Traffic stream models

Tom Mathew
Traffic stream models

• **Macroscopic**
 – Expression of the average behavior of the vehicles at the specific location and time

• **Mesoscopic**
 – Small group of traffic entities with activities and interactions

• **Microscopic**
 – Space-time behavior of the systems’ entities (i.e. vehicle and drivers)
Traffic stream models
Traffic stream models
Traffic stream models
Traffic stream models

• Macroscopic Stream Models
 – Greenshield's linear
 – Greenberg's logarithmic
 – Underwood's exponential
 – Pipe's generalized
 – Multi regime models
 • Two and Three regime
Greenshield's model

- Linear speed-density relationship

Relation between speed and density
Greenshield's model

• **Description**

\[v = v_f - \left(\frac{v_f}{k_j} \right) k \]

– \(v \) = mean speed
– \(k \) = density
– \(v_f \) = free flow speed
– \(k_j \) = jam density

\(k = 0 \) when density approaches zero, speed approaches free flow speed.

\[v_f = 80, \quad k_j = 200 \]
Greenshield's model

- **Relation between flow and density**

\[v = v_f - \left(\frac{v_f}{k_j} \right) k \]

\[q = k v \]

\[q = k \left[v_f - \left(\frac{v_f}{k_j} \right) k \right] \]

\[q = v_f k - \left(\frac{v_f}{k_j} \right) k^2 \]
Greenshield's model

• **Boundary conditions**
 – Maximum flow q_{max}
 – Density corresponding to max. flow k_o
 – Speed corresponding to max. flow v_o

• **Model parameters**
 – Jam density k_j
 – Free flow speed v_f
Greenshield's model

- **Derivation of** k_0
 - We have \[q = v_f k - \left(\frac{v_f}{k_j} \right) k^2 \]
 - Differentiating
 \[
 \frac{dq}{dk} = 0 \Rightarrow v_f - \frac{v_f}{k_j} \cdot 2k = 0 \\
 k = \frac{k_j}{2}
 \]
Greenshield's model

• Derivation of q_{max}

$$q_{\text{max}} = v_f \cdot \frac{k_j}{2} - \frac{v_f}{k_j} \cdot \left[\frac{k_j}{2} \right]^2$$

$$= v_f \cdot \frac{k_j}{2} - v_f \cdot \frac{k_j}{4}$$

$$= \frac{v_f \cdot k_j}{4}$$

• Derivation of v_o

$$v_0 = v_f - \frac{v_f}{k_j} \cdot \frac{k_j}{2}$$

$$v_0 = \frac{v_f}{2}$$
Greenshield's model

- **Relation between speed and flow**

\[v = v_f - \left(\frac{v_f}{k_j} \right) k \]

\[k = k_j - \left(\frac{k_j}{v_f} \right) v \]

\[q = k v \]

\[q = k_j v - \left(\frac{k_j}{v_f} \right) v^2 \]
Greenshield's model

- **Calibration**
 - Determination of model parameters
 - Free flow speed (\(v_f\))
 - Jam density (\(k_j\))

\[
v = v_f - \left[\frac{v_f}{k_j} \right] . k
\]

\[
y = a + bx
\]

Where \(x\) is density and \(y\) denotes speed.
Greenshield's model

• Calibration

– Using linear regression method

\[b = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2} \]

OR

\[a = \frac{n \sum_{i=1}^{n} xy - \sum_{i=1}^{n} x \sum_{i=1}^{n} y}{n \sum_{i=1}^{n} x^2 - (\sum_{i=1}^{n} x)^2} \]

\[a \text{ is } \bar{y} - b\bar{x} \]
Greenshield's model

- **Example**
 - Calibrate Greenshields model using the data give in the table
 - Find the maximum flow
 - Find the density corresponding to a speed of 30 km/hr

<table>
<thead>
<tr>
<th>No</th>
<th>K</th>
<th>(\nu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>171</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>129</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>70</td>
<td>25</td>
</tr>
</tbody>
</table>
Solution

Greenshield’s model

Denoting \(y = \nu \) and \(x = k \), solve for \(a \) and \(b \) using equation 8 and equation 9. The solution is tabulated as shown below.

<table>
<thead>
<tr>
<th>(x(k))</th>
<th>(y(\nu))</th>
<th>((x_i - \bar{x}))</th>
<th>((y_i - \bar{y}))</th>
<th>((x_i - \bar{x})(y_i - \bar{y}))</th>
<th>((x_i - \bar{x})^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>171</td>
<td>5</td>
<td>73.5</td>
<td>-16.3</td>
<td>-1198.1</td>
<td>5402.3</td>
</tr>
<tr>
<td>129</td>
<td>15</td>
<td>31.5</td>
<td>-6.3</td>
<td>-198.5</td>
<td>992.3</td>
</tr>
<tr>
<td>20</td>
<td>40</td>
<td>-77.5</td>
<td>18.7</td>
<td>-1449.3</td>
<td>6006.3</td>
</tr>
<tr>
<td>70</td>
<td>25</td>
<td>-27.5</td>
<td>3.7</td>
<td>-101.8</td>
<td>756.3</td>
</tr>
<tr>
<td>390</td>
<td>85</td>
<td></td>
<td>-2947.7</td>
<td>13157.2</td>
<td></td>
</tr>
</tbody>
</table>

