Moving Observer Method

Tom Mathew
Introduction

• **Outline**
 – Point measurement
 – Measurement over a short stretch
 – Measurement over a long stretch
 – Measurement over an area
 – Moving observer method
Introduction

• **Stream characteristics from field**
 – Flow
 – Speed
 – Density, occupancy
 – Travel time
 – Spacing
 – Headway
Measurement Procedures
Moving observer method

• **Overview**
 – Obtain fundamental stream characteristics
 – Observer moves in the traffic stream
 – Derived by Wardrop and Charlesworth (1954)

• **Suitability**
 – Rural traffic, Urban traffic with low volume
 – Driver follows average speed
Moving observer method

- **Derivation**
 - Consider an observer watching a stream of vehicles: two special cases arise:
 - **Case 1**: Moving stream and stationary observer
 - **Case 2**: Moving observer and stationary stream
Moving observer method

• **Case 1: Moving stream - stationary observer**
 - If n_0 is the number of vehicles overtaking the observer during a period t, then
 - By definition, flow is $q = n_0 / t$
 - Or $n_0 = q \times t$
Moving observer method

• Case 2: Moving observer - stationary stream
 – Let the observer moves with speed v_o
 – Let n_p is number of vehicles overtaken by observer over the length l
 – By definition density is $k = n_p/l$
 – Or $n_p = k \times l$ \hspace{1cm} $n_p = k \cdot v_o \cdot t$
Moving observer method

• **Case 3: Both stream and observer moving**
 – Observer is moving along the stream
 • General case of Case 1 and Case 2

 \[n_0 = q \times t \quad n_p = k v_o t \]

 – Let \(m_0 \) vehicles overtake the observer
 – Let \(m_p \) vehicles overtaken by the observer

 \[m = m_0 - m_p = q t - k v_o t \]
Moving observer method

- Case 3: Both stream and observer moving
 - Moving stream: stationary observer $v_o=0$
 \[m = m_0 - m_p = q t - k v_o t \]
 - Stationary stream, moving observer
 - Let m_0 vehicles overtake the observer
 - Let m_p vehicles overtaken by the observer
Moving observer method

- **Case 3: Both stream and observer moving**
 - To get both q and v, we need two equations
 - Possible by two trips or a reverse trip

\[
\begin{align*}
m_w &= q \, t_w - k \, v_w \, t \\
&= q \, t_w - k \, l \\
m_a &= q \, t_a + k \, v_a \, t_a \\
&= q \, t_a + k \, l
\end{align*}
\]
• **Case 3:** Both stream and observer moving

- Solving for \(q \), we get

\[
\begin{align*}
m_w &= q \ t_w - k \ l \\
m_a &= q \ t_a + k \ l \\
q &= \frac{m_w + m_a}{t_w + t_a}
\end{align*}
\]
Moving observer method

- Derivation of v_s

\[
\frac{m_w}{t_w} = q - ku_w
\]
\[
= q - \frac{q}{v} v_w
\]
\[
= q - \frac{q}{v} \left[\frac{l}{t_w} \right]
\]
\[
= q \left(1 - \frac{l}{v} \times \frac{1}{t_w} \right)
\]
\[
= q \left(1 - \frac{t_{avg}}{t_w} \right)
\]
\[
t_{avg} = \frac{l}{v_s}
\]

\[
k = \frac{q}{v_s}
\]

\[
v_s = \frac{l}{t_w - \frac{m_w}{q}}
\]

\[
\frac{m_w}{q} = t_w \left(1 - \frac{t_{avg}}{t_w} \right) = t_w - t_{avg}
\]

\[
t_{avg} = t_w - \frac{m_w}{q} = \frac{l}{v}
\]
Moving observer method

• **Proof**

- Vehicles counted in $t_w + t_a$ by an observer at A is same as
- All vehicles against in DN direction, plus
- Overtaken in UP direction, minus
- All vehicles passed by in UP direction
- This is the flow $q = \frac{m_w + m_a}{t_w + t_a}$
Moving observer method

• **Example 1**
 – Length of the road stretch = 0.5 km
 – Speed of test vehicle = 20 km/hr
 – No of vehicles encountered while moving against the traffic stream = 107
 – No of veh. overtaken the test vehicle = 10
 – No of veh. overtaken by the test vehicle = 74
 – Find the flow, density and mean speed
Moving observer method

Solution

Time taken by the test vehicle to reach the other end of the stream while it is moving along with the traffic is $t_w = \frac{0.5}{20} = 0.025$ hr. Time taken by the observer to reach the other end of the stream while it is moving against the traffic is $t_a = t_w = 0.025$ hr. Flow is given by equation, $q = \frac{107+(10-74)}{0.025+0.025} = 860$ veh/hr. Stream speed v_s can be found out from equation $v_s = \frac{0.5}{0.025-10.74 \over 860} = 5$ km/hr. Density can be found out from equation as $k = \frac{1}{v_s} = 172$ veh/km.
Moving observer method

Example 2

- Col. 2: no of veh moving against the stream
- Col. 3: no of veh overtaken the test vehicle
- Col. 4: no of veh. overtaken by the test vehicle
- Length = 0.5 km
- $ta = tw = 0.025$ hrs

<table>
<thead>
<tr>
<th>No</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>107</td>
<td>10</td>
<td>74</td>
</tr>
<tr>
<td>2</td>
<td>113</td>
<td>25</td>
<td>41</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>79</td>
<td>18</td>
<td>9</td>
</tr>
</tbody>
</table>
Moving observer method

Solution

<table>
<thead>
<tr>
<th>Sample no.</th>
<th>m_a</th>
<th>m_o</th>
<th>m_p</th>
<th>$m(m_o - m_p)$</th>
<th>t_a</th>
<th>t_w</th>
<th>$q = \frac{m_a + m_w}{t_a + t_w}$</th>
<th>$u = \frac{l}{t_w - \frac{m_a}{q}}$</th>
<th>$k = \frac{q}{u}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>107</td>
<td>10</td>
<td>74</td>
<td>-64</td>
<td>0.025</td>
<td>0.025</td>
<td>860</td>
<td>5.03</td>
<td>171</td>
</tr>
<tr>
<td>2</td>
<td>113</td>
<td>25</td>
<td>41</td>
<td>-16</td>
<td>0.025</td>
<td>0.025</td>
<td>1940</td>
<td>15.04</td>
<td>129</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>15</td>
<td>5</td>
<td>10</td>
<td>0.025</td>
<td>0.025</td>
<td>800</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>79</td>
<td>18</td>
<td>9</td>
<td>9</td>
<td>0.025</td>
<td>0.025</td>
<td>1760</td>
<td>25.14</td>
<td>70</td>
</tr>
</tbody>
</table>
Moving observer method
Moving observer method
Moving observer method

- **Limitation**
 - Unsuitable for large traffic
 - Unsuitable if there is major turning traffic
 - Large number of observations required to estimate reliable data
 - Driver bias
Thank You

Questions?