## **CHAPTER 23**

# **BASIC FREEWAY SEGMENTS**

## CONTENTS

| I.   | INTRODUCTION                                   |
|------|------------------------------------------------|
|      | Base Conditions for Basic Freeway Segments     |
|      | Limitations of the Methodology23-1             |
| II.  | METHODOLOGY                                    |
|      | LOS                                            |
|      | Determining FFS                                |
|      | BFFS23-5                                       |
|      | Adjustment for Lane Width23-5                  |
|      | Adjustment for Lateral Clearance23-5           |
|      | Adjustment for Number of Lanes23-6             |
|      | Adjustment for Interchange Density             |
|      | Determining Flow Rate23-7                      |
|      | Peak-Hour Factor23-7                           |
|      | Heavy-Vehicle Adjustments23-7                  |
|      | Extended Freeway Segments23-8                  |
|      | Specific Grades23-8                            |
|      | Equivalents for Extended Freeway Segments      |
|      | Level Terrain23-8                              |
|      | Rolling Terrain23-8                            |
|      | Mountainous Terrain23-9                        |
|      | Equivalents for Specific Grades23-9            |
|      | Equivalents for Specific Upgrades23-9          |
|      | Equivalents for Specific Downgrades23-11       |
|      | Equivalents for Composite Grades23-11          |
|      | Driver Population Factor23-11                  |
|      | Determining LOS                                |
|      | Sensitivity of Results to Input Variables23-12 |
| III. | APPLICATIONS                                   |
|      | Segmenting the Freeway23-15                    |
|      | Computational Steps23-15                       |
|      | Planning Applications23-16                     |
|      | Analysis Tools23-17                            |
| IV.  | EXAMPLE PROBLEMS23-17                          |
|      | Example Problem 123-18                         |
|      | Example Problem 2                              |
|      | Example Problem 323-22                         |
|      | Example Problem 423-24                         |
|      | Example Problem 523-26                         |
| V.   | REFERENCES                                     |
| API  | PENDIX A. COMPOSITE GRADE23-28                 |
| API  | PENDIX B. WORKSHEET23-30                       |
|      | Basic Freeway Segments Worksheet               |

## **EXHIBITS**

| Exhibit 23-1.  | Basic Freeway Segment Methodology                                |
|----------------|------------------------------------------------------------------|
| Exhibit 23-2.  | LOS Criteria for Basic Freeway Segments                          |
| Exhibit 23-3.  | Speed-Flow Curves and LOS for Basic Freeway Segments             |
| Exhibit 23-4.  | Adjustments for Lane Width23-5                                   |
| Exhibit 23-5.  | Adjustments for Right-Shoulder Lateral Clearance                 |
| Exhibit 23-6.  | Adjustments for Number of Lanes                                  |
| Exhibit 23-7.  | Adjustments for Interchange Density                              |
| Exhibit 23-8.  | Passenger-Car Equivalents on Extended Freeway Segments           |
| Exhibit 23-9.  | Passenger-Car Equivalents for Trucks and Buses on Upgrades 23-10 |
| Exhibit 23-10. | Passenger-Car Equivalents for RVs on Upgrades23-10               |
| Exhibit 23-11. | Passenger-Car Equivalents for Trucks and Buses                   |
|                | on Downgrades23-11                                               |
| Exhibit 23-12. | Urban Freeway FFS and Interchange Spacing                        |
| Exhibit 23-13. | Rural Freeway FFS23-13                                           |
| Exhibit 23-14. | Freeway Speed-Flow and v/c Ratio23-13                            |
| Exhibit 23-15. | Urban Freeway Capacity and Interchange Spacing                   |
| Exhibit 23-16. | Basic Freeway Segments Worksheet                                 |
| Exhibit A23-1. | Sample Solution for Composite Grade23-29                         |
| Exhibit A23-2. | Performance Curves for Trucks (120 kg/kW)23-30                   |

## I. INTRODUCTION

The methodology in this chapter can be used to analyze the capacity, level of service (LOS), lane requirements, and effects of traffic and design features of basic freeway segments.

The methodology in this chapter is based on the results of an NCHRP study (1). The study used additional references to develop the methodology (2-11). Updates to the original methodology were subsequently developed (12).

## BASE CONDITIONS FOR BASIC FREEWAY SEGMENTS

The base conditions under which the full capacity of a basic freeway segment is achieved are good weather, good visibility, and no incidents or accidents. For the analysis procedures in this chapter, these base conditions are assumed to exist. If any of these conditions fails to exist, the speed, LOS, and capacity of the freeway segment all tend to be reduced.

The specific speed-flow-density relationship of a basic freeway segment depends on prevailing traffic and roadway conditions. A set of base conditions for basic freeway segments has been established. These conditions serve as a starting point for the methodology in this chapter.

• Minimum lane widths of 3.6 m;

• Minimum right-shoulder lateral clearance between the edge of the travel lane and the nearest obstacle or object that influences traffic behavior of 1.8 m;

- Minimum median lateral clearance of 0.6 m;
- Traffic stream composed entirely of passenger cars;
- Five or more lanes for one direction (in urban areas only);
- Interchange spacing at 3 km or greater;
- Level terrain, with grades no greater than 2 percent; and
- A driver population composed principally of regular users of the facility.

These base conditions represent a high operating level, with a free-flow speed (FFS) of 110 km/h or greater.

## LIMITATIONS OF THE METHODOLOGY

The methodology does not apply to or take into account (without modification by the analyst) the following:

• Special lanes reserved for a single vehicle type, such as high-occupancy vehicle (HOV) lanes, truck lanes, and climbing lanes;

- Extended bridge and tunnel segments;
- Segments near a toll plaza;
- Facilities with free-flow speeds below 90 km/h or in excess of 120 km/h;

• Demand conditions in excess of capacity (refer to Chapter 22 for further discussion);

• The influence of downstream blockages or queuing on a segment;

• Posted speed limit, the extent of police enforcement, or the presence of intelligent transportation systems features related to vehicle or driver guidance; or

Capacity-enhancing effects of ramp metering.

The analyst would have to draw on other research information and develop specialpurpose modifications of this methodology to incorporate the effects of the above conditions. Background and concepts for this chapter are given in Chapter 13

Base conditions for freeway flow

## **II. METHODOLOGY**

The methodology described in this chapter is for the analysis of basic freeway segments. A method for analysis of extended lengths of freeway that comprise a combination of basic segments, weaving segments, and ramp junctions is found in Chapter 22. Exhibit 23-1 illustrates input to and the basic computation order of the method for basic freeway segments. The primary output of the method is LOS.



## LOS

A basic freeway segment can be characterized by three performance measures: density in terms of passenger cars per kilometer per lane, speed in terms of mean passenger-car speed, and volume-to-capacity (v/c) ratio. Each of these measures is an indication of how well traffic flow is being accommodated by the freeway.

The measure used to provide an estimate of level of service is density. The three measures of speed, density, and flow or volume are interrelated. If values for two of these measures are known, the third can be computed.

Level-of-service thresholds for a basic freeway segment are summarized below.

| LOS | Density Range (pc/km/ln) |
|-----|--------------------------|
| А   | 0-7                      |
| В   | >7-11                    |
| С   | >11-16                   |
| D   | > 16-22                  |
| Е   | > 22-28                  |
| F   | > 28                     |

For any given level of service, the maximum allowable density is somewhat lower than that for the corresponding level of service on multilane highways. This reflects the higher quality of service drivers expect when using freeways as compared with surface multilane facilities. This does not imply that an at-grade multilane highway will perform better than a freeway with the same number of lanes under similar conditions. For any given density, a freeway will carry higher flow rates at higher speeds than will a comparable multilane highway.

The specification of maximum densities for LOS A through D is based on the collective professional judgment of the members of the Committee on Highway Capacity and Quality of Service of the Transportation Research Board. The upper value shown for LOS E (28 pc/km/ln) is the maximum density at which sustained flows at capacity are expected to occur.

LOS criteria for basic freeway segments are given in Exhibit 23-2 for free-flow speeds of 120 km/h or greater, 110 km/h, 100 km/h, and 90 km/h. To be within a given LOS, the density criterion must be met. In effect, under base conditions, these are the speeds and flow rates expected to occur at the density shown for each LOS.

|                                     |         |          | LOS   |      |      |
|-------------------------------------|---------|----------|-------|------|------|
| Criteria                            | А       | В        | С     | D    | E    |
|                                     | FFS = 1 | 120 km/h |       |      |      |
| Maximum density (pc/km/ln)          | 7       | 11       | 16    | 22   | 28   |
| Minimum speed (km/h)                | 120.0   | 120.0    | 114.6 | 99.6 | 85.7 |
| Maximum v/c                         | 0.35    | 0.55     | 0.77  | 0.92 | 1.00 |
| Maximum service flow rate (pc/h/ln) | 840     | 1320     | 1840  | 2200 | 2400 |
| FFS = 110 km/h                      |         |          |       |      |      |
| Maximum density (pc/km/ln)          | 7       | 11       | 16    | 22   | 28   |
| Minimum speed (km/h)                | 110.0   | 110.0    | 108.5 | 97.2 | 83.9 |
| Maximum v/c                         | 0.33    | 0.51     | 0.74  | 0.91 | 1.00 |
| Maximum service flow rate (pc/h/ln) | 770     | 1210     | 1740  | 2135 | 2350 |
| FFS = 100 km/h                      |         |          |       |      |      |
| Maximum density (pc/km/ln)          | 7       | 11       | 16    | 22   | 28   |
| Minimum speed (km/h)                | 100.0   | 100.0    | 100.0 | 93.8 | 82.1 |
| Maximum v/c                         | 0.30    | 0.48     | 0.70  | 0.90 | 1.00 |
| Maximum service flow rate (pc/h/ln) | 700     | 1100     | 1600  | 2065 | 2300 |
| FFS = 90 km/h                       |         |          |       |      |      |
| Maximum density (pc/km/ln)          | 7       | 11       | 16    | 22   | 28   |
| Minimum speed (km/h)                | 90.0    | 90.0     | 90.0  | 89.1 | 80.4 |
| Maximum v/c                         | 0.28    | 0.44     | 0.64  | 0.87 | 1.00 |
| Maximum service flow rate (pc/h/ln) | 630     | 990      | 1440  | 1955 | 2250 |

EXHIBIT 23-2. LOS CRITERIA FOR BASIC FREEWAY SEGMENTS

Note:

The exact mathematical relationship between density and v/c has not always been maintained at LOS boundaries because of the use of rounded values. Density is the primary determinant of LOS. The speed criterion is the speed at maximum density for a given LOS.

Density is used to define LOS

Density greater than 28 pc/km/ln (LOS F) indicates a queue that extends into the segment Failure, breakdown, congestion, and LOS F occur when queues begin to form on the freeway. Density tends to increase sharply within the queue and may be considerably higher than the maximum value of 28 pc/km/ln for LOS E. Further guidance on analysis of basic freeway segments with densities greater than 28 pc/km/ln is provided in Chapter 22.

Exhibit 23-3 shows the relationship between speed, flow, and density for basic freeway segments. It also shows the definition of the various LOS on the basis of density boundary values.



EXHIBIT 23-3. SPEED-FLOW CURVES AND LOS FOR BASIC FREEWAY SEGMENTS

Note:

F

Capacity varies by free-flow speed. Capacity is 2400, 2350, 2300, and 2250 pc/h/ln at free-flow speeds of 120, 110, 100, and 90 km/h, respectively. For  $90 \le \text{FFS} \le 120$  and for flow rate (v, )

or 
$$90 \le FFS \le 120$$
 and for flow rate  $(v_p)$   
 $(3100 - 15FFS) < v_p \le (1800 + 5FFS),$   
 $S = FFS - \left[\frac{1}{28}(23FFS - 1800)\left(\frac{v_p + 15FFS - 3100}{20FFS - 1300}\right)^{2.6}$   
or  $90 \le FFS \le 120$  and  
 $v_p \le (3100 - 15FFS),$   
 $S = FFS$ 

## **DETERMINING FFS**

FFS is the mean speed of passenger cars measured during low to moderate flows (up to 1,300 pc/h/ln). For a specific segment of freeway, speeds are virtually constant in this range of flow rates. Two methods can be used to determine the FFS of a basic freeway segment: field measurement and estimation with guidelines provided in this chapter. The field-measurement procedure is provided for users who prefer to gather these data directly. However, field measurements are not required for application of the method. If field-measured data are used, no adjustments are made to the free-flow speed.

The speed study should be conducted at a location that is representative of the segment when flows and densities are low (flow rates may be up to 1,300 pc/h/ln). Weekday off-peak hours are generally good times to observe low to moderate flow rates. The speed study should measure the speeds of all passenger cars or use a systematic sample (e.g., every 10th passenger car). The speed study should measure passenger-car speeds across all lanes. A sample of at least 100 passenger-car speeds should be obtained. Any speed measurement technique that has been found acceptable for other types of traffic engineering speed studies may be used. Further guidance on the conduct

Measure or estimate the FFS

Measurement of freeflow speed of speed studies is found in standard traffic engineering publications, such as the Manual of Traffic Engineering Studies published by the Institute of Transportation Engineers.

