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A simple isoparametric finite element formulation based on a higher-order displacement 
model for dynamic analysis of multi-layer symmetric composite plates is presented with 
an explicit time marching scheme. As is well-known, the Kirchhoff plate theory is 
inadequate to describe the propagation of waves in plates. The first-order shear deformable 
Mindlin plate theory hitherto considered was adequate for determining responses to 
dynamic loads. The present higher-order theory which is more accurate than the Mindlin 
theory is applied, herein, for the evaluation of plate response to different types of dynamic 
loads. A special mass lumping scheme is adopted which conserves the total mass of the 
element and includes the effects due to rotary inertia terms. The parametric effects of the 
time step, finite element mesh, lamination scheme and orthotropy on the transient response 
are investigated. Several numerical examples are presented and compared with results 
from other sources. 

1. INTRODUCTION 

In recent years composite materials have been widely used, largely because of their 
superior mechanical properties such as combination of high stiffness and high strength 
with low density and potentially low unit cost. There exists a need for assessing the 
transient response of laminated plates. In this study emphasis is placed on establishing 
the credibility of a higher order shear deformable (or penalty) finite element for transient 
analyses, and in obtaining transient solutions to general composite plate problems. 
Apparently, this study constitutes the first in which the transient response of composite 
plates of arbitrary construction and finite dimensions has been analyzed by using a higher 
order theory. 

The following brief review of the literature on transient response of elastic plates 
provides the necessary background. The theory of thin laminated composite plates has 
been established by Lekhnitskii [l], Reissner and Stavsky [2] Dong, Pister and Taylor 
[3], and Stavsky [4]. Reismann and his colleagues [S-7] analyzed a simply supported, 
rectangular, isotropic plate subjected to a suddenly applied uniformly distributed load 
over a square area of the plate. Rock and Hinton [8] presented a transient finite element 
analysis of thick and thin isotropic plates. Excellent agreement of the finite element 
solutions with the analytical solutions of Reismann and Lee [5] was obtained. Akay [9] 
determined the large deflection transient response of isotropic plates using a mixed finite 
element. All of these studies were confined to homogeneous, isotropic plates. 

Moon [ 10,111 investigated the response of infinite laminated plates subjected to 
transverse impact loads at the centre of the plate. Chow [12] employed the Laplace 
transform technique to investigate the dynamic response of orthotropic laminated plates. 
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Wang, Chou and Rose [13] applied the method of characteristics to unsymmetrical 
orthotropic laminated plates. Sun and his colleagues [14-171 employed the classical 
method of separation of variables combined with the Mindlin-Goodman [ 181 procedure 
for treating time-dependent boundary conditions and/or dynamic external loadings. These 
papers dealt with plates under cylindrical bending. Recently, Reddy [19,20] presented 
closed form and finite element results for the transient analysis of layered composite 
plates. All of these investigations were based on either the classical (Kirchhoff) plate 
theory or the first order shear deformable (Mindlin-Reissner) theory. 

Theories based on realistic displacement models which give rise to non-linear distribu- 
tion of in-plane normal strains and transverse shear strains have been developed by 
Murthy [21], and Phan and Reddy [22]. In these works, although the zero transverse 
shear stress conditions on the top and bottom plate surfaces are satisfied, the approaches 
involve the computationally inefficient C’ finite element formulations. Lo, Christensen 
and Wu [23] and Kant [24] have, in addition, included the effects of transverse normal 
strain and stress in their theories. Kant, Owen and Zienkiewicz [25] have presented a Co 
finite element formulation of the higher order theory. Kant and Pandya [26-311 have 
extended the above formulation for generally orthotropic plates. All of these papers were 
confined to static analyses. 

This paper specifically deals with the application of a Co isoparametric finite element 
for transient analysis of multi-layer symmetrically laminated composite plates based on 
a higher order displacement model theory. The bi-quadratic Lagrangian nine noded 
quadrilateral element is used together with the selective integration technique for the 
numerical computations. 

2. THEORY 

The present higher order shear deformable theory for symmetrically laminated plates 
is developed by assuming the displacement field in the following form: 

n(x, Y, z, t) = z&(x, Y, 1) + z3@,*(x, Y, t), 

0(x, Y, z, r) = z@,(x, Y, t) + z30,*(x, Y, t), w(x, Y, z, r) = wo(x, .Y, t), (1) 

in which t is the time, w. represents the transverse displacement of the midplane and f&, 
6, are the rotations of the normals to the midplane about the y and x axes respectively. 
The parameters e,*, 0,* are the higher order terms which account for the flexural mode 
of deformation in the Taylor’s series expansion and are also defined at the midplane. 