\(\bar{x} = \frac{\sum x}{n} = \frac{390}{4} = 97.5 \), \(\bar{y} = \frac{\sum y}{n} = \frac{85}{4} = 21.3 \). From equation 9, \(b = \frac{-2947.7}{13157.2} = -0.2 \) \(a = y - b \bar{x} = 21.3 + 0.2 \times 97.5 = 40.8 \) So the linear regression equation will be,

\[
\nu = 40.8 - 0.2k \tag{10}
\]

Here \(\nu_f = 40.8 \) and \(\frac{\nu_f}{k_j} = 0.2 \) This implies, \(k_j = \frac{40.8}{0.2} = 204 \) veh/km The basic parameters of Greenshield’s model are free flow speed and jam density and they are obtained as 40.8 kmph and 204 veh/km respectively. To find maximum flow, use equation 6, i.e., \(q_{max} = \frac{40.8 \times 204}{4} = 2080.8 \) veh/hr Density corresponding to the speed 30 km/hr can be found out by substituting \(\nu = 30 \) in equation 10. i.e., \(30 = 40.8 - 0.2 \times k \) Therefore, \(k = \frac{40.8 - 30}{0.2} = 54 \) veh/km
Model Comparison

speed vs density

- Empirical
- Emp mean
- Greenshields

speed, km/hr

density, veh/km

0 20 40 60 80 100 120 140 160 180

0 20 40 60 80 100 120

120 110 100 90 80 70 60 50 40 30 20 10 0

18
Model Comparison
Greenberg's model

- **Logarithmic relation**
 - Advantage
 - Analytical derivation
 - Good at congestion
 - Drawbacks
 - Infinite speed
 - Poor at low densities

\[v = v_o \ln \left(\frac{k_j}{k} \right) \]
Underwood's model

- Exponential Model
 - Advantage
 - Good at low speed
 - Drawbacks
 - Speed is zero only at infinity density
 - Poor at high densities

\[v = v_f e^{-\frac{k}{k_0}} \]
Pipes' model

• Generalized Model

\[v = v_f \left[1 - \left(\frac{k}{k_j} \right)^n \right] \]

– When \(n \) is 1 Pipe’s model resembles Greenshield’s model
Comparison of Models

$k = 200, \ vf = 90, \ ko = 100, \ v0 = 45$

- Speed V (kmph)
- Density k (veh/km)

Liner $n = 1$
Comparison of Models

$k = 200, \ vf = 90, \ ko = 100, \ v_0 = 45$

- **Liner** $n = 1$
- **Log**
Comparison of Models

$k = 200, \ v_f = 90, \ k_0 = 100, \ v_0 = 45$

Liner $n = 1$

Log

Exp
Comparison of Models

$k = 200, \, v_f = 90, \, k_o = 100, \, v_0 = 45$

- Gen $n = 0.5$
- Liner $n = 1$
- Gen $n = 2$
- Log
- Exp
Model Comparison

![Graph showing speed vs density comparison between different models: Empirical, Greenshields, Greenberg, Underwood, Drake, Drew, and Pipes-Munjal. Each model is represented by a different line or marker on the graph.](image)
Model Comparison

![Flow vs Density Graph](image)
Model Comparison

• **Limitations**
 – Assumes uniform behaviour
 – Poor predictability
 – Generalization

• **Need for multi-regime models**
 – Traffic states divided into various regimes
 – Behaviour depends on the regime
 – Separate models for each regime
Multiregime model

• Eddie’s Two Regime Model
 – Based on field data (Chicago)

![Graph showing Speed vs. Density with two regimes: Exponential and Logarithmic.](attachment:graph.png)
Multiregime model

- **Eddie’s Two Regime Model**
 - Based on field data (Chicago)
Multiregime model

- Eddie’s Two Regime Model
Multiregime model

- Three Regime Model
 - Free flow
 - Normal
 - Congested
Multiregime model
	hree-regime model developed by Drake et al.

\[u = \begin{cases}
50 - 0.098k & \text{for } k \leq 40 \\
81.4 - 0.913k & \text{for } 40 \leq k \leq 65 \\
40 - 0.265k & \text{for } k \geq 65
\end{cases} \]
Multiregime model

three-regime model developed by Drake et al.

\[u = \begin{cases}
50 - 0.098k & \text{for } k \leq 40 \\
81.4 - 0.913k & \text{for } 40 \leq k \leq 65 \\
40 - 0.265k & \text{for } k \geq 65
\end{cases} \]
Multi-regime models
Speed –Flow: Effect of location
Conclusion

• **Concerns**

 – The current status of mathematical models for speed-flow concentration relationships is in a state of flux
 – The models that dominated for nearly 30 years are incompatible with the data currently being obtained
 – but no replacement models have yet been developed

US DOT, Federal Highway Administration

http://www.tfhrc.gov/pubrds/janfeb99/traffic.htm
Conclusion

• Trends
 – Despite those words of caution, it is important to note that there have been significant advances in understanding traffic stream behavior since 1980’s leading to a better understanding of traffic operation
 – Efforts to implement ITS will provide challenges for applying this improvement
 – Equally important, ITS will likely provide the opportunity for acquiring more and better data to advance understanding of traffic operations