The average of all passenger-car speeds measured in the field under low- to moderate-volume conditions can be used directly as the FFS of the freeway segment. This speed reflects the net effect of all conditions at the study site that influence speed, including those considered in this method (lane width, lateral clearance, interchange density, and number of lanes) as well as others such as speed limit and vertical and horizontal alignment. Speed data that include both passenger cars and heavy vehicles can be used for level terrain or moderate downgrades but should not be used for rolling or mountainous terrain.

If field measurement of FFS is not possible, FFS can be estimated indirectly on the basis of the physical characteristics of the freeway segment being studied. The physical characteristics include lane width, number of lanes, right-shoulder lateral clearance, and interchange density. Equation 23-1 is used to estimate the free-flow speed of a basic freeway segment:

$$FFS = BFFS - f_{LW} - f_{LC} - f_N - f_{ID}$$
(23-1)

where

| FFS            | = | free-flow speed (km/h);                                           |
|----------------|---|-------------------------------------------------------------------|
| BFFS           | = | base free-flow speed, 110 km/h (urban) or 120 km/h (rural);       |
| $f_{LW}$       | = | adjustment for lane width from Exhibit 23-4 (km/h);               |
| $f_{LC}$       | = | adjustment for right-shoulder lateral clearance from Exhibit 23-5 |
|                |   | (km/h);                                                           |
| f <sub>N</sub> | = | adjustment for number of lanes from Exhibit 23-6 (km/h); and      |
|                |   |                                                                   |

adjustment for interchange density from Exhibit 23-7 (km/h). f<sub>ID</sub>

## BFFS

Estimation of FFS for an existing or future freeway segment is accomplished by adjusting a base free-flow speed downward to reflect the influence of four factors: lane width, lateral clearance, number of lanes, and interchange density. Thus, the analyst is required to select an appropriate BFFS as a starting point.

## Adjustment for Lane Width

The base condition for lane width is 3.6 m or greater. When the average lane width across all lanes is less than 3.6 m, the base free-flow speed (e.g., 120 km/h) is reduced. Adjustments to reflect the effect of narrower average lane width are given in Exhibit 23-4.

| EXHIBIT 23-4. ADJU | SIMENIS FOR LANE WIDTH                               |
|--------------------|------------------------------------------------------|
| Lane Width (m)     | Reduction in Free-Flow Speed, f <sub>LW</sub> (km/h) |
| 3.6                | 0.0                                                  |
| 3.5                | 1.0                                                  |
| 3.4                | 2.1                                                  |
| 3.3                | 3.1                                                  |
| 3.2                | 5.6                                                  |
| 3.1                | 8.1                                                  |
| 3.0                | 10.6                                                 |

## A D UNOT A CALTO FOR LANS MARTIN

## Adjustment for Lateral Clearance

Base lateral clearance is 1.8 m or greater on the right side and 0.6 m or greater on the median or left side, measured from the edge of the paved shoulder to the nearest edge of

Estimate free-flow speed if measurement is not possible the traveled lane. When the right-shoulder lateral clearance is less than 1.8 m, the BFFS is reduced. Adjustments to reflect the effect of narrower right-shoulder lateral clearance are given in Exhibit 23-5. No adjustments are available to reflect the effect of median lateral clearance less than 0.6 m. Lateral clearance less than 0.6 m on either the right or left side of a freeway is considered rare. Considerable judgment must be used in determining whether objects or barriers along the right side of a freeway present a true obstruction. Such obstructions may be continuous, such as retaining walls, concrete barriers, or guardrails, or may be noncontinuous, such as light supports or bridge abutments. In some cases, drivers may become accustomed to certain types of obstructions, in which case their influence on traffic flow may be negligible.

|                                         | Reduction in Free-Flow Speed, f <sub>LC</sub> (km/h) |     |     |     |
|-----------------------------------------|------------------------------------------------------|-----|-----|-----|
|                                         | Lanes in One Direction                               |     |     |     |
| Right-Shoulder<br>Lateral Clearance (m) | 2                                                    | 3   | 4   | ≥5  |
| ≥ 1.8                                   | 0.0                                                  | 0.0 | 0.0 | 0.0 |
| 1.5                                     | 1.0                                                  | 0.7 | 0.3 | 0.2 |
| 1.2                                     | 1.9                                                  | 1.3 | 0.7 | 0.4 |
| 0.9                                     | 2.9                                                  | 1.9 | 1.0 | 0.6 |
| 0.6                                     | 3.9                                                  | 2.6 | 1.3 | 0.8 |
| 0.3                                     | 4.8                                                  | 3.2 | 1.6 | 1.1 |
| 0.0                                     | 5.8                                                  | 3.9 | 1.9 | 1.3 |

| EXHIBIT 23-5 | <b>ADJUSTMENTS</b> | FOR RIGHT | -SHOULDER | I ATFRAI | <b>CI FARANCE</b> |
|--------------|--------------------|-----------|-----------|----------|-------------------|
|              | ADJUGHNILINIG      |           | OHOULDEN  |          | OLLANANOL         |

### Adjustment for Number of Lanes

Freeway segments with five or more lanes (in one direction) are considered as having base conditions with respect to number of lanes. When fewer lanes are present, the BFFS is reduced. Exhibit 23-6 provides adjustments to reflect the effect of number of lanes on BFFS. In determining number of lanes, only mainline lanes, both basic and auxiliary, should be considered. HOV lanes should not be included.

| EXHIBIT 23-6. ADJUSTMENTS FOR NUMBER OF LANE | EXHIBIT 23-6. | ADJUSTMENTS | FOR | NUMBER | OF | LANES |
|----------------------------------------------|---------------|-------------|-----|--------|----|-------|
|----------------------------------------------|---------------|-------------|-----|--------|----|-------|

| Number of Lanes (One Direction) | Reduction in Free-Flow Speed, f <sub>N</sub> (km/h) |
|---------------------------------|-----------------------------------------------------|
| ≥5                              | 0.0                                                 |
| 4                               | 2.4                                                 |
| 3                               | 4.8                                                 |
| 2                               | 7.3                                                 |

Note: For all rural freeway segments, f<sub>N</sub> is 0.0.

The adjustments in Exhibit 23-6 are based exclusively on data collected on urban and suburban freeways and do not reflect conditions on rural freeways, which typically carry two lanes in each direction. In using Equation 23-1 to estimate the FFS of a rural freeway segment, the value of the adjustment for number of lanes,  $f_N$ , should be 0.0.

## **Adjustment for Interchange Density**

The base interchange density is 0.3 interchanges per kilometer, or 3.3-km interchange spacing. Base free-flow speed is reduced when interchange density becomes greater. Adjustments to reflect the effect of interchange density are provided in Exhibit 23-7. Interchange density is determined over a 10-km segment of freeway (5 km upstream and 5 km downstream) in which the freeway segment is located. An interchange is defined as having at least one on-ramp. Therefore, interchanges that have only off-ramps would not be considered in determining interchange density. Interchanges

Adjustment for lateral clearance reflects only the right-shoulder width

Adjustment for number of lanes (not applicable to rural freeway segments)

A 10-km segment is used to determine interchange density

considered should include typical interchanges with arterials or highways and major freeway-to-freeway interchanges.

| EXHIBIT 23-7. ADJUSTMENTS FOR INTERCHANGE DENSITY |                                                      |  |  |
|---------------------------------------------------|------------------------------------------------------|--|--|
| Interchanges per Kilometer                        | Reduction in Free-Flow Speed, f <sub>ID</sub> (km/h) |  |  |
| ≤ 0.3                                             | 0.0                                                  |  |  |
| 0.4                                               | 1.1                                                  |  |  |
| 0.5                                               | 2.1                                                  |  |  |
| 0.6                                               | 3.9                                                  |  |  |
| 0.7                                               | 5.0                                                  |  |  |
| 0.8                                               | 6.0                                                  |  |  |
| 0.9                                               | 8.1                                                  |  |  |
| 1.0                                               | 9.2                                                  |  |  |
| 1.1                                               | 10.2                                                 |  |  |
| 1.2                                               | 12.1                                                 |  |  |

EVUIDIT 23.7 AD ILIGTMENTS END INTEDOUNNICE DENSITY

# **DETERMINING FLOW RATE**

The hourly flow rate must reflect the influence of heavy vehicles, the temporal variation of traffic flow over an hour, and the characteristics of the driver population. These effects are reflected by adjusting hourly volumes or estimates, typically reported in vehicles per hour (veh/h), to arrive at an equivalent passenger-car flow rate in passenger cars per hour (pc/h). The equivalent passenger-car flow rate is calculated using the heavy-vehicle and peak-hour adjustment factors and is reported on a per lane basis (pc/h/ln). Equation 23-2 is used to calculate the equivalent passenger-car flow rate.

$$v_{p} = \frac{V}{PHF * N * f_{HV} * f_{p}}$$
 (23-2)

where

 $v_{\rm p} = 15$ -min passenger-car equivalent flow rate (pc/h/ln),

V = hourly volume (veh/h),

PHF = peak-hour factor,

N = number of lanes,

 $f_{HV}$  = heavy-vehicle adjustment factor, and  $f_p$  = driver population factor.

# **Peak-Hour Factor**

The peak-hour factor (PHF) represents the variation in traffic flow within an hour. Observations of traffic flow consistently indicate that the flow rates found in the peak 15-min period within an hour are not sustained throughout the entire hour. The application of the peak-hour factor in Equation 23-2 accounts for this phenomenon.

On freeways, typical PHFs range from 0.80 to 0.95. Lower PHFs are characteristic of rural freeways or off-peak conditions. Higher factors are typical of urban and suburban peak-hour conditions. Field data should be used, if possible, to develop PHFs representative of local conditions.

# **Heavy-Vehicle Adjustments**

Freeway traffic volumes that include a mix of vehicle types must be adjusted to an equivalent flow rate expressed in passenger cars per hour per lane. This adjustment is made using the factor  $f_{HV}$ . Once the values of  $E_T$  and  $E_R$  are found, the adjustment factor,  $f_{HV}$ , is determined by using Equation 23-3.

Convert veh/h to pc/h using heavy-vehicle, peak-hour, and driver population factors

$$f_{HV} = \frac{1}{1 + P_T(E_T - 1) + P_R(E_R - 1)}$$
(23-3)

where

- $E_T$ ,  $E_R$  = passenger-car equivalents for trucks/buses and recreational vehicles (RVs) in the traffic stream, respectively;
- $P_T, P_R$  = proportion of trucks/buses and RVs in the traffic stream, respectively; and
  - $f_{HV}$  = heavy-vehicle adjustment factor.

Adjustments for heavy vehicles in the traffic stream apply for three vehicle types: trucks, buses, and RVs. There is no evidence to indicate distinct differences in performance between trucks and buses on freeways, and therefore trucks and buses are treated identically.

In many cases, trucks will be the only heavy-vehicle type present in the traffic stream to a significant degree. Where the percentage of RVs is small compared with the percentage of trucks, it is sometimes convenient to consider all heavy vehicles to be trucks. It is generally acceptable to do this where the percentage of trucks and buses is at least five times the percentage of RVs.

The factor  $f_{HV}$  is found using a two-step process. First, the passenger-car equivalent for each truck/bus and RV is found for the traffic and roadway conditions under study. These equivalency values,  $E_T$  and  $E_R$ , represent the number of passenger cars that would use the same amount of freeway capacity as one truck/bus or RV, respectively, under prevailing roadway and traffic conditions. Second, using the values of  $E_T$  and  $E_R$  and the proportion of each type of vehicle in the traffic stream ( $P_T$  and  $P_R$ ), the adjustment factor  $f_{HV}$  is computed.

The effect of heavy vehicles on traffic flow depends on grade conditions as well as traffic composition. Passenger-car equivalents can be selected for one of three conditions: extended freeway segments, upgrades, and downgrades.

### **Extended Freeway Segments**

It is often appropriate to consider an extended length of freeway containing a number of upgrades, downgrades, and level segments as a single uniform segment. This is possible where no one grade is long enough or steep enough to have a significant effect on the operation of the overall segment. As a guideline, extended segment analysis can be used where no one grade of 3 percent or greater is longer than 0.5 km or where no one grade of less than 3 percent is longer than 1.0 km.

#### **Specific Grades**

Any grade less than 3 percent that is longer than 1.0 km or any grade of 3 percent or more that is longer than 0.5 km must be analyzed as a separate segment because of its significant effect on traffic flow.

### **Equivalents for Extended Freeway Segments**

Whenever extended segment analysis is used, the terrain of the freeway must be classified as level, rolling, or mountainous.

### Level Terrain

Level terrain is any combination of grades and horizontal or vertical alignment that permits heavy vehicles to maintain the same speed as passenger cars. This type of terrain includes short grades of no more than 2 percent.

