Fundamental parameters of traffic flow

Tom Mathew
Overview

• What is traffic engineering
• How can the traffic be described?
• What are the fundamental parameters of traffic
Introduction

• **Traffic flow**
 – Complex movements
 – Stochastic in nature

• **Traffic Engineering**
 – Mange traffic facilities
 – Means: by modeling
 • Driver, Vehicle,
 • Road, & their interactions
Traffic stream parameters

- Traffic characterization
 - Efforts to describe traffic
 - Measurable parameters from field

- Parameters
 - Quantitative (for modeling)
 - Qualitative (for evaluation)

- Characteristics
 - Macroscopic
 - Microscopic
Traffic stream parameters

• Fundamental parameters
 – Speed
 – Flow
 – Density

• Derived parameters
 – Time headway
 – Space headway
 – Travel time
Speed

• A quality measurement of travel
 – Drivers and passengers perception of journey
 – Rate of motion in distance per unit of time
 – Speed or velocity is given by

\[v = \frac{d}{t} \]

– where

 • \(v \) is the speed of the vehicle in m/s
 • \(d \) is the distance traveled in meters
 • \(t \) time in seconds
Speed

• Various types
 – Spot speed
 – Running speed
 – Journey speed
 – Time mean speed
 – Space mean speed
• **Spot Speed**

 – Instantaneous speed at a point

 – Application:
 • Geometrical design
 • Location and size of signs
 • Design of signals
 • Safe speed
 • Speed zoning
 • Accident analysis
 • Congestion analysis
Speed

• **Spot Speed measurement**
 – Enoscope
 – Pressure contact tubes
 – Radar speedometer
 – Time-lapse photography
 – Video image processing
Speed

- **Running speed**
 - Average speed over a stretch of road
 - Does not consider stop time
 - Takes care of variability in traffic and geometric conditions
Speed

• **Journey speed**
 – Effective speed between two points
 – Journey speed < Running speed
 • journey follows a stop-go traffic
 – Journey speed ≈ Running speed
 • comfortable travel conditions.
Time and space mean speeds

- **Time mean speed** v_t

- **Space mean speed** v_s
Time and space mean speeds

- **Time mean speed** v_t
 - Average speed of all the vehicles passing a point on a highway over time period
 - Mean speed of vehicles over a period of time at a point in space
 - Point measurement
Time and space mean speeds

- **Space mean speed** v_s
 - Average speed of all the vehicles in a given section of a highway at a given time instant
 - Mean speed over a space at an instant

- **Relationship**
 - $v_t \neq v_s$ normal traffic
 - $v_t = v_s$ if all vehicles have same speed
Flow

• Definition

– Number of vehicles that pass a point on a road during a specific time interval

\[q = \frac{n_t}{t} \]

– \(n_t \) no. of vehicles passing a road section
– \(t \) time duration in hours
– \(q \) the flow vehicles/hour
Flow

- **Temporal variations**
 - Monthly
 - Weekly
 - Daily
 - Hourly

- **Units**
 - Vehicle/day
 - Vehicle/hour
 - Vehicle/second
Flow

• **Type of averaging**
 – Average Annual Daily Traffic (AADT)
 – Average Annual Weekday Traffic (AAWT)
 – Average Daily Traffic (ADT)
 – Average Weekday Traffic (AWT)
Flow

- **Average Annual Daily Traffic (AADT)**
 - The average 24-hour traffic volume at a given location over a full 365-day year
 - Total number of vehicles passing the site in a year divided by 365
Flow

• **Average Annual Weekday Traffic (AAWT)**
 – The average 24-hour traffic volume occurring on weekdays over a full year
 – It is computed by dividing the total weekday traffic volume for the year by 260
Flow

• **Average Daily Traffic (ADT)**
 – An average 24-hour traffic volume at a given location for a period of time less than a year
 • Six months or a season
 • A month or week
 – ADT is a valid only for the period over which it was measured
Flow

- **Average Weekday Traffic (AWT)**
 - Average 24-hour traffic volume occurring on weekdays for some period of time less than one year
 - Six months or a season
 - A month or week
 - AWT is a valid only for the period over which it was measured
Flow

- **Measurements**
 - manual counting
 - detector/sensor counting
 - moving-car observer method
Density

- **Definition**
 - Number of vehicles occupying a given stretch of road expressed as vehicles per km
 \[k = \frac{n_x}{x} \]
 - \(n_x \) number of vehicles in the stretch
 - \(x \) distance in km
 - \(k \) flow vehicles/km
Density

• **Importance**
 – Most perceived parameter by a driver
 – One of the level of service concept
 – Used in most of the traffic flow models
Derived parameters

- **Derived parameters**
 - Time headway or headway
 - related to flow
 - Distance headway or spacing
 - related to density
 - Travel time
 - related to speed
Derived parameters

- **Time headway**
 - Time difference between any two successive vehicles when they cross a given point
 - Adding all headways $\sum_{i=1}^{n_t} h_i = t$

- But flow is defined as
 \[q = \frac{n_t}{t} = \frac{n_t}{\sum_{i=1}^{n_t} h_i} = \frac{1}{h_{av}} \]

- Av. Headway = Inverse of flow
 \[h_{av} = \frac{1}{q} \]
Derived parameters

• **Distance headway**
 - Distance between corresponding points of two successive vehicles at any given time
 - Adding all the spacing \[\sum_{i=1}^{n_x} s_i = x \]
 - But density is defined as \[k = \frac{n_x}{x} = \frac{n_x}{\sum_{i=1}^{n_x} s_i} = \frac{1}{s_{av}} \]
 - Av. Spacing = Inverse of density \[s_{av} = \frac{1}{k} \]
Derived parameters

• **Travel time**

 – Inversely proportional to the speed

 – In practice, the speed of a vehicle fluctuates over time and the travel time represents an average measure
Time-space diagram

• **Trajectory**
 – A graph which gives position of vehicle with respect to time
 – The trajectory provide an intuitive, clear, and complete summary of vehicular motion in one dimension.
Time-space diagram

• Single vehicle
Time-space diagram

Distance (x) vs. Time (t)

- x_1
- x_2

Formula:

$$k = \frac{5}{x_1 - x_2}$$
Time-space diagram

\[q = \frac{4}{(t_2-t_1)} \]
Time-space diagram

Distance (x) vs. Time (t)

Spacing (S) and Headway (h)
Conclusion

• **Fundamental Parameters**
 – Flow or volume q
 – Density or concentration k
 – Speed: Time and Space mean v_s and v_t

• **Derived Parameters**
 – Headway h
 – Spacing s
 – Travel time t

• **Time-Space diagram**
Thank You

Questions?