as opposed to
the ESS3 estimates at lowerβ values, particularly forµ = 7.5. ESS1
comes out as the best ESS overall, with the other two providing
very good estimates at higherβ values. The improvement observed
at higher β values is due to the fact that with increased β , the
Eh part has a larger share in DPA (Eq. (14)). At low β values, DPA
is dominated by the maximum displacement (Dm) part, which, as
Prasanth et al. [40] reported, tends to be overestimated by these
ESS. These ESS, on the other hand, tends to underestimate the Eh
demand. Thus, when the share of Eh is increased with increase in
β , the mean bias increases, moving towards the ideal value 1.0.
Prasanth et al. [40] also observed that the Eh estimates are more
consistent with a lower coefficient of variation of the bias factor
than the Dm estimates. This explains the reduction (even if it is
not a major reduction) in the deviation in N for DPA estimates at
higher β values. A sample scatterplot for the nine-storey frame for
β = 0.25 is provided in Fig. 5 for a comparisonwith the scatterplot
presented earlier for β = 0.025 (Fig. 3).

6. Case studies III: DPA based on the interstorey drift ratio

Although the roof displacement of a multi-storey building
frame is very commonly used for characterizing the seismic
demand for a given earthquake record, the response quantity
most preferred as a displacement-based demand is the maximum
interstorey drift ratio among all the floors. This peak interstorey
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Table 9
Bias (N) statistics summary for the nine-storey building with varying β values.

β µ = 4.0 µ = 6.0 µ = 7.5
ESS1 ESS2 ESS3 ESS1 ESS2 ESS3 ESS1 ESS2 ESS3

0.01

Mean 0.936 0.893 0.882 0.888 0.844 0.816 0.879 0.835 0.792
SD 0.259 0.231 0.279 0.279 0.245 0.310 0.289 0.255 0.332
CoV 0.276 0.259 0.316 0.315 0.290 0.379 0.329 0.305 0.420
Max. 1.63 1.46 1.53 1.63 1.46 1.53 1.63 1.46 1.53
Min. 0.506 0.467 0.471 0.508 0.469 0.351 0.491 0.469 0.270

0.025

Mean 0.952 0.899 0.895 0.905 0.851 0.832 0.896 0.842 0.807
SD 0.217 0.223 0.273 0.244 0.237 0.306 0.257 0.248 0.330
CoV 0.228 0.249 0.305 0.269 0.279 0.369 0.287 0.295 0.410
Max. 1.57 1.45 1.53 1.57 1.45 1.53 1.57 1.45 1.53
Min. 0.653 0.485 0.564 0.571 0.489 0.356 0.495 0.490 0.274

0.05

Mean 1.00 0.872 0.916 0.937 0.820 0.856 0.927 0.809 0.831
SD 0.228 0.217 0.264 0.247 0.226 0.302 0.262 0.237 0.327
CoV 0.228 0.249 0.288 0.263 0.275 0.352 0.282 0.293 0.394
Max. 1.61 1.39 1.54 1.61 1.38 1.54 1.61 1.38 1.54
Min. 0.696 0.466 0.604 0.598 0.467 0.364 0.516 0.468 0.281

0.075

Mean 0.978 0.917 0.937 0.937 0.873 0.879 0.926 0.861 0.854
SD 0.229 0.200 0.256 0.253 0.215 0.297 0.268 0.229 0.325
CoV 0.234 0.219 0.273 0.270 0.246 0.338 0.290 0.266 0.381
Max. 1.61 1.42 1.55 1.60 1.42 1.55 1.60 1.42 1.55
Min. 0.617 0.540 0.617 0.618 0.548 0.373 0.531 0.527 0.287