### **Rolling Terrain**

Rolling terrain is any combination of grades and horizontal or vertical alignment that causes heavy vehicles to reduce their speeds substantially below those of passenger cars

Extended segment-use

when no one grade (less

than 3 percent) is longer

when no one grade (3

percent or greater) is longer than 0.5 km. Use

than 1 km.

but that does not cause heavy vehicles to operate at crawl speeds for any significant length of time or at frequent intervals.

Crawl speed is the maximum sustained speed that trucks can maintain on an extended upgrade of a given percent. If any grade is long enough, trucks will be forced to decelerate to the crawl speed, which they will then be able to maintain for extended distances. Appendix A contains truck performance curves illustrating crawl speed and length of grade.

## Mountainous Terrain

Mountainous terrain is any combination of grades and horizontal or vertical alignment that causes heavy vehicles to operate at crawl speeds for significant distances or at frequent intervals.

Exhibit 23-8 gives passenger-car equivalents for extended freeway segments. Note that it is extremely difficult to have mountainous terrain as defined herein without violating the guidelines for using the general terrain methodology (i.e., having no grade greater than 3 percent longer than 0.5 km). To a lesser extent, the same statement may be made with respect to rolling terrain. The equivalence values shown in Exhibit 23-8 are most useful in the planning stage of analysis, when specific alignments are not known but approximate capacity computations are still needed.

| LANDIN 23-0. TASSENULIN-UAN EQUIVALENTS UN EATENDED TREEVAT SEUVILINTS | EXHIBIT 23-8. | PASSENGER-CAR EQUIVALENTS ON EXTENDED FREEWAY SEGMENTS |
|------------------------------------------------------------------------|---------------|--------------------------------------------------------|
|------------------------------------------------------------------------|---------------|--------------------------------------------------------|

|                                   | Type of Terrain |         |             |  |  |
|-----------------------------------|-----------------|---------|-------------|--|--|
| Factor                            | Level           | Rolling | Mountainous |  |  |
| E <sub>T</sub> (trucks and buses) | 1.5             | 2.5     | 4.5         |  |  |
| E <sub>R</sub> (RVs)              | 1.2             | 2.0     | 4.0         |  |  |

## **Equivalents for Specific Grades**

Any freeway grade of more than 1.0 km for grades less than 3 percent or 0.5 km for grades of 3 percent or more should be considered as a separate segment. Analysis of such segments must consider the upgrade and downgrade conditions and whether the grade is a single and isolated grade of constant percentage or part of a series forming a composite grade.

Several studies have indicated that freeway truck populations have an average weight-to-power ratio of between 75 and 90 kg/kW. These procedures adopt passengercar equivalents calibrated for a mix of trucks/buses in this range. RVs vary considerably in both type and characteristics. These vehicles include everything from cars with trailers to self-contained mobile campers. In addition to the variability of the vehicles, the drivers are not professionals, and their degree of skill in handling such vehicles varies. Typical weight-to-power ratios of RVs range from 20 to 40 kg/kW.

## Equivalents for Specific Upgrades

Exhibits 23-9 and 23-10 give values of  $E_T$  and  $E_R$  for upgrade segments. These factors vary with the percent of grade, length of grade, and the proportion of heavy vehicles in the traffic stream. The maximum values of  $E_T$  and  $E_R$  occur when there are only a few heavy vehicles. The equivalents decrease as the number of heavy vehicles increases, because these vehicles tend to form platoons and have operating characteristics that are more uniform as a group than those of passenger cars.

The length of grade is generally taken from a profile of the highway in question and typically includes the straight portion of the grade plus some portion of the vertical curves at the beginning and end of the grade. It is recommended that 25 percent of the length of the vertical curves at the beginning and end of the grade be included in the length of the grade. Where two consecutive upgrades are present, 50 percent of the length of the vertical curve between them is assigned to the length of each upgrade.

Appendix A shows truck performance curves

Establishing length of grade

| -       | 1         |                |     |     |           |           |           |     |     |     |
|---------|-----------|----------------|-----|-----|-----------|-----------|-----------|-----|-----|-----|
|         |           | Ε <sub>Τ</sub> |     |     |           |           |           |     |     |     |
| Upgrade | Length    |                |     | Р   | ercentage | of Trucks | s and Bus | es  |     |     |
| (%)     | (km)      | 2              | 4   | 5   | 6         | 8         | 10        | 15  | 20  | 25  |
| < 2     | All       | 1.5            | 1.5 | 1.5 | 1.5       | 1.5       | 1.5       | 1.5 | 1.5 | 1.5 |
|         | 0.0–0.4   | 1.5            | 1.5 | 1.5 | 1.5       | 1.5       | 1.5       | 1.5 | 1.5 | 1.5 |
|         | > 0.4–0.8 | 1.5            | 1.5 | 1.5 | 1.5       | 1.5       | 1.5       | 1.5 | 1.5 | 1.5 |
| ≥ 2–3   | > 0.8–1.2 | 1.5            | 1.5 | 1.5 | 1.5       | 1.5       | 1.5       | 1.5 | 1.5 | 1.5 |
|         | > 1.2–1.6 | 2.0            | 2.0 | 2.0 | 2.0       | 1.5       | 1.5       | 1.5 | 1.5 | 1.5 |
|         | > 1.6–2.4 | 2.5            | 2.5 | 2.5 | 2.5       | 2.0       | 2.0       | 2.0 | 2.0 | 2.0 |
|         | > 2.4     | 3.0            | 3.0 | 2.5 | 2.5       | 2.0       | 2.0       | 2.0 | 2.0 | 2.0 |
|         | 0.0–0.4   | 1.5            | 1.5 | 1.5 | 1.5       | 1.5       | 1.5       | 1.5 | 1.5 | 1.5 |
|         | > 0.4–0.8 | 2.0            | 2.0 | 2.0 | 2.0       | 2.0       | 2.0       | 1.5 | 1.5 | 1.5 |
| > 3–4   | > 0.8–1.2 | 2.5            | 2.5 | 2.0 | 2.0       | 2.0       | 2.0       | 2.0 | 2.0 | 2.0 |
|         | > 1.2–1.6 | 3.0            | 3.0 | 2.5 | 2.5       | 2.5       | 2.5       | 2.0 | 2.0 | 2.0 |
|         | > 1.6–2.4 | 3.5            | 3.5 | 3.0 | 3.0       | 3.0       | 3.0       | 2.5 | 2.5 | 2.5 |
|         | > 2.4     | 4.0            | 3.5 | 3.0 | 3.0       | 3.0       | 3.0       | 2.5 | 2.5 | 2.5 |
|         | 0.0–0.4   | 1.5            | 1.5 | 1.5 | 1.5       | 1.5       | 1.5       | 1.5 | 1.5 | 1.5 |
|         | > 0.4–0.8 | 3.0            | 2.5 | 2.5 | 2.5       | 2.0       | 2.0       | 2.0 | 2.0 | 2.0 |
| > 4–5   | > 0.8–1.2 | 3.5            | 3.0 | 3.0 | 3.0       | 2.5       | 2.5       | 2.5 | 2.5 | 2.5 |
|         | > 1.2–1.6 | 4.0            | 3.5 | 3.5 | 3.5       | 3.0       | 3.0       | 3.0 | 3.0 | 3.0 |
|         | > 1.6     | 5.0            | 4.0 | 4.0 | 4.0       | 3.5       | 3.5       | 3.0 | 3.0 | 3.0 |
|         | 0.0–0.4   | 2.0            | 2.0 | 1.5 | 1.5       | 1.5       | 1.5       | 1.5 | 1.5 | 1.5 |
|         | > 0.4–0.5 | 4.0            | 3.0 | 2.5 | 2.5       | 2.0       | 2.0       | 2.0 | 2.0 | 2.0 |
| > 5–6   | > 0.5–0.8 | 4.5            | 4.0 | 3.5 | 3.0       | 2.5       | 2.5       | 2.5 | 2.5 | 2.5 |
|         | > 0.8–1.2 | 5.0            | 4.5 | 4.0 | 3.5       | 3.0       | 3.0       | 3.0 | 3.0 | 3.0 |
|         | > 1.2–1.6 | 5.5            | 5.0 | 4.5 | 4.0       | 3.0       | 3.0       | 3.0 | 3.0 | 3.0 |
|         | > 1.6     | 6.0            | 5.0 | 5.0 | 4.5       | 3.5       | 3.5       | 3.5 | 3.5 | 3.5 |
|         | 0.0–0.4   | 4.0            | 3.0 | 2.5 | 2.5       | 2.5       | 2.5       | 2.0 | 2.0 | 2.0 |
|         | > 0.4–0.5 | 4.5            | 4.0 | 3.5 | 3.5       | 3.5       | 3.0       | 2.5 | 2.5 | 2.5 |
| > 6     | > 0.5–0.8 | 5.0            | 4.5 | 4.0 | 4.0       | 3.5       | 3.0       | 2.5 | 2.5 | 2.5 |
|         | > 0.8–1.2 | 5.5            | 5.0 | 4.5 | 4.5       | 4.0       | 3.5       | 3.0 | 3.0 | 3.0 |
|         | > 1.2–1.6 | 6.0            | 5.5 | 5.0 | 5.0       | 4.5       | 4.0       | 3.5 | 3.5 | 3.5 |
|         | > 1.6     | 7.0            | 6.0 | 5.5 | 5.5       | 5.0       | 4.5       | 4.0 | 4.0 | 4.0 |

EXHIBIT 23-9. PASSENGER-CAR EQUIVALENTS FOR TRUCKS AND BUSES ON UPGRADES

### EXHIBIT 23-10. PASSENGER-CAR EQUIVALENTS FOR RVs ON UPGRADES

|         |           |     | E <sub>R</sub> |     |      |             |     |     |     |     |
|---------|-----------|-----|----------------|-----|------|-------------|-----|-----|-----|-----|
| Upgrade | Length    |     |                |     | Perc | entage of F | RVs |     |     |     |
| (%)     | (km)      | 2   | 4              | 5   | 6    | 8           | 10  | 15  | 20  | 25  |
| ≤2      | All       | 1.2 | 1.2            | 1.2 | 1.2  | 1.2         | 1.2 | 1.2 | 1.2 | 1.2 |
| > 2–3   | 0.0–0.8   | 1.2 | 1.2            | 1.2 | 1.2  | 1.2         | 1.2 | 1.2 | 1.2 | 1.2 |
|         | > 0.8     | 3.0 | 1.5            | 1.5 | 1.5  | 1.5         | 1.5 | 1.2 | 1.2 | 1.2 |
|         | 0.0–0.4   | 1.2 | 1.2            | 1.2 | 1.2  | 1.2         | 1.2 | 1.2 | 1.2 | 1.2 |
| > 3–4   | > 0.4–0.8 | 2.5 | 2.5            | 2.0 | 2.0  | 2.0         | 2.0 | 1.5 | 1.5 | 1.5 |
|         | > 0.8     | 3.0 | 2.5            | 2.5 | 2.5  | 2.0         | 2.0 | 2.0 | 1.5 | 1.5 |
|         | 0.0-0.4   | 2.5 | 2.0            | 2.0 | 2.0  | 1.5         | 1.5 | 1.5 | 1.5 | 1.5 |
| > 4–5   | > 0.4–0.8 | 4.0 | 3.0            | 3.0 | 3.0  | 2.5         | 2.5 | 2.0 | 2.0 | 2.0 |
|         | > 0.8     | 4.5 | 3.5            | 3.0 | 3.0  | 3.0         | 2.5 | 2.5 | 2.0 | 2.0 |
|         | 0.0-0.4   | 4.0 | 3.0            | 2.5 | 2.5  | 2.5         | 2.0 | 2.0 | 2.0 | 1.5 |
| > 5     | > 0.4–0.8 | 6.0 | 4.0            | 4.0 | 3.5  | 3.0         | 3.0 | 2.5 | 2.5 | 2.0 |
|         | > 0.8     | 6.0 | 4.5            | 4.0 | 4.5  | 3.5         | 3.0 | 3.0 | 2.5 | 2.0 |

In analyzing upgrades, the point of interest is usually the end of the grade, where heavy vehicles presumably have the maximum effect on operations. This is not always the case, however. If a ramp junction is located midgrade, the point of the merge or diverge will also be a critical point for analysis. In the case of composite grades, the point at which heavy vehicles are traveling slowest is the critical point for analysis. If a 5 percent upgrade is followed by a 2 percent upgrade, it is reasonable to assume that the end of the 5 percent portion will be critical, since heavy vehicles would be expected to accelerate on the 2 percent portion of the grade.