By substitution of relations (1) in the strain displacement equations of the classical 
theory of elasticity, the following relationships are obtained: 5 / rxy 

[! I[ zKx+z3K, * ! zK,,+z~K;~ 
Ey 1 r,z = zK,+z3K,* i @,+z'@,* . 1 (24 Ez I Yxz 0 j @,+z'@,* 

Here, 

where t denotes the transpose. The stress-strain relations for the Lth lamina in the laminate 
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co-ordinate axes (x-y-z- (see Figure 1) are written as 

where 

u = {UX, o.v, TX?, r,z, TX,]‘, e = {e,, E?’ -& 9 -Yyz 9 7XL )’ (3c) 

are the stress and linear strain vectors with reference to the laminate axes and Qij’s are 
the transformed reduced elastic coefficients in the plate (laminate) axes of the Lth lamina. 
The transformation of the stresses/strains between the lamina and the laminate coordinate 
systems follows the usual transformation rule [32]. 

The constitutive relations involving bending moments and shear forces are defined as 
follows: 

(4b) 

After integration, these relations are written in a matrix form which defines the 
stress-resultant/strain relations of the laminate: 

(5,6) 

Here 

Figure 1. Laminate geometry with positive set of lamina/laminate reference axes, displacement components, 
and fibre orientation. 
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?I,& QI& Qdh Q,,Hs QnHs QnH5 
QzzH, Q&x Q,zHs Q&s Qz~Hs 

Q3A QnK Qzdfs Q&s 
QIIW Qdb Q,dG 

Q2db Q23 H7 
symmetric Q&7 

Qd% Lth’ayer 

a= i QdT Q&b Qa& 
L=l Q~~H~ Qd+ ’ 

Q.&s I 
In these relationships, n defines the number of layers and 

Hi=(l/i)(hL+,-h’,), i = 1,3,5,7. 

2.1. FINITE ELEMENT DISCRETIZATION 

Lth layer 

9 (8) 

(9) 

(10) 

Finite element spatial discretization schemes, when applied to dynamic transient struc- 
tural analysis problems, result in a set of ordinary differential equations. In the absence 
of damping these equations take the form 

&fi(t)+Ka(t)=P(t), (11) 
in which the dots define differentiation with time t, a(t) is the nodal displacement vector, 
&4 is the mass matrix and P(t) is the vector of forces which varies with time, t. 

In C” finite element theory, the continuum displacement vector within the element is 
discretized such that 

a(t) = Y N(x, .Yh(t), 
i=l 

(12) 

in which the term Ni(x, y) is the interpolating (shape) function associated with node i, 
ai( t) is the value of a(t) corresponding to node i and NE is the number of nodes in the 
element. 

Knowing the generalized displacement vector a(t) at all points within the element, one 
can express the generalized strain vector E at any point as 

e=y 
i=l 

0 aNi/ax 0 0 
0 0 aNi/@ 0 

0 aNlay aNi/ax 0 

0 0 
0 0 
0 0 

aNi/ax N 
aN/W 0 

0 0 

0 0 

0 aN,/ax 
0 0 

0 aNlay 
0 0 

N 0 

0 3Ni 
0 0 

0 
0 
0 
0 

aNi/a, 
aN,/ax 

0 

0 

0 

3Ni 

I , (134 

or 

E = y Biai( t), 
i=l 

(13b) 
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where 

The computation of the element stiffness matrix is economized by explicit multiplication 
of the &, D and Bj matrices instead of carrying out the full matrix multiplication of the 
triple product. Due to the symmetry of the stiffness matrix, only blocks lying on one side 
of the main diagonal are formed [33]. 

The mass matrix, &f, in equation (11) is given by 

&I= iJ/‘rjiN d(Area) (I4a) 

where 

(14b) 

in which I,, Zz and ZJ are normal inertia, rotary inertia and higher order inertia terms 
respectively. These are defined as 

(I4c) 

where pL is the material density of the Lth layer. 
The ordinary differential equation (11) is solved by using an explicit central difference 

scheme. This scheme can be written as 

a n+1=11/1-‘(At)2(-~a”+Pn)-an-‘+2a”, (15a) 

where superscripts n - 1, n, n + 1 denote three successive time stages and At is the time 
step length. The main advantage of this approach is that if&f is diagonal, the computation 
at each time step is trivial. Unfortunately, for the parabolic isoparametric element used 
in the spatial discretization, &4 is not diagonal and some mass lumping scheme must be 
used. A special mass diagonalization due to Hinton et al. [34] has been used here. For 
clarity, this can be stated as follows: (1) the diagonal coefficients of the consistant mass 
matrix MC = I, NT@@ dA is computed; (2) the total mass of the element, M’ = I, p d V = 
J, pt dA, is also computed; (3) a number, S, is formed by adding the diagonal coefficients 
ME associated with translation (but not rotation); (4) the diagonal coefficients of the 
mass matrix, Mz are scaled by multiplying them by the ratio Me/S, thus preserving the 
total mass of the element. 