0.1

Mean 0.975 0.908 0.938 0.921 0.850 0.868 0.902 0.830 0.836
SD 0.229 0.195 0.255 0.271 0.225 0.310 0.295 0.247 0.343
CoV 0.234 0.215 0.272 0.294 0.264 0.357 0.327 0.297 0.410
Max. 1.60 1.41 1.56 1.60 1.40 1.56 1.59 1.40 1.56
Min. 0.657 0.564 0.629 0.501 0.501 0.381 0.404 0.404 0.294

0.25

Mean 1.07 0.966 1.06 1.04 0.934 1.02 1.02 0.914 0.991
SD 0.180 0.151 0.224 0.207 0.161 0.283 0.231 0.177 0.319
CoV 0.169 0.157 0.212 0.199 0.172 0.278 0.226 0.193 0.322
Max. 1.57 1.35 1.60 1.56 1.34 1.60 1.56 1.34 1.60
Min. 0.830 0.677 0.704 0.726 0.694 0.431 0.698 0.698 0.334
Table 10
Bias (N) statistics summary for the twenty-storey building with varying β values.

β µ = 4.0 µ = 6.0 µ = 7.5
ESS1 ESS2 ESS3 ESS1 ESS2 ESS3 ESS1 ESS2 ESS3

0.01

Mean 0.850 0.776 0.739 0.811 0.739 0.684 0.800 0.729 0.663
SD 0.290 0.270 0.316 0.285 0.261 0.312 0.279 0.254 0.314
CoV 0.341 0.347 0.427 0.351 0.353 0.455 0.349 0.348 0.474
Max. 1.24 1.16 1.16 1.11 1.01 1.03 1.11 1.01 1.03
Min. 0.175 0.175 0.175 0.115 0.115 0.107 0.116 0.115 0.098

0.025

Mean 0.933 0.842 0.809 0.915 0.823 0.773 0.916 0.824 0.763
SD 0.436 0.387 0.425 0.456 0.404 0.447 0.456 0.404 0.458
CoV 0.467 0.460 0.526 0.498 0.491 0.579 0.498 0.490 0.600
Max. 2.00 1.79 1.78 2.00 1.79 1.78 2.00 1.79 1.78
Min. 0.218 0.218 0.218 0.142 0.141 0.136 0.144 0.143 0.122

0.05

Mean 0.892 0.804 0.777 0.848 0.762 0.721 0.838 0.752 0.699
SD 0.284 0.250 0.302 0.289 0.248 0.305 0.283 0.239 0.312
CoV 0.319 0.311 0.388 0.341 0.325 0.423 0.338 0.318 0.446
Max. 1.30 1.20 1.20 1.14 1.02 1.08 1.14 1.02 1.08
Min. 0.290 0.290 0.290 0.184 0.184 0.184 0.187 0.186 0.158

0.075

Mean 0.916 0.820 0.801 0.870 0.775 0.743 0.859 0.764 0.720
SD 0.282 0.239 0.295 0.292 0.240 0.303 0.287 0.232 0.313
CoV 0.308 0.292 0.369 0.336 0.309 0.408 0.335 0.303 0.435
Max. 1.34 1.23 1.22 1.18 1.02 1.10 1.19 1.02 1.11
Min. 0.363 0.363 0.363 0.232 0.232 0.232 0.226 0.225 0.192

0.1

Mean 0.939 0.836 0.824 0.890 0.788 0.765 0.878 0.776 0.735
SD 0.282 0.230 0.291 0.296 0.232 0.302 0.293 0.227 0.313
CoV 0.300 0.276 0.353 0.332 0.295 0.395 0.334 0.292 0.426
Max. 1.37 1.26 1.24 1.25 1.04 1.13 1.26 1.02 1.13
Min. 0.435 0.435 0.426 0.280 0.280 0.280 0.262 0.261 0.222

0.25

Mean 1.06 0.921 0.951 0.995 0.853 0.883 0.974 0.833 0.854
SD 0.306 0.217 0.299 0.324 0.206 0.321 0.334 0.209 0.344
CoV 0.288 0.236 0.315 0.326 0.242 0.363 0.342 0.251 0.403
Max. 1.57 1.39 1.34 1.57 1.18 1.28 1.58 1.06 1.29
Min. 0.499 0.495 0.401 0.492 0.488 0.397 0.453 0.453 0.395
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Fig. 5. Bar charts for the bias factor (N) for the nine-storey frame, for β = 0.25.
Table 11
Bias factor (N) values for all ESS for the three-storey building, with β = 0.25.