## Equivalents for Specific Downgrades

There are few specific data on the effect of heavy vehicles on traffic flow on downgrades. In general, if the downgrade does not cause trucks to shift into a low gear, they may be treated as if they were level terrain segments, and passenger-car equivalents are selected accordingly. Where more severe downgrades occur, trucks must often use low gears to avoid gaining too much speed and running out of control. In such cases, their effect is greater than it would be on level terrain. Exhibit 23-11 gives values of  $E_T$ . For RVs, downgrades may be treated as level terrain.

|           |        | Ε <sub>T</sub> |            |             |     |
|-----------|--------|----------------|------------|-------------|-----|
| Downgrade | Length |                | Percentage | e of Trucks |     |
| (%)       | (km)   | 5              | 10         | 15          | 20  |
| < 4       | All    | 1.5            | 1.5        | 1.5         | 1.5 |
| 4–5       | ≤ 6.4  | 1.5            | 1.5        | 1.5         | 1.5 |
| 4–5       | > 6.4  | 2.0            | 2.0        | 2.0         | 1.5 |
| > 5—6     | ≤ 6.4  | 1.5            | 1.5        | 1.5         | 1.5 |
| > 5—6     | > 6.4  | 5.5            | 4.0        | 4.0         | 3.0 |
| > 6       | ≤ 6.4  | 1.5            | 1.5        | 1.5         | 1.5 |
| > 6       | > 6.4  | 7.5            | 6.0        | 5.5         | 4.5 |

EXHIBIT 23-11. PASSENGER-CAR EQUIVALENTS FOR TRUCKS AND BUSES ON DOWNGRADES

# Equivalents for Composite Grades

The vertical alignment of most freeways results in a continuous series of grades. It is often necessary to determine the effect of a series of significant grades in succession. The most straightforward technique is to compute the average grade to the point in question. The average grade is defined as the total rise from the beginning of the composite grade divided by the length of the grade.

The average grade technique is an acceptable approach for grades in which all subsections are less than 4 percent or the total length of the composite grade is less than 1,200 m. For more severe composite grades, a detailed technique is presented in Appendix A. This technique uses vehicle performance curves and equivalent speeds to determine the equivalent simple grade for analysis.

# **Driver Population Factor**

The traffic stream characteristics that are the basis of this methodology are representative of regular drivers in a substantially commuter traffic stream or in a stream in which most drivers are familiar with the facility. It is generally accepted that traffic streams with different characteristics (i.e., recreational drivers) use freeways less efficiently. Whereas data are sparse and reported results vary substantially, significantly lower capacities have been reported on weekends, particularly in recreational areas. It may generally be assumed that the reduction in capacity (LOS E) extends to service volumes for other levels of service as well.

For RVs, downgrades may be treated as level terrain

Appendix A gives a detailed composite grade technique

The adjustment factor  $f_p$  is used to reflect this effect. The values of  $f_p$  range from 0.85 to 1.00. In general, the analyst should select 1.00, which reflects commuter traffic (i.e., familiar users), unless there is sufficient evidence that a lower value should be applied. Where greater accuracy is needed, comparative field studies of commuter and recreational traffic flow and speeds are recommended.

## DETERMINING LOS

The first step in determining LOS of a basic freeway segment is to define and segment the freeway facility as appropriate. Second, on the basis of estimated or field-measured FFS, an appropriate speed-flow curve of the same shape as the typical curves (Exhibit 23-3) is constructed. On the basis of the flow rate,  $v_p$ , and the constructed speed-flow curve, an average passenger-car speed is read on the y-axis of Exhibit 23-3. The next step is to calculate density using Equation 23-4.

$$\mathsf{D} = \frac{\mathsf{v}_{\mathsf{p}}}{\mathsf{S}} \tag{23-4}$$

where

D = density (pc/km/ln),

 $v_p$  = flow rate (pc/h/ln), and

S = average passenger-car speed (km/h).

LOS of the basic freeway segment is then determined by comparing the calculated density with the density ranges in Exhibit 23-2.

## SENSITIVITY OF RESULTS TO INPUT VARIABLES

Downstream conditions may cause backups that result in low speeds and low volumes. The basic freeway segment methodology cannot be applied in such circumstances.

Analysts will note that there is no direct way to calibrate the estimated capacity of the basic freeway segment with field conditions. The analyst must instead calibrate the estimated free-flow speed and demand adjustments with field conditions. Field measurements of density can be used to determine LOS directly.

The FFS for urban freeways is sensitive to the average interchange spacing and the number of lanes in one direction. The sensitivity increases with the number of lanes. Exhibit 23-12 can be used to determine the FFS given the number of lanes in one direction and the average distance between freeway interchanges.

| (SEE FOOTNOTE FOR ASSUMED VALUES) |                          |                        |      |      |  |  |
|-----------------------------------|--------------------------|------------------------|------|------|--|--|
|                                   |                          | Free-Flow Speed (km/h) |      |      |  |  |
|                                   | Interchange Spacing (km) |                        |      |      |  |  |
| Number of Lanes                   | 1.00                     | 1.25                   | 2.00 | 3.00 |  |  |
| 2                                 | 94                       | 97                     | 101  | 103  |  |  |
| 3                                 | 96                       | 99                     | 103  | 105  |  |  |
| 4                                 | 98                       | 102                    | 106  | 108  |  |  |
| 5                                 | 99                       | 104                    | 108  | 110  |  |  |

EXHIBIT 23-12. URBAN FREEWAY FFS AND INTERCHANGE SPACING

Note:

Assumptions: BFFS = 110 km/h, lane width = 3.6 m, lateral clearance = 1.8 m.

The FFS for rural freeways is sensitive to the average interchange spacing for spacing under 1.0 km. Exhibit 23-13 can be used to determine the FFS for rural freeways given the average interchange spacing.

# Highway Capacity Manual 2000





The v/c ratio has relatively little effect on speed until it exceeds 54 to 80 percent, depending on FFS. FFS (which is sensitive to lane width, shoulder width, number of lanes, and interchange spacing) has more effect on mean speed at low v/c ratios than the v/c ratio itself (see Exhibit 23-14).



For a rural freeway, the capacity per lane is 2,400 pc/h/ln, based on the assumption that rural freeways have interchange spacing of greater than 3.0 km and two lanes in one direction. Exhibit 23-15 can be used to determine capacity for urban freeways with shorter interchange spacing or a different number of lanes.



### EXHIBIT 23-15. URBAN FREEWAY CAPACITY AND INTERCHANGE SPACING

## **III. APPLICATIONS**

The methodology of this chapter can be used to analyze the capacity and LOS of basic freeway segments. The analyst must address two fundamental questions. First, the primary output must be identified. Primary outputs typically solved for in a variety of applications include LOS, number of lanes required (N), and flow rate achievable ( $v_p$ ). Performance measures related to density (D) and speed (S) are also achievable but are considered secondary outputs.

Second, the analyst must identify the default values or estimated values for use in the analysis. Basically, the analyst has three sources of input data:

1. Default values found in this manual,

- 2. Estimates and locally derived default values developed by the user, and
- 3. Values derived from field measurements and observation.

A value for each input variable must be supplied to calculate the outputs, both primary and secondary.

A common application of the method is to compute the LOS of an existing segment or a changed facility in the near term or distant future. This type of application is often termed operational, and its primary output is LOS, with secondary outputs for density and speed. Another application is to check the adequacy of or to recommend the number of lanes for a basic freeway segment given the volume or flow rate and LOS goal. This type of application is termed design, since its primary output is the number of lanes required to serve the assumed conditions. Other outputs from this application include speed and density. Finally, the achievable flow rate,  $v_p$ , can be calculated as a primary output. This analysis requires an LOS goal and a number of lanes as inputs and typically estimates the flow rate that will cause the highway to operate at an unacceptable LOS.

Another general type of analysis can be termed planning. This type of analysis uses estimates, HCM default values, and local default values as inputs in the calculation. LOS, number of lanes, or flow rate can be determined as outputs along with the secondary outputs of density and speed. The difference between planning analysis and operational or design analysis is that most or all of the input values in planning analysis come from estimates or default values, but the operational and design analyses tend to use field measurements or known values for most or all of the input variables. Note that for

Guidelines on required inputs and estimated values are given in Chapter 13, "Freeway Concepts" each of the analyses, FFS, either measured or estimated, is required as an input in the computation.

## SEGMENTING THE FREEWAY

Capacity or LOS analysis requires that the freeway segment have uniform traffic conditions and roadway characteristics. Thus, a point at which there is a change in either the traffic or roadway conditions typically represents an endpoint of the analysis segment.

A number of locations on a freeway form natural boundaries of uniform segments. Any on-ramp or off-ramp is such a boundary, since the volume of freeway traffic changes. The beginning and end of simple or composite grades also act as boundaries. Any point at which the traffic or roadway conditions change should be used as a boundary between uniform segments, each of which should be analyzed separately.

In addition to the natural boundaries created by on-ramps and off-ramps, the following conditions generally dictate that the freeway segment under analysis be segmented:

- Change in the number of lanes,
- Change in the right-shoulder lateral clearance,
- Grade change of 2 percent or more or constant upgrade longer than 1200 m, and
- Change in speed limit.

## COMPUTATIONAL STEPS

The basic freeway segments worksheet for computations is shown in Exhibit 23-16. The analyst provides general information and site information for all applications.

For operational (LOS) analysis, all speed and flow data are entered as inputs. Equivalent flow is then computed with the aid of the exhibits for passenger-car equivalents. FFS is estimated by adjusting a base FFS. Finally, LOS is determined by entering (with  $v_p$ ) the speed-flow graph at the top of the worksheet and intersecting the specific curve that has been selected or constructed for the freeway segment.

This point of intersection identifies the LOS and (on the vertical axis of the graph) the estimated speed, S. If the analyst requires a value for density (D), it is calculated as  $v_p/S$ .

The key to design analysis for number of lanes (N) is establishing an hourly volume. All information, with the exception of number of lanes, can be entered in the flow input and speed input portion of the worksheet (see Exhibit 23-16). An FFS, either computed or measured directly, is entered on the worksheet. The appropriate curve representing the FFS is established on the graph. The required or desired LOS is also entered. Then the analyst assumes N and computes flow,  $v_p$ , with the aid of the exhibits for passenger-car equivalents. LOS is determined by entering the speed-flow graph with  $v_p$  at the top of the worksheet. Then, the derived LOS is compared with the desired LOS. This process is then repeated, adding one lane to the previously assumed number of lanes, until the determined LOS matches or is better than the desired LOS. Density is calculated using  $v_p$  and S.

The objective of design analysis for flow rate,  $v_p$ , is to estimate the flow rate in passenger cars per hour per lane given a set of traffic, roadway, and FFS conditions. A desired LOS is entered on the worksheet. Then, the FFS of the segment is established using either the BFFS and the four adjustment factors or an FFS measured in the field. Once this facility speed-flow curve is established, the analyst can determine what flow rate is achievable with the given LOS. This would be considered the maximum flow rate achievable or allowable for the given level. The average passenger-car speed is also directly available from the graph. Finally, if required, a value for density can be directly calculated, using the flow rate and the average speed. Operational (LOS)

Design (N)

Design (v<sub>p</sub>)