After the mass matrix has been diagonalized the equation (15a) can be written as 

a:+’ ~[(dt)~/M,~] 
I 

(15b) 

If the values of a0 and a0 are prescribed as initial conditions, a special starting algorithm 
can be written by noting that 

a0 = (a’ -a-‘)/2Ar, (15c) 

and eliminating a-’ from equation (15b). 



468 MALLIKARJUNA AND T. KANT 

2.2. NUMERICAL EXAMPLES AND DISCUSSION 

In the present study the nine-noded quadrilateral isoparametric element was employed. 
The selective integration, that is, the 2 x 2 Gauss rule was used to integrate the shear 
energy terms and the 3 x 3 Gauss rule was used to integrate the bending and inertia terms. 
All the computations were carried in single precision on a CDC CYBER 180/840 
Computer. Due to the biaxial symmetry of the problems discussed, only one quadrant 
of the plate was analyzed except for angle-ply plates which were analyzed by considering 
full plates with 4x4 mesh size (using zero initial conditions). 

The following two sets of data were used in obtaining the numerical results: DATA 1: 
square plate a = 6 = 25 cm, h = 5 cm, E,/E* = 25, p = 8 x 10m6 N s2/cm4, v = O-25, E2 = 
2-l x lo6 N/cm’, Glz = G1, = G2, = 0.5 EZ; DATA 2: plate with a = XI? and b = 1, h = 0.2, 
p = 1, v = O-3, E2 = 1 a0 (non-dimensional). 

In order to investigate the numerical convergence and accuracy of the transient 
behaviour, a simply supported isotropic and orthotropic (O”/900/900/W) plate with a 
suddenly applied uniform pulse loading was analyzed with DATA 1. The plate geometry, 
a typical finite element mesh, boundary conditions of the quarter model and applied 
loading are shown in Figure 2. 

Tables 1 and 2 present centre deflection and normal stress for different meshes and 
time steps. From these tables it is found that the safe estimate of the critical time step 
lengths given by Leech [36], Tsui and Tong [37] and Hinton [38] are valid only for 
isotropic plates. The estimate of the critical time step is crucial in transient analysis of 
fibre reinforced composite thick plates. The estimate of the critical time step length of 
the transient solution of Mindlin plates given by Tsui and Tong [37] and Hinton [38] 

a=25cm 

(a) 

(e) 

Figure 2. Geometry, bondary conditions and loading for DATA 1 and DATA 2. (a) DATA 1; (b) DATA 2; 
(c) simply supported boundary conditions; (d) clamped boundary conditions; (e) loading. 
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was used with minor modification in this study. The critical time step length is thus given 
as 

PC1 - mRE*) 
1 

l/2 

At=Ax 
2+0~83(1-v){1+1~5(A~/h)~} ’ (16) 

where R = E,/ E2, and Ax is the smallest distance between adjacent nodes in any parabolic 
element used. E, and E2 are the Young’s moduli in the 1 and 2 directions respectively 
(see Figure 1). 

In the present work the solution obtained with At = 0.25 ps was used for all the cases. 
The bound on the highest eigenvalue can be simply obtained by consideration of an 
individual element. This is established by an important theorem proposed by Irons [39] 
which proves that the highest system eigenvalue must always be less than the highest 
eigenvalues of the individual elements. This allows a very easy estimate of critical time 
steps. 

Figure 3 shows a comparison of the plot of the centre deflection versus time with that 
of Akay [9]. The small phase difference between the present solution and that of Akay 
can be attributed to the difference in the formulations. The classical plate theory (i.e., 
not accounting for transverse shear strains) solution (from reference [35]) is also given 
in the figure to show the influence of the shear deformation on the centre deflection. 

1 I I I I I I 
0 80 160 240 320 400 480 560 640 

Time, tips) 

Figure 3. Centre deflection versus time for a simply supported square plate subjected to uniform pulse loading 
(DATA 1). -, Present, At=0.25 as; -.-, mixed FEM [9], At= 5.0 ps; ---, classical solution [35], 
At = 5.0 p. 