Record No. µ = 4.0 µ = 6.0 µ = 7.5
ESS1 ESS2 ESS3 ESS1 ESS2 ESS3 ESS1 ESS2 ESS3

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 1.00 1.00 1.00 1.00 1.00 1.00 0.993 0.887 0.807
3 1.00 1.00 1.00 0.859 0.859 0.859 0.837 0.737 0.666
4 1.00 1.00 1.00 0.876 0.778 0.772 0.876 0.779 0.597
5 1.00 1.00 1.00 1.00 1.00 1.00 0.816 0.816 0.816
6 1.00 1.00 1.00 1.00 1.00 1.00 1.04 1.01 0.988
7 1.00 1.00 1.00 1.00 1.00 1.00 0.964 0.964 0.964
8 1.00 1.00 1.00 1.00 1.00 1.06 1.26 1.00 1.38
9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

10 1.00 1.00 1.00 1.00 1.00 1.00 1.06 1.03 1.00
11 1.00 1.00 1.00 1.00 1.00 1.00 0.810 0.810 0.810
12 0.879 0.777 0.777 0.784 0.668 0.661 0.865 0.666 0.667
13 1.00 1.00 1.00 1.00 1.00 1.43 1.03 0.923 1.56
14 1.00 1.00 1.00 1.24 1.22 1.00 1.60 1.58 1.00
15 1.00 1.00 1.00 1.03 0.984 1.27 1.03 0.983 1.28
16 1.16 1.13 0.888 1.16 1.13 0.800 1.43 1.40 1.00
17 1.24 1.19 0.673 1.23 1.17 0.556 1.23 1.17 0.560
drift ratio (∆mi) for the ith storey is defined as the maximum value
of the ith interstorey drift ratio (∆i(t)) during the earthquake:

∆i(t) =
Di(t) − Di−1(t)

hi
(16)

where Di is the ith-floor displacement and hi is the ith-storey
height. ∆mi is often preferred over the maximum roof dis-
placement (Dm) because it can indicate the occurrence or non-
occurrence of the soft-storeymechanism in one storey of a building
frame. Formany old and poorly detailed structures, it is quite likely
that the drift demands are not close to uniform over all the storeys
and there may exist a significant concentration of this demand at
one storey relative to all others. The definition of DPA is modified in
this section in order to reflect the maximum interstorey drift de-
mand (with respect to capacity). DPA based on the interstorey drift
ratio is defined as

DPA =


∆mi − ∆yi

∆ui − ∆yi


maxi

+
β

VyDu

∫
dEh. (17)

It should be noted that the difference between Eqs. (14) and (17)
is only in the ductility part of the DPA. Even for the interstorey
drift ratio-based definition of DPA, the cumulative energy part
is calculated from the hysteretic energy demand on the whole
structure and it is normalized by the yield base shear (Vy) and
the monotonic roof displacement capacity (Du). For the ductility
part of this DPA, the maximum demand to capacity ratio among
all storeys is used. β , here, obviously needs a different calibration
from the β in Eq. (14). ∆yi is the yield value corresponding to
the ith interstorey drift ratio. ∆yi is obtained from a storey shear
(Vi) versus interstorey drift ratio (∆i) ‘‘pushover’’ plot based on
the NSPA, similar to Fig. 1 for Dy. The monotonic interstorey drift
ratio capacity, ∆ui, is defined on the basis of an assumed ductility
capacity (µ) at the storey level, which is assumed to be the same
for all storeys:

∆ui = µ∆yi. (18)

This ductility capacity is usually not the same as the roof
displacement-based ductility capacity used in Eq. (14) for Du. For
case studies based on this new definition of DPA, however, we use
the sameµ values aswere considered for the other two sets of case
studies presented in the two previous sections.