## Highway Capacity Manual 2000

| EAI                                            |                             |                                |                                                               |                                |                       |
|------------------------------------------------|-----------------------------|--------------------------------|---------------------------------------------------------------|--------------------------------|-----------------------|
| 130c                                           | BASIC FREEWAY SEG           | MENTS WOF                      | RKSHEET                                                       |                                |                       |
| € 120 Free-Flow Speed = 120 km/h               | 1300                        | / <b>·</b>                     |                                                               |                                |                       |
| 통 110 110 km/h                                 | 1450                        |                                | Application                                                   | Input                          | Output                |
| 100 km/h                                       | 1600                        |                                | Operational (LOS)                                             | FFS, N, V <sub>n</sub>         | LOS, S,               |
| 90 km/h                                        | 1750                        |                                | Design (N)                                                    | FFS, LOS, v <sub>p</sub>       | N, S, D               |
| 80                                             |                             |                                | Design (v <sub>p</sub> )                                      | FFS, LOS, N                    | v <sub>p</sub> , S, D |
|                                                |                             |                                | Planning (LOS)                                                | FFS, N, AADT                   | LOS, S,               |
| 60                                             | ·                           |                                | Planning (N)                                                  | FFS, LOS, AADT                 | N, S, D               |
| 50                                             | Nm                          |                                | Planning (v <sub>p</sub> )                                    | FFS, LOS, N                    | v <sub>p</sub> , S, D |
| 40 40                                          | 28.00                       |                                |                                                               |                                |                       |
| 0 400 800<br>Fi                                | 1200 1600 :                 | 2000 2400                      |                                                               |                                |                       |
| General Information                            | on new (periority           | Site Infor                     | mation                                                        |                                |                       |
| Analyst                                        |                             | Highway/I                      | Direction of Travel                                           |                                |                       |
| Agency or Company                              |                             | From/To                        |                                                               |                                |                       |
| Date Performed                                 |                             | Jurisdictio                    | n                                                             |                                |                       |
| Analysis Time Period                           |                             | Analysis Y                     | 'ear                                                          |                                |                       |
|                                                |                             |                                |                                                               |                                |                       |
| Operational (LOS) Design (N                    | I) Design (v <sub>p</sub> ) | Planning (L                    | LOS) Pla                                                      | anning (N)                     | Planning (            |
| Flow Inputs                                    |                             |                                |                                                               |                                |                       |
| Volume, V                                      | _veh/h                      | Peak-hour fact                 | or, PHF                                                       |                                |                       |
| Annual avg. daily traffic, AADT                | veh/day                     | % Trucks and                   | buses, P <sub>T</sub>                                         |                                |                       |
| Peak-hour proportion of AADT. K                |                             | % RVs. Pp                      |                                                               |                                |                       |
| Peak-hour direction proportion D               |                             | General terrain                |                                                               |                                |                       |
| DDHV = AADT * K * D                            | veh/h                       |                                | Rolling D Mo                                                  | untainous                      |                       |
| Driver type D Commuter Meekday                 | Represtional Weekend        | Crada Long                     | La Noning La Mio                                              | Un/Down                        | 0/                    |
|                                                |                             | orado zong                     |                                                               | op/20111                       |                       |
| с <sub>Т</sub>                                 |                             | $I_{HV} = \frac{1 + P}{1 + P}$ | $T(E_{T} - 1) + P_{R}(E_{R} - 1)$                             |                                |                       |
| Speed Inputs                                   |                             | Calculate                      | Speed Adjustn                                                 | nents and FFS                  |                       |
| Lane width                                     | m                           | fiw                            |                                                               |                                | km/l                  |
| Rtshoulder lateral clearance                   | m                           | fic                            |                                                               |                                | km/                   |
| Interchange density                            | l/km                        | fin                            |                                                               |                                | _km/l                 |
| Number of lanes, N                             |                             | f <sub>N</sub>                 |                                                               |                                | km/i                  |
| FFS (measured)                                 | km/h                        | FFS = BFI                      | $FS - f_{LW} - f_{LC} - f_{ID} - f_{N}$                       |                                | km/                   |
| Base free-flow speed, BFFS                     | km/h                        |                                |                                                               |                                |                       |
| LOS and Performance Mea                        | sures                       |                                |                                                               |                                |                       |
| Operational (LOS) or Planning (LOS)            |                             | Design (N                      | ) or Planning (N) 1st It                                      | eration                        |                       |
| $v_0 = \frac{V \text{ or } DDHV}{DHF + M + 6}$ | pc/h/ln                     | Ν                              |                                                               |                                | assu                  |
| S PHEN THY Tp                                  | km/h                        | V. =                           | V or DDHV                                                     |                                | pc/h                  |
| D = v <sub>o</sub> /S                          | nc/km/ln                    |                                | 1° N <sup>-</sup> T <sub>HV</sub> <sup>-</sup> † <sub>p</sub> |                                |                       |
| p                                              | positiviti                  | 200                            |                                                               |                                |                       |
| Design (y ) or Planning (y )                   |                             | Design (N                      | ) or Planning (N) 2nd I                                       | toration                       |                       |
|                                                |                             | Design (N                      | j or Fidmining (N) 200 I                                      |                                |                       |
| LUS                                            |                             | N                              | V or DDHV                                                     |                                | assu                  |
| V <sub>p</sub>                                 | pc/h/ln                     | v <sub>p</sub> =PH             | F * N * f <sub>HV</sub> * f <sub>p</sub>                      |                                | pc/h                  |
| $V = v_p * PHF * N * f_{HV} * f_p$             | veh/h                       | S                              | ·                                                             |                                | km/i                  |
| S                                              | km/h                        | $D = v_p / S$                  |                                                               |                                | pc/k                  |
| D = v <sub>p</sub> /S                          | pc/km/ln                    | LOS                            |                                                               |                                |                       |
| Glossary                                       |                             | Factor Lo                      | ocation                                                       |                                |                       |
| N - Number of lanes                            | S - Speed                   | E <sub>R</sub> - Exhibits      | 23-8, 23-10                                                   | f <sub>LW</sub> - Exhibit 23   | 3-4                   |
| V - Hourly volume                              | D - Density                 | E <sub>T</sub> - Exhibits      | 23-8, 23-9, 23-11                                             | f <sub>LC</sub> - Exhibit 23   | 3-5                   |
| vp - Flow rate                                 | FFS - Free-flow speed       | f <sub>p</sub> - Page 23       | -12                                                           | f <sub>N</sub> - Exhibit 23    | 3-6                   |
| LUS - Level of service                         | BFFS- Base free-flow speed  | LUS, S, FFS,                   | v <sub>p</sub> - Exhibits 23-2, 23-3                          | 3 t <sub>ID</sub> - Exhibit 23 | 5-1                   |
| DDUV Directional design have 1                 |                             |                                |                                                               |                                |                       |

# EXHIBIT 23-16. BASIC FREEWAY SEGMENTS WORKSHEET

## **PLANNING APPLICATIONS**

The three planning applications—planning for LOS, flow rate  $(v_p)$ , and number of lanes (N)—correspond directly to the procedures described for operations and design. The primary criterion categorizing these as planning applications is the use of estimates, HCM default values, and local default values as inputs into the calculations. The use of annual average daily traffic (AADT) to estimate directional design-hour volume (DDHV)

Planning (LOS) Planning (v<sub>p</sub>) Planning (N) also characterizes a planning application. (For guidelines on computing DDHV, refer to Chapter 8.)

To perform planning applications, the analyst typically has few, if any, of the required input values. Chapter 13 contains more information on the use of default values.

# ANALYSIS TOOLS

The basic freeway segments worksheet shown in Exhibit 23-16 and provided in Appendix B can be used to perform all applications, including operational for LOS; design for flow rate,  $v_p$ , and number of lanes, N; and planning for LOS,  $v_p$ , and N.

# IV. EXAMPLE PROBLEMS

| Problem No. | Description                                                                                                                           | Application                                         |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| 1           | Find LOS for an existing four-lane freeway                                                                                            | Operational (LOS)                                   |
| 2           | Find number of lanes for a suburban freeway                                                                                           | Design (N)                                          |
| 3           | Find LOS for an existing six-lane urban freeway, and find LOS that occurs in 3 years. Also find when the freeway will exceed capacity | Operational (LOS), Planning (LOS), and Planning (N) |
| 4           | Find LOS for an upgrade and a downgrade on an existing four-lane freeway                                                              | Operational (LOS)                                   |
| 5           | Find opening-day demand volumes and number of lanes for a new urban freeway facility                                                  | Planning (LOS) and<br>Planning (v <sub>p</sub> )    |

# EXAMPLE PROBLEM 1

**The Freeway** Existing four-lane freeway, rural area, very restricted geometry, rolling terrain, 110-km/h speed limit.

The Question What is the LOS during the peak hour?

### The Facts

- $\sqrt{}$  Two lanes in each direction,
- $\sqrt{3.3}$ -m lane width,
- $\sqrt{0.6}$ -m lateral clearance,
- $\sqrt{}$  Commuter traffic,
- $\sqrt{2,000-\text{veh/h peak-hour volume}}$  (one direction),
- $\sqrt{5}$  percent trucks,
- √ 0.92 PHF,
- $\sqrt{0.6}$  interchanges per kilometer, and

### Comments

- $\sqrt{}$  Assume 0 percent buses and RVs since none are indicated.
- $\sqrt{}$  Assume BFFS of 120 km/h for rural areas.
- $\checkmark$  Assume that the number of lanes does not affect free-flow speed, since the freeway is in a rural area.
- $\sqrt{}$  Assume f<sub>p</sub> = 1.00 for commuter traffic.

**Outline of Solution** All input parameters are known. Demand is computed in terms of passenger cars per hour per lane, an FFS is estimated, and the LOS is determined from the speed-flow graph. An estimate of passenger-car speed is determined from the graph, and a value of density is calculated using speed and flow rate. The calculation of speed is based on the equation found in Exhibit 23-3.

#### Steps

| 1. | Convert volume (veh/h) to flow rate (pc/h/ln) (use Equation 23-2). | $v_{p} = \frac{V}{(PHF)(N)(f_{HV})(f_{p})}$ $v_{p} = \frac{2,000}{V}$  |
|----|--------------------------------------------------------------------|------------------------------------------------------------------------|
|    |                                                                    | <sup>p</sup> (0.92)(2)(f <sub>HV</sub> )(1.00)                         |
| 2. | Find f <sub>HV</sub> (use Exhibit 23-8 and Equation 23-3).         | $f_{HV} = \frac{1}{1 + P_T(E_T - 1) + P_R(E_R - 1)}$                   |
|    |                                                                    | $f_{\rm HV} = \frac{1}{1 + 0.05(2.5 - 1) + 0}$                         |
|    |                                                                    | f <sub>HV</sub> = 0.930                                                |
| 3. | Find v <sub>p</sub> (use Equation 23-2).                           | $v_{p} = \frac{2,000}{(0.92)(2)(0.930)(1.00)} = 1,169 \text{ pc/h/ln}$ |
| 4. | Compute free-flow speed (use                                       | $FFS = BFFS - f_{LW} - f_{LC} - f_N - f_{ID}$                          |
|    | Exhibits 23-4, 23-5, 23-6, 23-7, and                               | FFS = 120 - 3.1 - 3.9 - 0.0 - 3.9                                      |
|    | Equation 23-1).                                                    | FFS = 109.1 km/h                                                       |
| 5. | Determine level of service (use Exhibit 23-2).                     | LOS B                                                                  |

### The Results

LOS = B, Speed = 109 km/h, and Density = 11 pc/km/ln.