In order to further validate the present theory, another problem for which the analytical 
solution exists has been solved. The problem consists of a simply supported rectangular 
plate (with DATA 2) subjected to a uniform pulse loading on a square (side = 0.2b) area 
at the centre of the plate (see Figure 2). A non-uniform, 4 x 4 mesh of elements (with 
Ar = O-02) was employed. The problem was also solved analytically by Reismann and 
Lee [5], and by using the finite element method by Rock and Hinton [8]. A comparison 
of the non-dimensional centre deflection and non-dimensionalized bending moments 
(a,,> obtained by the present theory and by Reismann and Lee [5] is shown in Figures 
4(a) and 4(b). The present finite element solution for the centre deflection is in excellent 
agreement with the thick plate solution. Since the bending moment in the present study 
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2.4. v , I , r , , , , , , 

(a) 

Non-dimensional time 

Figure 4. Non-dimensionalized centre deflection and bending moment versus time for simply supported, 
rectangular, isotropic plate under suddenly applied patch loading (DATA 2, 4 x 4, At = 0.02, r? = wEah/qob3, 
if! = 12aM,/q,b*h*, T= t/bm). (a) Central deflection values; (b) central moment values. --, Present 
FEM higher order theory; 0, analytical [5] thick plate theory; - - -, classical plate theory. 

P 
* f 0.3 

i 
.s 
4 0.2 

B 

g 
0.1 

5 
” 0 

-0.05 

0.7 I , , , I , I , I , , , I , 

- (b) 

0.6- 

240, , , , , , , , , , , , , , , 

-40 - 
I I I I I I I I I I I1 I 

0 40 80 I20 160 200 240 280 

Figure 5. Centre deflection (a), axial displacement (b), and centre normal stress (c) layer (0°/900/00) clamped, 
square plate subjected to suddenly applied pulse loading. -, Present, At =0*25 es; ---, Mindlin [20], 
At=5ps. 
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Tame, t (ps) 

Figure 6. Centre deflection (w,,) and axial displacements (u and U) (a), and stresses (b), versus time for a 
five layer (60”/-30”/0”/-30”/60”) simply supported plate under impulsive loading (q = qOH( t - to), DATA 1, 
full plate analyzed with 4x4 mesh, At = 5.0 ps, t = 10 KS, q. = 10 N/cm’). For (a): -, w,; ---, u; -. -, 
v; for (b): -, u:Op of second layer; -. -, uy of first layer; - - -, T!?,&’ of first layer. 

was calculated at the Gauss points, it is not expected to match exactly with that at the 
centre of the plate. 

Next, results for plates of orthotropic materials and layered composite plates are 
discussed. Figure 5 shows the centre deflection (w), the in-plane displacements (u, V) at 
x = 6.25 cm and y = 9.375 cm, and the normal stress for a three-layer (O”/900/Oo) clamped 
square plate (DATA 1) subjected to a suddenly applied pulse loading. A comparison 
with the Mindlin solution [20] is also shown in Figure 5. In the present displacement 
model, the in-plane displacements u and u at any point include higher order terms z38? 
and z38; which contribute to the cubic variation of planar deformations across the 
thickness. These additional contributions to the planar deformations are reflected in the 
results presented in Figure 5(b). From this plot it is clear that Mindlin’s plate theory 
predicts significantly lower values of displacements and stresses. Figure 6 shows the centre 
deflection, the in-plane displacements at x = 6.25 cm and y = 9.375 cm, and the centre 
normal stress for a five layer (60”/-30”/0”/-30”/60”) simply supported square plate 
(DATA 1) subjected to an impulsive loading (q. = 10 N/cm*, t,, = 10 ps) at the centre. 
Since no damping or internal friction is included in the present model the solutions do 
not decay with time. 

3. CONCLUSIONS 

The simple Co isoparametric formulation of an assumed higher-order displacement 
model employed herein is stable and accurate in predicting the transient response of 
composite plates. In contrast to the first-order shear deformation theory, the present 
higher order theory does not require a shear correction coefficient due to more realistic 
representation of the cross-sectional deformation. However, on the basis of the excellent 
agreement of the present results with analytical results for isotropic plates, it is fair to 
say that the theory is accurate in predicting the transient response of composite plates. 
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Current and future investigations on this subject should be directed to forced vibration 
and impulse loadings in composite plates with damping included. Also, extension of 
these analyses to non-linear transient response of composite plates is awaiting attention. 
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