The basis of the equivalent schemes remains the same for this
third set of case studies, although the ESS get slightly modified, in
order to account forDm getting replaced by∆mi. For ESS1 and ESS3,
the peak interstorey drift demand for the ith storey is obtained by
multiplying the displacement demand (Dm) with a factor based on
the assumed mode shape/displacement profile:

∆mi =

[
(φi − φi−1)/hi

φr

]
Dm (19)
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Table 12
Bias (N) statistics summary for the three-storey building with varying β values, for DPA based on the maximum interstorey drift.

β µ = 4.0 µ = 6.0 µ = 7.5
ESS1 ESS2 ESS3 ESS1 ESS2 ESS3 ESS1 ESS2 ESS3

0.01

Mean 1.04 1.01 0.928 1.05 0.976 0.817 1.12 1.04 0.767
SD 0.115 0.107 0.151 0.228 0.227 0.202 0.349 0.345 0.259
CoV 0.111 0.106 0.162 0.217 0.233 0.247 0.311 0.331 0.338
Max. 1.42 1.33 1.00 1.52 1.49 1.10 1.97 1.94 1.24
Min. 0.901 0.788 0.562 0.627 0.622 0.468 0.627 0.622 0.418

0.025

Mean 1.04 1.01 0.932 1.05 0.970 0.830 1.11 1.04 0.780
SD 0.110 0.103 0.150 0.217 0.218 0.201 0.340 0.336 0.261
CoV 0.103 0.102 0.158 0.207 0.224 0.242 0.305 0.324 0.335
Max. 1.40 1.32 1.00 1.49 1.47 1.13 1.94 1.91 1.28
Min. 0.947 0.782 0.568 0.636 0.630 0.474 0.636 0.631 0.443

0.05

Mean 1.03 1.01 0.938 1.04 0.969 0.853 1.08 0.996 0.785
SD 0.100 0.100 0.142 0.201 0.205 0.202 0.313 0.326 0.236
CoV 0.0968 0.0988 0.151 0.193 0.212 0.237 0.289 0.327 0.301
Max. 1.38 1.30 1.00 1.46 1.44 1.18 1.90 1.87 1.18
Min. 0.982 0.771 0.580 0.648 0.643 0.483 0.649 0.644 0.484

0.075

Mean 1.03 1.01 0.941 1.06 0.971 0.875 1.07 1.01 0.807
SD 0.0960 0.0980 0.136 0.218 0.192 0.204 0.300 0.299 0.238
CoV 0.0930 0.0970 0.144 0.206 0.198 0.233 0.280 0.296 0.295
Max. 1.36 1.28 1.00 1.53 1.41 1.23 1.85 1.83 1.24
Min. 0.964 0.762 0.592 0.677 0.677 0.493 0.661 0.656 0.494

0.1

Mean 1.03 1.01 0.9441 1.03 0.974 0.893 1.07 0.993 0.828
SD 0.0920 0.0968 0.130 0.169 0.179 0.205 0.289 0.296 0.241
CoV 0.0896 0.0959 0.137 0.163 0.184 0.229 0.271 0.298 0.291
Max. 1.34 1.27 1.00 1.40 1.38 1.28 1.81 1.79 1.29
Min. 0.949 0.754 0.603 0.729 0.701 0.502 0.671 0.666 0.503

0.25

Mean 1.02 1.01 0.961 1.01 0.989 0.965 1.05 0.986 0.947
SD 0.0770 0.0796 0.0946 0.116 0.131 0.204 0.218 0.229 0.271
CoV 0.0757 0.0791 0.0985 0.115 0.132 0.212 0.208 0.233 0.287
Max. 1.24 1.19 1.00 1.24 1.22 1.43 1.60 1.58 1.56
Min. 0.879 0.777 0.673 0.784 0.668 0.556 0.810 0.666 0.560
where φi is the ith-floor element of the mode shape/displacement
vector, andφr is the element corresponding to the roof for the same
vector. For ESS2, the peak interstorey drift demand is obtained
from an SRSS combination of individual modal demands after
applying a proper ground motion scaling factor for each mode:

∆mi =

−
n

[
(φin − φi−1,n)/hi

φrn

]
Dmn

2

(20)

where the subscript n denotes an nth modal parameter. Like in the
previous case studies, the first twomodes are used for ESS2 for the
three-storey frame and the first five modes are combined for ESS2
for the nine- and twenty-storey frames.∆mi fromEqs. (19) (or (20))
is used in Eq. (17) to obtainDPA–ES. The∆yi and∆ui values for all ESS
are based on the NSPA of the MDOF model.

Case studies for this definition of DPA are based on the same
three-, nine-, and twenty-storey framed structures, with µ = 4, 6,
and 7.5, and β ranging from 0.01 to 0.25, as in Section 5. Bias factor
(N) statistics are obtained for the same set of scaled records aswere
mentioned in the previous two case studies. A sample of what the
bias values are for individual earthquakes is presented in Table 11
for the three-storey frame and β = 0.25 for all the ESS and all µ
values. The summaries of the bias statistics for DPA based on the
maximum interstorey drift ratio are presented in Tables 12–14, for
all the β values considered. It is observed that for the three-storey
frame, all three ESS provide very good estimations of the actual
damage index (that is, DPA–M). The mean bias values are close to
1.0 and the coefficients of variation are low. This is expected as for
the three-storey frame, the first mode dominates the vibration and
there is not a significant difference between the three ESS for this
frame. In addition, themaximum interstorey drift ratio is very close
to the maximum global drift ratio, which is defined as the ratio of
themaximum roof displacement to the height of the frame. On the
basis of the case study frame and selected records, the ESS are as
effective in estimating the damage index based on the maximum
interstorey drift ratio as they are for the global DPA used in the
previous case studies. Like for those two case studies, it is observed
that ESS1 and ESS2 provide slightly better estimates than ESS3. For
the nine- and twenty-storey frames, however, there are significant
differences among the statistics for the three different ESS. From
a mean bias perspective, ESS2 provides the best results. The mean
bias values for this ESS are in the same range for the three-, nine-
and twenty-storey frames. ESS1 shows an underestimation of the
actual DPA, while ESS3 shows an overestimation, in all cases for
the nine- and twenty-storey frames. However, ESS3 gives better
estimates compared to ESS1. ESS2 and ESS3 give low CoV values as
well. Sample plots are provided in Figs. 6–8, for β = 0.025, for all
the frames.

These results indicate that the inclusion of the higher mode
effects (in ESS2) pay off for DPA based on the maximum interstorey
drift ratio, particularly for the high-rises. In fact, ESS2 estimates
are better for the DPA based on the maximum interstorey drift
compared to the estimates for DPA based on the maximum roof
displacement. This should be evident from a comparison of the
mean and standard deviation/CoV of bias between Tables 9, 10,
13 and 14. For the twenty-storey frame, considering all the µ and
β values, themean bias varies in a narrow range of 0.995–1.07, and
the maximum CoV value is only 0.278 (Table 14). This implies that
ESS2 is very effective in estimating the DPA demands for high-rises,
even when the damage index is based on a storey-level behaviour.
Looking into the details of the DPA estimates, one can see why the
ESS2 estimates are better for this case study. The primary reason
for this is that for many of the eleven scaled records used for the
twenty-storey building, DPA based on the maximum interstorey
drift reaches (or would exceed, if it was not upper bounded) 1.0,
signifying collapse. For such earthquakes, ESS2 (like ESS3, most of
the time) accurately predicts the DPA demand (DPA–M = DPA–ES =