# Highway Capacity Manual 2000

| BASIC FREEWAY SEGMENTS WORKSHEET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 130 Free-Flow Sneed = 120 km/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 120 100 100 0000 - 120 km/m 1450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Output                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LOS, S, D                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 90 km/h 1750 Design (N) FFS, LOS, V <sub>p</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N, S, D                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Design (v <sub>p</sub> ) FFS, LOS, N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | v <sub>p</sub> , S, D                                                                                                                                                                                                                                                                                                                                                                                                                   |
| BU LOS A C B C C C D C C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LOS, S, D                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Planning (N) FFS, LOS, AADI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N, S, D                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 50 Planning (vp) FFS, LUS, N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | v <sub>p</sub> , S, D                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| U 400 800 1200 1600 2000 2400<br>Flow Rate (pc/h/ln)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| General Information Site Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Analyst WLL Highway/Direction of Travel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Agency or Company <u>CEI</u> From/To                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Date Performed <u>4/12/99</u> Jurisdiction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u>aa</u>                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Analysis Time Period Analysis Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 99                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Uperational (LUS) Design (N) Design (v <sub>p</sub> ) Planning (LOS) Planning (N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Planning (v <sub>p</sub> )                                                                                                                                                                                                                                                                                                                                                                                                              |
| Flow Inputs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Volume, V <u>2000</u> veh/h Peak-hour factor, PHF <u>0.9</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 32                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Annual avg. daily traffic, AADTveh/day % Trucks and buses, P <sub>T</sub> 5_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Peak-hour proportion of AADT, K % RVs, P <sub>R</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Peak-hour direction proportion, D General terrain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DDHV = AADT * K * Dveh/h 🛛 Level 🖄 Rolling 🗖 Mountainous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Driver type 🖄 Commuter/Weekday 🛛 Recreational/Weekend Grade Length km Up/Down                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Calculate Flow Adjustments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| fp <u>1.00</u> E <sub>R</sub> <u>2</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $E_{\rm T}$ 2.5 $f_{\rm HV} = \frac{1}{(-2)^2 (1-1)^2 (1-1)^2} (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^2 (1-1)^$                                                                                                                                                                          | 0.930                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $1 + P_T(E_T - 1) + P_R(E_R - 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Speed Inputs Calculate Speed Adjustments and FF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Speed Inputs         Calculate Speed Adjustments and FF           Lane width         3.3         m         f <sub>LW</sub> 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.1km/h                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Speed Inputs         Calculate Speed Adjustments and FF           Lane width         3.3         m         f <sub>LW</sub> 33           Rtshoulder lateral clearance         0.6         m         f <sub>LC</sub> 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.1 km/h<br>5.9 km/h                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Speed Inputs         Calculate Speed Adjustments and FF           Lane width         3.3         m         f <sub>LW</sub> 33           Rt-shoulder lateral clearance         0.6         m         f <sub>LC</sub> 33           Interchange density         0.6         U/km         f <sub>D</sub> 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.1 km/h<br>5.9 km/h<br>5.9 km/h                                                                                                                                                                                                                                                                                                                                                                                                        |
| Speed Inputs         Calculate Speed Adjustments and FF           Lane width         3.3         m         f <sub>LW</sub> .33           Rt-shoulder lateral clearance         0.6         m         f <sub>LC</sub> .33           Interchange density         0.6         I/km         f <sub>LD</sub> .33           Number of lanes, N         2         If                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S<br><u>km/h</u><br><u>km/h</u><br><u>km/h</u><br><u>km/h</u>                                                                                                                                                                                                                                                                                                                                                                           |
| Speed Inputs         Calculate Speed Adjustments and FF           Lane width $3.3$ m $f_{LW}$ $3.3$ Rt-shoulder lateral clearance $0.6$ m $f_{LC}$ $3.3$ Interchange density $0.6$ L/km $f_{ID}$ $3.3$ Number of lanes, N $2$ km/h         FFS = BFFS - $f_{LW} - f_{ID} - f_N$ $0.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>*S</b><br>5.1 km/h<br>5.9 km/h<br>5.9 km/h<br>2.0 km/h<br>2.9.1 km/h                                                                                                                                                                                                                                                                                                                                                                 |
| Speed Inputs         Calculate Speed Adjustments and FF           Lane width $3.3$ m $f_{LW}$ $3.3$ Rt-shoulder lateral clearance $0.6$ m $f_{LC}$ $3.3$ Interchange density $0.6$ L/km $f_{LD}$ $3.3$ Number of lanes, N $2$ $f_N$ $0.6$ FFS (measured) $km/h$ $FFS = BFFS - f_{LW} - f_{LC} - f_{ID} - f_N$ $100$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 <b>5</b><br>5.1 km/h<br>5.9 km/h<br>5.9 km/h<br>7.0 km/h<br>7.0 km/h                                                                                                                                                                                                                                                                                                                                                                  |
| Speed Inputs         Calculate Speed Adjustments and FF           Lane width         3.3         m $f_{LW}$ 33           Rt-shoulder lateral clearance         0.6         m $f_{LC}$ 33           Interchange density         0.6         U/km $f_{D}$ 33           Number of lanes, N         2 $f_N$ $G_C$ $G_C$ FFS (measured)         km/h         FFS = BFFS - $f_{LW} - f_{LC} - f_{D} - f_N$ $IC$ LOS and Performance Measures         Operational (US) or Planning (US)         Design (N) or Planning (N) 1st Iteration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25<br>5.1 km/h<br>5.9 km/h<br>5.9 km/h<br>0.0 km/h<br>0.9.1 km/h                                                                                                                                                                                                                                                                                                                                                                        |
| Speed Inputs         Calculate Speed Adjustments and FF           Lane width         3.3         m $f_{LW}$ 33           RL-shoulder lateral clearance         0.6         m $f_{LC}$ 33           Interchange density         0.6         U/km $f_{ID}$ 33           Number of lanes, N         2 $f_N$ $OO$ $GO$ FFS (measured)         km/h         FFS = BFFS - $f_{LW} - f_{LC} - f_{ID} - f_N$ $IC$ Base free-flow speed, BFFS         120         km/h         FFS = BFFS - $f_{LW} - f_{LC} - f_{ID} - f_N$ $IC$ LOS and Performance Measures         Design (N) or Planning (N) 1st Iteration         Number of Planning (N) 1st Iteration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 <b>S</b><br>5.1 km/h<br>5.9 km/h<br>5.9 km/h<br>7.0 km/h<br>7.0 km/h                                                                                                                                                                                                                                                                                                                                                                  |
| Speed Inputs         Calculate Speed Adjustments and FF           Lane width         3.3         m $f_{LW}$ 3           RL-shoulder lateral clearance         0.6         m $f_{LC}$ 3           Interchange density         0.6         L/km $f_{LD}$ 3           Number of lanes, N         2 $f_{N}$ 0.0           FFS (measured)         km/h         FFS = BFFS - $f_{LW} - f_{LC} - f_{ID} - f_{N}$ 00           Base free-flow speed, BFFS         120         km/h         FFS = BFFS - $f_{LW} - f_{LC} - f_{ID} - f_{N}$ 10           UOS and Performance Measures         0         0         0         0         0 $v_p = \frac{V \text{ or DDHV}}{PHF * N^* f_{W} * f_p}$ 1169         pc/h/ln         N         N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 <b>S</b><br>5.1 km/h<br>5.9 km/h<br>5.9 km/h<br>7.0 km/h<br>7.0 km/h<br>7.0 km/h<br>7.0 km/h<br>7.0 km/h<br>7.0 km/h                                                                                                                                                                                                                                                                                                                  |
| Speed Inputs         Calculate Speed Adjustments and FF           Lane width         3.3         m $f_{LW}$ 3           Rt-shoulder lateral clearance         0.6         m $f_{LD}$ 3           Interchange density         0.6         L/km $f_{LD}$ 3           Number of lanes, N         2         km/h         FFS (measured)         3           FFS (measured)         km/h         FFS = BFFS - $f_{LW} - f_{LC} - f_{ID} - f_N$ 10           Base free-flow speed, BFFS         120         km/h         FFS         10           Qperational (LOS) or Planning (LOS)         vp = $\frac{V \text{ or DDHV}}{PHF * N * f_{HV} * f_p}$ 1169         pc/h/ln         N         vp = $\frac{V \text{ or DDHV}}{PHF * N * f_{HV} * f_p}$ 109.1         km/h         vp = $\frac{V \text{ or DDHV}}{PHF * N * f_{HV} * f_p}$ 109.1         km/h         vp = $\frac{V \text{ or DDHV}}{PHF * N * f_{HV} * f_p}$ 109.1         km/h         vp = $\frac{V \text{ or DDHV}}{PHF * N * f_{HV} * f_p}$ 109.1         Km/h         vp = $\frac{V \text{ or DDHV}}{PHF * N * f_{HV} * f_p}$ 109.1         Km/h         Vp = $\frac{V \text{ or DDHV}}{PHF * N * f_{HV} * f_p}$ 109.1         109.1         Km/h         109.1         109.1         100.1         100.1         100.1         100.1         100.1         100.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | S           5.1         km/h           5.9         km/h           5.9         km/h           2.0         km/h           2.0         km/h           2.0         km/h                                                                                                                                                                                                                                                                     |
| Speed InputsCalculate Speed Adjustments and FFLane width3.3m $f_{LW}$ 3Rt-shoulder lateral clearance0.6m $f_{LC}$ 3Interchange density0.6U/km $f_{ID}$ 3Number of lanes, N2km/hFFS = BFFS - $f_{LW} - f_{LC} - f_{ID} - f_N$ 0FFS (measured)km/hFFS = BFFS - $f_{LW} - f_{LC} - f_{ID} - f_N$ 0Base free-flow speed, BFFS120km/hPerson of the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S           5.1         km/h           5.9         km/h           5.9         km/h           20         km/h           29.1         km/h                                                                                                                                                                                                                                                                                                |
| Speed Inputs         Calculate Speed Adjustments and FF           Lane width         3.3         m $f_{LW}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.1         km/h           5.2         km/h           3.9         km/h           2.0         km/h           2.0.         km/h           2.0.         km/h           2.0.         km/h           2.0.         km/h                                                                                                                                                                                                                       |
| $\begin{tabular}{ c c c c c c } \hline Speed Inputs & Calculate Speed Adjustments and FF \\ Lane width & 3.3 m & f_{LW} & 3 \\ R_{L-shoulder lateral clearance} & 0.6 m & f_{LC} & 3 \\ Interchange density & 0.6 U/km & f_{D} & 3 \\ Interchange density & 0.6 U/km & f_{D} & 3 \\ Number of lanes, N & 2 & f_{N} & 0 \\ FFS (measured) & km/h & FFS = BFFS - f_{LW} - f_{LC} - f_{D} - f_{N} & 10 \\ Base free-flow speed, BFFS & 120 km/h & FFS = BFFS - f_{LW} - f_{LC} - f_{D} - f_{N} & 10 \\ \hline LOS and Performance Measures & & & \\ \hline Operational (LOS) or Planning (LOS) & & & & \\ performance Measures & & & & \\ \hline Operational (LOS) or Planning (LOS) & & & & & \\ performance Measures & & & & & \\ \hline Design (N) or Planning (N) 1st Iteration & N & & & \\ S & & & & & & & \\ D = v_p/S & & & & & & & \\ LOS & & & & & & & \\ \hline Design (v_p) or Planning (v_p) & & & & & & \\ \hline Design (v_p) or Planning (v_p) & & & & & & \\ \hline Design (v_p) or Planning (N) 2nd Iteration & & & \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 25.1 km/h<br>5.9 km/h<br>5.9 km/h<br>2.0 km/h<br>2.0 km/h<br>2.0 km/h<br>2.0 km/h<br>2.0 km/h<br>2.0 km/h                                                                                                                                                                                                                                                                                                                               |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.1         km/h           5.2         km/h           5.9         km/h           2.0         km/h           2.0         km/h           2.0         km/h                                                                                                                                                                                                                                                                                 |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$5.1         km/h           3.9         km/h           3.9         km/h           2.0         km/h |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *S           5.1         km/h           3.9         km/h           2.0         km/h           2.0         km/h           2.0         km/h                                                                                                                                                                                                                                                                                               |
| $\begin{tabular}{ c c c c c c c } \hline Speed Inputs & Calculate Speed Adjustments and FF \\ Lane width & 3.3 m & f_{LW} & 33 \\ R_L-shoulder lateral clearance & 0.6 m & f_{LO} & 33 \\ R_L-shoulder lateral clearance & 0.6 U/km & f_{LO} & 33 \\ Interchange density & 0.6 U/km & f_{LO} & 33 \\ R_L-Shoulder lateral clearance & 0.6 m & f_{LO} & 33 \\ R_L-Shoulder lateral clearance & 0.6 m & f_{LO} & 33 \\ R_L-Shoulder lateral clearance & 0.6 m & f_{LO} & 33 \\ R_L-Shoulder lateral clearance & 0.6 m & f_{LO} & 33 \\ R_L-Shoulder lateral clearance & 0.6 m & f_{LO} & 33 \\ R_L-Shoulder lateral clearance & 0.6 m & f_{LO} & 33 \\ R_L-Shoulder lateral clearance & 0.6 m & 0.6 \\ R_L-Shoulder lateral clearance & 0.6 m & 0.6 \\ R_L-Shoulder lateral clearance & 0.6 m & 0.6 \\ R_L-Shoulder lateral clearance & 0.6 m & 0.6 \\ R_L-Shoulder lateral clearance & 0.6 m & 0.6 \\ \hline Shoulder lateral clearance & 0.6 m & 0.6 \\ R_L-Shoulder lateral clearance & 0.6 m & 0.6 \\ \hline Shoulder lateral clearance & 0.6 m & 0.6 \\ \hline Shoulder lateral clearance & 0.6 m & 0.6 \\ \hline Shoulder lateral clearance & 0.6 m & 0.6 \\ \hline Shoulder lateral clearance & 0.6 m & 0.6 \\ \hline Shoulder lateral clearance & 0.6 m & 0.6 \\ \hline Shoulder lateral clearance & 0.6 m & 0.6 \\ \hline Shoulder lateral clearance & 0.6 m & 0.6 \\ \hline Shoulder lateral clearance & 0.6 m & 0.6 \\ \hline Shoulder lateral clearance & 0.6 m & 0.6 \\ \hline Shoulder lateral clearance & 0.6 m & 0.6 \\ \hline Shoulder lateral clearance & 0.6 m & 0.6 \\ \hline Shoulder lateral clearance & 0.6 m & 0.6 \\ \hline Shoulder lateral clearance & 0.6 m & 0.6 \\ \hline Shoulder lateral clearance & 0.6 m & 0.6 \\ \hline Shoulder lateral clearance & 0.6 m & 0.6 \\ \hline Shoulder lateral clearance & 0.6 m & 0.6 \\ \hline Shoulder lateral clearance & 0.6 m & 0.6 \\ \hline Shoulder lateral clearance & 0.6 m & 0.6 \\ \hline Shoulder lateral clearance & 0.6 m & 0.6 \\ \hline Shoulder lateral clearance & 0.6 m & 0.6 \\ \hline Shoulder lateral clearance & 0.6 m & 0.6 \\ \hline Shoulder lateral clearance & 0.6 m & 0.6 \\ \hline Shoulder lateral clearance & 0.6 m & 0.6 \\ \hline Shoulder lateral clearance & 0.6 m & 0.6 \\ \hline Shoulder lateral cleara$ | *S           5.1         km/h           5.9         km/h           2.0         km/h           2.0         km/h           .2.1         km/h           .2.1         km/h           .2.2         km/h           .2.3         km/h           .2.4         ssumed                                                                                                                                                                            |
| $\begin{tabular}{ c c c c c c } \hline Speed Inputs & Calculate Speed Adjustments and FF \\ Lane width & 3.3 m & f_{LW} & 3 \\ R_L-shoulder lateral clearance & 0.6 m & f_{LC} & 3 \\ Interchange density & 0.6 U/km & f_{LD} & 3 \\ Interchange density & 0.6 U/km & f_{LD} & 3 \\ Number of lanes, N & 2 & f_{N} & 0.6 \\ \hline FFS (measured) & km/h & FFS = BFFS - f_{LW} - f_{LC} - f_{ID} - f_{N} & 0.6 \\ \hline EVS and Performance Measures & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | *S           5.1         km/h           5.9         km/h           2.0         km/h           2.0         km/h           2.0.1         km/h                                                                                                                                                                                                                                                                                             |
| $\begin{tabular}{ c c c c c c } \hline Speed Inputs & Calculate Speed Adjustments and FF \\ Lane width & 3.3 m & f_{LW} & 3 \\ R_L-shoulder lateral clearance & 0.6 m & f_{LC} & 3 \\ Interchange density & 0.6 U/km & f_{LD} & 3 \\ Interchange density & 0.6 U/km & f_{LD} & 3 \\ Interchange density & 0.6 W/km & f_{LD} & 3 \\ FFS (measured) & km/h & 2 & f_{ND} & 3 \\ FFS (measured) & km/h & FFS = BFFS - f_{LW} - f_{LC} - f_{ID} - f_{N} & 0 \\ \hline & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | *S           5.1         km/h           3.9         km/h           2.0         km/h           2.0         km/h                                                                                                                                                                                                                                                                                                                          |
| $\begin{tabular}{ c c c c c c } \hline Speed Inputs & Calculate Speed Adjustments and FF \\ Lane width & 3.3 & m & f_{LW} & 3 \\ Lane width & 3.3 & m & f_{LW} & 3 \\ R_L-shoulder lateral clearance & 0.6 & m & f_{LC} & 3 \\ Interchange density & 0.6 & U/km & f_{LD} & 3 \\ Interchange density & 0.6 & U/km & f_{LD} & 3 \\ Number of lanes, N & 2 & f_{N} & 0.6 \\ \hline FFS (measured) & km/h & FFS = BFFS - f_{LW} - f_{LC} - f_{ID} - f_{N} & 0.6 \\ \hline EVS and Performance Measures & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S           5.1         km/h           5.9         km/h           3.9         km/h           2.0         km/h           2.0         km/h           2.0         km/h                                                                                                                                                                                                                                                                     |
| $\begin{tabular}{ c c c c c c } \hline Speed Inputs & Calculate Speed Adjustments and FF \\ Lane width & 3.3 m & f_{LW} & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s.g         km/h           5.1         km/h           5.9         km/h           5.9         km/h           5.9         km/h           2.0         km/h           2.0         km/h           2.0         km/h           2.0         km/h            pc/h/ln                                                                                                                                                                             |
| Speed InputsCalculate Speed Adjustments and FFLane width3.3m $f_{LW}$ 3Arshoulder lateral clearance0.6m $f_{LC}$ 3Interchange density0.6U/km $f_{LC}$ 3Number of lanes, N2Km/hFFS3FFS (measured)km/hFFS = BFFS - $f_{LW} - f_{LC} - f_{ID} - f_N$ 10Base free-flow speed, BFFS120km/hFFS = BFFS - $f_{LW} - f_{LC} - f_{ID} - f_N$ 10LOS and Performance MeasuresDesign (N) or Planning (N) 1st IterationN $v_p = \frac{V \text{ or DDHV}}{PHF * N * f_{HV} * f_p}$ 1069pc/h/lnN $V_p = \frac{V \text{ or DDHV}}{PHF * N * f_{HV} * f_p}$ 106.7pc/km/lnLOSSSDesign (v_p) or Planning (v_p)10.7pc/km/lnLOSSSSLOSBDesign (N) or Planning (N) 2nd IterationN $v_p = \frac{V \text{ or DDHV}}{PHF * N * f_{HV} * f_p}$ SSSDesign (v_p) or Planning (v_p)mpc/h/ln $v_p = \frac{V \text{ or DDHV}}{PHF * N * f_{HV} * f_p}$ SSSDesign (v_p) or Planning (v_p)mpc/h/ln $v_p = \frac{V \text{ or DDHV}}{PHF * N * f_{HV} * f_p}$ SSD = v_p/Smpc/km/lnD = v_p/SSSSD = v_p/Spc/km/lnD = v_p/SSSSD = v_p/Spc/km/lnD = v_p/SSSSD = v_p/Spc/km/lnD = v_p/SSSSD = v_p/Spc/km/lnD SS <td>s.g         km/h           5.1         km/h           5.9         km/h           5.9         km/h           5.9         km/h           2.0         km/h           2.0         km/h           2.0         km/h           2.0         km/h           2.0         km/h            assumed            pc/h/ln            km/h            gc/km/ln            it 23-5           it 23-5         it 23-6</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | s.g         km/h           5.1         km/h           5.9         km/h           5.9         km/h           5.9         km/h           2.0         km/h           2.0         km/h           2.0         km/h           2.0         km/h           2.0         km/h            assumed            pc/h/ln            km/h            gc/km/ln            it 23-5           it 23-5         it 23-6                                      |

### Example Problem 1

## **EXAMPLE PROBLEM 2**

The Freeway New suburban freeway is being designed.

The Question How many lanes are needed to provide LOS D during the peak hour?

#### The Facts

 $\sqrt{}$ 

- $\sqrt{}$ 4,000 veh/h (one direction),
- $\sqrt{}$ Level terrain,

- √ 0.85 PHF.  $\sqrt{0.9}$  interchanges per kilometer,
- 15 percent trucks,
- $\sqrt{3}$  gercent RVs, and

 $\sqrt{}$ 3.6-m lane width,  $\sqrt{1.8}$ -m lateral clearance.

#### Comments

- $\sqrt{}$ Assume commuter traffic. Thus,  $f_p = 1.00$ .
- $\sqrt{}$ Assume BFFS of 120 km/h.
- $\sqrt{}$ Assume that the number of lanes affects free-flow speed, since the freeway is being designed in a suburban area.

All input parameters are known. Flow rate, speed, density, and Outline of Solution LOS are calculated starting with a four-lane freeway and then increasing the number of lanes to six, eight, and so forth until LOS D is achieved. The calculation of speed is based on the equation found in Exhibit 23-3.

#### Steps

| 1. | Convert volume (veh/h) to flow rate (pc/h/ln) (use Equation 23-2).                                       | $v_{p} = \frac{V}{(PHF)(N)(f_{HV})(f_{p})}$                                                                                          |
|----|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| 2. | Find f <sub>HV</sub> (use Exhibit 23-8 and Equation 23-3).                                               | $f_{HV} = \frac{1}{1 + P_T(E_T - 1) + P_R(E_R - 1)}$<br>$f_{HV} = \frac{1}{1 + (0.15)(1.5 - 1) + 0.03(1.2 - 1)}$<br>$f_{HV} = 0.925$ |
| 3. | For four-lane option (use Equation 23-2).                                                                | $v_{\rm p} = \frac{4,000}{(0.85)(2)(0.925)(1.00)} = 2,544 \text{ pc/h/ln}$                                                           |
| 4. | The four-lane option is not acceptable since 2544 pc/h/ln exceeds capacity of 2400 pc/h/ln.              |                                                                                                                                      |
| 5. | For six-lane option (use Equation 23-2).                                                                 | $v_{p} = \frac{4,000}{(0.85)(3)(0.925)(1.00)} = 1,696 \text{ pc/h/ln}$                                                               |
| 6. | Compute free-flow speed for a six-lane freeway (use Exhibits 23-4, 23-5, 23-6, 23-7, and Equation 23-1). | $FFS = BFFS - f_{LW} - f_{LC} - f_{N} - f_{ID}$<br>FFS = 120 - 0.0 - 0.0 - 4.8 - 8.1<br>FFS = 107.1 km/h                             |
| 7. | Determine level of service (use Exhibit 23-2).                                                           | LOS C                                                                                                                                |

### The Results

Six lanes are needed, LOS = C,Speed = 107 km/h, and Density = 16 pc/km/ln.

# Highway Capacity Manual 2000

|                                                           | BASIC FREEWAY SEGM                                  | IENTS WORKSHEET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Free-Flow Speed = 120 km/h                                | 1300                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 120 110 km/h                                              | 1450                                                | Application Input Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                           |                                                     | Operational (LOS) FFS, N, vp LOS, S, D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 90 km/h                                                   | 1750                                                | Design (N) FFS, LOS <sup>'</sup> , v <sub>p</sub> N, S, D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                           |                                                     | Design (v <sub>p</sub> ) FFS, LOS, N v <sub>p</sub> , S, D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                           |                                                     | Planning (LOS) FFS, N, AADI LOS, S, D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| e 60                                                      | the second second                                   | Planning (N) FFS LOS, AADT N, S, D<br>Planning (V) FFS LOS N V S D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                           | - Delymin                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 40 400 8                                                  |                                                     | 100 2400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0 400 0                                                   | Flow Rate (pc/h/In)                                 | 2400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| General Information                                       | 11.07                                               | Site Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Analyst                                                   | CEL                                                 | From/To                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Date Performed                                            | 4/14/99                                             | Jurisdiction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Analysis Time Period                                      |                                                     | Analysis Year 1999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                           |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Operational (LOS) Desig                                   | n (N) Design (v <sub>n</sub> )                      | Planning (LOS) Planning (N) Planning (v <sub>n</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Flow Inputs                                               |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Volume, V                                                 | 4000 veh/h                                          | Peak-hour factor, PHF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Annual avg. daily traffic, AADT                           | veh/day                                             | % Trucks and buses, P <sub>T</sub> 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Peak-hour proportion of AADT, K                           |                                                     | % RVs, P <sub>R</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Peak-hour direction proportion, D                         |                                                     | General terrain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DDHV = AADT * K * D                                       | veh/h                                               | 🖄 Level 🗅 Rolling 🗅 Mountainous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Driver type 🛛 Commuter/Weekday                            | <ul> <li>Recreational/Weekend</li> </ul>            | Grade Length km Up/Down%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Calculate Flow Adjustme                                   | ents                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| f <sub>n</sub>                                            | 1.00                                                | E <sub>R</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Ē <sub>T</sub>                                            | 1.5                                                 | $f_{HV} = \frac{1}{(1 + D)^2 (E_{HV} + D)^2 (E_{HV} + D)^2} \frac{0.925}{(1 + D)^2 (E_{HV} + D)^2 (E_{HV} + D)^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                           |                                                     | $1 + P_T(E_T - 1) + P_R(E_R - 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Speed Inputs                                              |                                                     | Calculate Speed Adjustments and FFS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Lane width                                                | <u> </u>                                            | f <sub>LW</sub> km/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Rtshoulder lateral clearance                              | <u>1.8</u> m                                        | f <sub>LC</sub> km/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Interchange density                                       | l/km                                                | t <sub>ID</sub> <u>8.1</u> km/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Number of lanes, N                                        | /)                                                  | $\frac{1}{N} = \frac{7.3/4.0}{104.6/1071} \text{ km/h}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Base free-flow speed, BFFS                                | 120 km/h                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LOS and Performance M                                     | easures                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Operational (LOS) or Planning (LOS)                       |                                                     | Design (N) or Planning (N) 1st Iteration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| V =V or DDHV                                              | nc/h/ln                                             | N 2 assumed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| *p PHF * N * f <sub>HV</sub> * f <sub>p</sub>             | po/n/m                                              | V =V or DDHV 2544pc/b/lp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| D=v /S                                                    | nc/km/ln                                            | Vp = PHF * N * f <sub>HV</sub> * f <sub>p</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| U = V <sub>p</sub> 73                                     | perkiiriii                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Design (u.) or Planning (u.)                              |                                                     | Design (N) or Planning (N) and Iteration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\frac{Design (v_p) \text{ or Flamming } (v_p)}{100}$     |                                                     | N South Annual Sou |
|                                                           | ne/h/ln                                             | V = V or DDHV 1696 po/b/lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| *р<br>V – v * DHE * N * f * f                             | pon/III                                             | *p PHF*N*f <sub>HV</sub> *f <sub>p</sub> <u>1066 bm/b</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| v – v <sub>p</sub> FFIF IN I <sub>HV</sub> I <sub>p</sub> |                                                     | 5 <u>100.5 Km/n</u><br>15.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| о<br>D=v /S                                               | KITI/I                                              | $\nu = v_p/s$ <u>10.8</u> pc/km/ln                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| D = V <sub>p</sub> /S                                     | pc/km/m                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mumber of lance                                           | C Coord                                             | Factor Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| N - NUMBER OF TARES                                       | S - Speea<br>D - Density                            | E <sub>R</sub> - EXIIIDITS 23-8, 23-10 I <sub>LW</sub> - EXIIIDIT 23-4<br>F <sub>2</sub> - Exhibits 23-8, 23-9, 23-11 f <sub>1-</sub> - Exhibit 23-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| v Flow rate                                               | D Donary                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                           | FFS - Free-flow speed                               | f <sub>n</sub> - Page 23-12 f <sub>M</sub> - Exhibit 23-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| LOS - Level of service                                    | FFS - Free-flow speed<br>BFFS- Base free-flow speed | fp         - Page 23-12         fN         - Exhibit 23-6           LOS, S, FFS, vp         - Exhibits 23-2, 23-3         fp         - Exhibit 23-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

Example Problem 2

# EXAMPLE PROBLEM 3

The FreewayExisting six-lane freeway in a growing urban area.The QuestionWhat is the current LOS during the peak hour? What LOS will occur in

3 years? When should a fourth lane be added in each direction to avoid an excess of demand over capacity?