1.0). This reduces the CoV and brings the mean bias very close
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Fig. 6. Sample bar charts for the bias (N) in estimating DPA based on the maximum interstorey drift ratio for the three-storey frame.
Fig. 7. Sample bar charts for the bias (N) in estimating DPA based on the maximum interstorey drift ratio for the nine-storey frame.
Fig. 8. Sample bar charts for the bias (N) in estimating DPA based on the maximum interstorey drift ratio for the twenty-storey frame.
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Table 13
Bias (N) statistics summary for the nine-storey building with varying β values, for DPA based on the maximum interstorey drift.

β µ = 4.0 µ = 6.0 µ = 7.5
ESS1 ESS2 ESS3 ESS1 ESS2 ESS3 ESS1 ESS2 ESS3

0.01

Mean 1.61 1.12 0.885 1.63 1.13 0.787 1.63 1.13 0.753
SD 0.520 0.178 0.129 0.497 0.181 0.151 0.504 0.182 0.145
CoV 0.323 0.159 0.146 0.305 0.160 0.192 0.310 0.161 0.193
Max. 2.66 1.53 1.00 2.66 1.53 1.00 2.66 1.53 1.00
Min. 1.00 0.889 0.670 1.00 0.889 0.575 0.900 0.889 0.531

0.025

Mean 1.61 1.11 0.892 1.63 1.13 0.793 1.63 1.13 0.760
SD 0.517 0.174 0.127 0.492 0.172 0.149 0.497 0.177 0.145
CoV 0.322 0.156 0.142 0.302 0.152 0.188 0.306 0.156 0.190
Max. 2.65 1.52 1.00 2.64 1.52 1.00 2.64 1.52 1.00
Min. 1.00 0.893 0.674 1.00 0.894 0.586 0.915 0.894 0.535

0.05

Mean 1.60 1.11 0.902 1.63 1.13 0.803 1.62 1.13 0.772
SD 0.510 0.167 0.123 0.483 0.166 0.147 0.486 0.168 0.144
CoV 0.319 0.150 0.136 0.297 0.146 0.183 0.299 0.149 0.187
Max. 2.62 1.50 1.00 2.61 1.50 1.00 2.61 1.50 1.00
Min. 1.00 0.900 0.681 1.00 0.901 0.595 0.939 0.902 0.542

0.075

Mean 1.59 1.11 0.911 1.63 1.13 0.814 1.62 1.13 0.773
SD 0.503 0.158 0.119 0.475 0.164 0.143 0.475 0.165 0.163
CoV 0.317 0.143 0.131 0.292 0.145 0.176 0.292 0.146 0.211
Max. 2.59 1.47 1.00 2.58 1.48 1.00 2.58 1.48 1.00
Min. 1.00 0.906 0.687 1.00 0.908 0.623 0.963 0.909 0.452

0.1

Mean 1.58 1.10 0.918 1.62 1.13 0.820 1.62 1.12 0.796
SD 0.495 0.145 0.114 0.470 0.156 0.141 0.466 0.134 0.144
CoV 0.314 0.132 0.124 0.290 0.138 0.172 0.287 0.119 0.181
Max. 2.57 1.42 1.00 2.56 1.46 1.00 2.55 1.34 1.00
Min. 1.00 0.912 0.694 1.00 0.914 0.615 0.988 0.915 0.555

0.25

Mean 1.50 1.06 0.950 1.60 1.12 0.868 1.61 1.09 0.850
SD 0.469 0.0890 0.0947 0.444 0.144 0.115 0.429 0.220 0.134
CoV 0.312 0.0836 0.100 0.278 0.128 0.132 0.266 0.201 0.157
Max. 2.43 1.29 1.00 2.41 1.38 1.00 2.40 1.38 1.01
Min. 1.00 1.00 0.732 1.00 0.944 0.723 1.00 0.470 0.595
Table 14
Bias (N) statistics summary for the twenty-storey building with varying β values, for DPA based on the maximum interstorey drift.

β µ = 4.0 µ = 6.0 µ = 7.5
ESS1 ESS2 ESS3 ESS1 ESS2 ESS3 ESS1 ESS2 ESS3

0.01

Mean 1.85 1.01 0.979 2.06 1.05 0.903 2.08 1.07 0.897
SD 0.946 0.189 0.101 0.966 0.292 0.145 0.941 0.297 0.152
CoV 0.512 0.186 0.103 0.469 0.278 0.161 0.452 0.276 0.170
Max. 4.32 1.33 1.08 4.32 1.67 1.08 4.32 1.67 1.08
Min. 1.00 0.684 0.683 1.00 0.584 0.658 1.00 0.584 0.658

0.025

Mean 1.83 1.01 0.979 2.05 1.05 0.905 2.07 1.07 0.899
SD 0.940 0.185 0.100 0.961 0.289 0.145 0.936 0.293 0.153
CoV 0.513 0.183 0.102 0.469 0.275 0.161 0.452 0.273 0.170
Max. 4.31 1.32 1.09 4.31 1.66 1.09 4.31 1.66 1.09
Min. 1.00 0.686 0.687 1.00 0.586 0.660 1.00 0.586 0.660

0.05

Mean 1.81 1.009 0.981 2.03 1.05 0.908 2.05 1.07 0.902
SD 0.931 0.178 0.0994 0.951 0.284 0.146 0.928 0.287 0.154
CoV 0.515 0.177 0.101 0.467 0.270 0.161 0.452 0.268 0.171
Max. 4.29 1.30 1.09 4.29 1.64 1.10 4.29 1.64 1.10
Min. 1.00 0.689 0.693 1.00 0.589 0.663 1.00 0.589 0.663

0.075

Mean 1.79 1.00 0.982 2.02 1.05 0.912 2.04 1.07 0.906
SD 0.923 0.172 0.0986 0.942 0.279 0.147 0.920 0.281 0.156
CoV 0.517 0.171 0.100 0.467 0.266 0.161 0.451 0.264 0.172
Max. 4.27 1.29 1.10 4.26 1.62 1.11 4.26 1.62 1.11
Min. 1.00 0.692 0.700 1.00 0.592 0.666 1.00 0.593 0.666

0.1

Mean 1.76 1.01 0.983 2.01 1.05 0.916 2.02 1.06 0.909
SD 0.916 0.166 0.0979 0.934 0.274 0.148 0.913 0.275 0.157
CoV 0.519 0.165 0.100 0.466 0.262 0.161 0.451 0.259 0.173
Max. 4.25 1.27 1.11 4.24 1.60 1.12 4.24 1.60 1.12
Min. 1.00 0.694 0.706 1.00 0.595 0.668 1.00 0.596 0.669

0.25

Mean 1.65 0.995 0.991 1.93 1.04 0.936 1.94 1.05 0.929
SD 0.883 0.133 0.0953 0.892 0.247 0.154 0.876 0.246 0.168
CoV 0.536 0.134 0.0962 0.461 0.238 0.164 0.451 0.235 0.181
Max. 4.14 1.19 1.16 4.13 1.50 1.17 4.12 1.50 1.17
Min. 1.00 0.709 0.743 1.00 0.613 0.684 1.00 0.614 0.665
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Table 15
Bias (N) statistics for ESS2 for the twenty-storey building consideringµ = 10.0, for
DPA based on the maximum interstorey drift.

β

0.01 0.025 0.05 0.075 0.1 0.25

Mean 1.11 1.10 1.10 1.09 1.08 1.06
SD 0.307 0.302 0.294 0.287 0.282 0.252
CoV 0.277 0.274 0.268 0.263 0.262 0.238
Max. 1.67 1.66 1.64 1.62 1.60 1.49
Min. 0.584 0.586 0.590 0.593 0.596 0.615

to the ideal value. As the ductility capacity increases from 4.0 to
7.5, the spread becomes greater as the lesser number of records
leads to DPA = 1.0. Table 15 shows how the quality of estimation
for ESS2 for β = 0.25 deteriorates further for µ = 10.0. The
interstorey drift ductility capacity of 10.0 is based on an average∆yi
of 0.64% for the twenty storeys and an interstorey drift capacity of
0.06 for high-rise ordinary moment frames as per FEMA-350 [49].
The numbers of records for which DPA = 1.0 are 8, 3, 2, and 1,
respectively, for µ = 4.0, 6.0, 7.5, and 10.0. However, even for
µ = 10.0, where only one out of eleven records has DPA = 1.0,
the estimates are very good. Therefore, it can be concluded that
ESS2 provides very good estimates for DPA based on the maximum
interstorey drift for the twenty-storey structure.

7. Concluding remarks

This paper proposes various equivalent systems for estimating
the Park–Ang damage index for building frame structures, and
measures the effectiveness of these equivalent system schemes
through a detailed statistical study. Two different definitions
of the damage index are considered: based on the maximum
roof displacement and the maximum interstorey drift demands.
The case studies include low-, mid- and high-rise frames, three
different values of the ductility capacity and five different β values
ranging from 0.01 to 0.25. On the basis of the summary statistics,
the following can be concluded for the equivalent system schemes
proposed.
• ESS1: This equivalent system is very easy to construct as it

is based on a single pushover analysis using the fundamental
mode shape. It provides the best estimates among all the ESS
for DPA based on the maximum roof displacement, across low-
to high-rise frames, and different µ and β values considered.
However, ESS1 is found to provide the poorest estimates forDPA
based on themaximum interstorey drift (except for the low-rise
building, where it can be used).

• ESS2: This equivalent system is not very easy to construct as
it considers multiple single-degree-of-freedom systems on the
basis of multiple pushover analyses. It cannot be recommended
for everyday design/evaluation purposes, as it involves a lot
of computation. However, this ESS provides the best estimates
for DPA based on the maximum interstorey drift and these
are excellent estimates considering performances of any kind
of equivalent system. These estimates are also significantly
better than those of the other two ESS. The first five modes
are found adequate for inclusion in ESS2 for these estimates
(considering just the first three modes is sufficient, mostly).
ESS2 is not recommended for DPA based on the maximum roof
displacement as ESS1 is an easier and better solution for that.

• ESS3: ESS3 can be constructed easily since it is based on a single
pushover analysis using the familiar IBC 2006 recommended
distribution. Generally, this ESS never gives the best estimates
among the three ESS for any case. However, it can be
recommended for estimating DPA based on the maximum
interstorey drift for high- and mid-rise frames, where ESS1
yields very bad estimates and the user may find ESS2 to be too
computation-heavy to use.
These recommendations can be used to select the proper ESS
for estimating DPA for both performance evaluation and design
purposes. The primary advantage of using these approximate
schemes is that these can use response spectra to estimate the
demand on the structure. The approximate procedures also reduce
computation by a significant margin compared to the NLRHA of
MDOF systems for finding the actual DPA, although not to the
same extent for all the ESS proposed here. The mean and CoV of
the bias can be used to statistically correlate the actual and the
approximate damage indices. A better statistics can be generated
following the method used here for a wider variety of frames. The
presented bias statistics may be sensitive to the records selected.
It would be better if a very large set of ground records were
used to generate these statistics and these generalized statistics
can be directly adopted for everyday use. Alternatively, similar
statistics can be generated specifically for earthquakes of a certain
type (for example, near-field earthquakes) only and/or for ground
characteristics of a certain type. The bias statistics can also be
presented from the perspective of the fundamental period of the
structure instead of relating it to the building height. This research
should be extended to degrading systems such as RC frames and
shear wall structures to make it more general. Future extensions
should also focus on even further localized definitions of the
Park–Ang damage index.
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