### The Facts

- $\sqrt{5,000}$  veh/h (one direction, existing);
- $\sqrt{}$  Level terrain;
- $\sqrt{5,600}$  veh/h (one direction, in 3 years);
- Beyond 3 years, traffic grows at 4 percent per year;
- $\sqrt{6}$  lanes;
- $\sqrt{10}$  percent trucks;
- $\sqrt{0.95}$  PHF; and
- $\sqrt{FFS} = 110 \text{ km/h}$ 
  - (measured in field).

#### Comments

- $\sqrt{}$  Since no information is given on possible changes over time, assume that 10 percent trucks, PHF, and FFS remain constant.
- $\checkmark$  This problem deals with a variety of demand levels and can most easily be solved by computing the maximum volume that can be accommodated for each level of service.
- $\sqrt{}$  Assume 0 percent buses and RVs.
- $\sqrt{}$  Assume commuter traffic.

**Outline of Solution** The maximum volume (veh/h) for each LOS is computed, the demand volumes are compared, and a level of service is estimated.

| 010 | pa                                                                                                                |                                                                                                                                    |
|-----|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| 1.  | Convert the maximum service flow rate (pc/h/ln) for each LOS to veh/h (use Equation 23-2).                        | $v_{p} = \frac{V}{(PHF)(N)(f_{HV})(f_{p})}$ $V = v_{p}(PHF)(N)(f_{HV})(f_{p})$                                                     |
| 2.  | Find f <sub>HV</sub> (use Equation 23-3 and Exhibit 23-8).                                                        | $f_{HV} = \frac{1}{1 + P_{T}(E_{T} - 1) + P_{R}(E_{R} - 1)}$<br>$f_{HV} = \frac{1}{1 + 0.10(1.5 - 1) + 0}$<br>$f_{HV} = 0.952$     |
| 3.  | Find maximum v <sub>p</sub> for each LOS (use<br>Exhibit 23-2).                                                   | LOS A, $v_p = 770 \text{ pc/h/ln}$<br>LOS B, $v_p = 1,210$<br>LOS C, $v_p = 1,740$<br>LOS D, $v_p = 2,135$<br>LOS E, $v_p = 2,350$ |
| 4.  | Compute V (veh/h) (use equation from Step 1 with $f_p = 1.00$ ).                                                  | LOS A, V = 2,089 veh/h<br>LOS B, V = 3,283<br>LOS C, V = 4,721<br>LOS D, V = 5,793<br>LOS E, V = 6,376                             |
| 5.  | Compare 5,000 veh/h and 5,600 veh/h with above, determine LOS.                                                    |                                                                                                                                    |
| 6.  | When traffic exceeds 6,376 veh/h, a fourth lane in each direction will be needed. A compounding equation is used. | $5,600(1.04^{n}) = 6,376$<br>n = 3.3 years                                                                                         |
|     |                                                                                                                   |                                                                                                                                    |

### The Results

LOS D (existing), LOS D (in 3 years), and A fourth lane will be needed in 3.3 years beyond the end of the first 3 years.

BASIC FREEWAY SEGMENTS WORKSHEET 130r Free-Flow Spee = 120 km/h 1300 110 km/h Application Input Output FFS, N, v<sub>p</sub> FFS, LOS, v<sub>p</sub> FFS, LOS, N 100 km/h LOS, S, D Operational (LOS) 90 km/h N, S, D Design (N) v<sub>p</sub>, S, D LOS, S, D Design (vn) Planning (LOS) FFS, N, AADT Planning (N) FFS, LOS, AADT N, S, D Average F +polymin. 60 Planning (v<sub>p</sub>) FFS, LOS, N v<sub>p</sub>, S, D 16 Polkm/10 50 mm 28 PC 40 400 1200 Flow Rate (pc/h/ln) 1600 2400 **General Information** Site Information Analyst JMYE Highway/Direction of Travel Agency or Company CEI From/To Jurisdiction Date Performed 4/15/99 Analysis Time Period Analysis Year 1999/2002 Ø Ă Operational (LOS) Design (N) Planning (LOS) Planning (N) Planning (v<sub>p</sub>) Design (v<sub>p</sub>) Flow Inputs Volume, V 5000/5600 veh/h Peak-hour factor, PHF 0.95 % Trucks and buses, PT 10 Annual avg. daily traffic, AADT veh/dav Peak-hour proportion of AADT, K % RVs, P<sub>R</sub> 0 Peak-hour direction proportion, D General terrain DDHV = AADT \* K \* D \_veh/h 🖄 Level 🗅 Rolling 🗅 Mountainous Driver type 
Commuter/Weekday Recreational/Weekend Grade Length \_\_\_\_\_ km Up/Down % **Calculate Flow Adjustments** 1.00 E<sub>R</sub> fn 1.5 0.952 Ε<sub>T</sub> f<sub>HV</sub> =  $1 + P_T(E_T - 1) + P_R(E_R - 1)$ Speed Inputs Calculate Speed Adjustments and FFS Lane width m km/h f<sub>IW</sub> Rt.-shoulder lateral clearance m f<sub>LC</sub> km/h Interchange density l/km  $f_{\text{ID}}$ km/h Number of lanes N 3 f<sub>N</sub> km/h  $FFS = BFFS - f_{LW} - f_{LC} - f_{ID} - f_{N}$ FFS (measured) 110 km/h km/h Base free-flow speed, BFFS km/h LOS and Performance Measures Operational (LOS) or Planning (LOS) Design (N) or Planning (N) 1st Iteration V or DDHV PHF \* N \* f<sub>HV</sub> \* f<sub>p</sub> Ν v<sub>p</sub> = \_pc/h/ln \_assumed V or DDHV PHF \* N \* f<sub>HV</sub> \* f<sub>p</sub> S km/h pc/h/ln  $V_{D} = D = v_p / S$ \_pc/km/ln LOS LOS D (existing)/D (in 3 years) Design (vp) or Planning (vp) Design (N) or Planning (N) 2nd Iteration LOS Ν C/D/E assumed V or DDHV PHF \* N \* f<sub>HV</sub> \* f<sub>p</sub> 1740/2135/2350 \_pc/h/ln \_pc/h/ln V<sub>D</sub>= Vn 4721/5793/6376  $V = v_p * PHF * N * f_{HV} * f_p$ \_km/h veh/h S S \_km/h  $D = v_p / S$ \_pc/km/In LOS  $D = v_p / S$ pc/km/ln Glossary **Factor Location** N - Number of lanes V - Hourly volume E<sub>R</sub> - Exhibits 23-8, 23-10 f<sub>LW</sub> - Exhibit 23-4 - Speed S f<sub>LC</sub> - Exhibit 23-5 D - Density E<sub>T</sub> - Exhibits 23-8, 23-9, 23-11 - Flow rate FFS - Free-flow speed - Page 23-12 - Exhibit 23-6 vp - Flow rate LOS - Level of service f<sub>N</sub> BFFS- Base free-flow speed LOS, S, FFS, vp - Exhibits 23-2, 23-3 - Exhibit 23-7 f<sub>ID</sub> DDHV - Directional design-hour volume

Example Problem 3

## **EXAMPLE PROBLEM 4**

#### The Freeway

Existing four-lane freeway in a rural area.

The Question What is the LOS for both the upgrade and the downgrade directions during the peak hour?

### The Facts

- $\sqrt{2}$  lanes in each direction,
- $\sqrt{15}$  percent trucks.
- √ 0.90 PHF.
- $\sqrt{}$  Segment 2, 800 m at 5 percent grade,
- $\sqrt{FFS} = 115$  km/h (measured in field, upgrade direction),
- $\sqrt{2,300}$  veh/h peak-hour volume (one direction).
- $\sqrt{}$  Segment 1, 900 m at 3 percent grade, and
- $\sqrt{FFS} = 120 \text{ km/h}$  (measured) in field, downgrade direction).

### Comments

- $\sqrt{}$  Assume 0 percent buses and RVs since none are indicated.
- $\sqrt{1}$  The precise procedure for composite grades is used because there is a segment steeper than 4 percent and the total length is greater than 1200 m.
- $\sqrt{4}$  Assume f<sub>p</sub> = 0.95 because drivers are generally unfamiliar with the area.

Outline of Solution The truck performance curves in Appendix A are used to develop an equivalent grade (i.e., a constant grade that has the same effect on heavy vehicles as does the composite grade). Demand is computed in terms of passenger cars per hour per lane, and LOS is determined from the speed-flow graph. The calculation of speed is based on the equation found in Exhibit 23-3.

### Ctone

| ິວເອ | Sieps                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 1.   | Determine equivalent constant<br>grade (use Exhibit A23-2).                   | Using Appendix A, enter 900 m. Speed at top of 3 percent grade is 68 km/h. Intersection of horizontal at 68 km/h and 5 percent curve implies trucks have been on 5 percent for 375 m. A vertical is drawn at 1175 m to the 5 percent deceleration curve, and a horizontal shows a final truck speed of 42 km/h. A horizontal line at a speed of 42 km/h and a vertical line at 1700 m intersect at a composite grade of 5 percent. Similarly, the composite grade for the downgrade is computed as –1 percent. |  |  |  |
| 2.   | Convert volume (veh/h) to flow rate (pc/h/ln) (use Equation 23-2).            | $v_{p} = \frac{V}{(PHF)(N)(f_{HV})(f_{p})}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| 3.   | Find f <sub>HV</sub> (upgrade) (Exhibit 23-9<br>and Equation 23-3).           | $f_{HV} = \frac{1}{1 + P_T(E_T - 1) + P_R(E_R - 1)}$ $f_{HV} = \frac{1}{1 + 0.15(3.0 - 1) + 0} = 0.769$                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| 4.   | Find f <sub>HV</sub> (downgrade) (use<br>Exhibit 23-11 and Equation<br>23-3). | $f_{\rm HV} = \frac{1}{1 + 0.15(1.5 - 1) + 0} = 0.930$                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| 5.   | Find v <sub>p</sub> (upgrade) (use Equation 23-2).                            | $v_{p} = \frac{2,300}{(0.90)(2)(0.769)(0.95)} = 1,749 \text{ pc/h/ln}$                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| 6.   | Find v <sub>p</sub> (downgrade) (use<br>Equation 23-2).                       | $v_{p} = \frac{2,300}{(0.90)(2)(0.930)(0.95)} = 1,446 \text{ pc/h/ln}$                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| 7.   | Determine LOS (use Exhibit 23-2).                                             | LOS C (upgrade and downgrade)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |

### The Results

### Upgrade LOS C, Speed = 113 km/h, and Density = 15 pc/km/ln.

### Downgrade LOS C, Speed = 120 km/h, and Density = 12 pc/km/ln.

#### Example Problem 4

| BASIC FREEWAY SEGMENTS WORKSHEET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                 |                                                                                                                                                                                                                                                                                                |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Free-Flow Speed = 120 km/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1300                                                                            | ·                                                                                                                                                                                                                                                                                              |  |  |  |  |
| € 120<br>110 110 km/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 | Application Input Output                                                                                                                                                                                                                                                                       |  |  |  |  |
| 100 km/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1600                                                                            | Operational (LOS) FFS, N, v <sub>n</sub> LOS, S, D                                                                                                                                                                                                                                             |  |  |  |  |
| 90 km/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1750                                                                            | Design (N) FFS, LOS, vp N, S, D                                                                                                                                                                                                                                                                |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 | Design (v <sub>p</sub> ) FFS, LOS, N v <sub>p</sub> , S, D                                                                                                                                                                                                                                     |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 | Planning (LOS) FFS, N, AADT LOS, S, D                                                                                                                                                                                                                                                          |  |  |  |  |
| 8, 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 | Planning (N) FFS, LUS, AADT N, S, D<br>Planning (V) FFS LOS N V S D                                                                                                                                                                                                                            |  |  |  |  |
| 50 (BUILD BUILD BU | 2 BUKININ                                                                       | Training (v <sub>p</sub> ) 113, 203, N v <sub>p</sub> , 3, D                                                                                                                                                                                                                                   |  |  |  |  |
| 40 400 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 00 1200 1600 20                                                                 | 00 2400                                                                                                                                                                                                                                                                                        |  |  |  |  |
| 0 100 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Flow Rate (pc/h/ln)                                                             |                                                                                                                                                                                                                                                                                                |  |  |  |  |
| General Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                 | Site Information                                                                                                                                                                                                                                                                               |  |  |  |  |
| Analyst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | JMYE                                                                            | Highway/Direction of Travel                                                                                                                                                                                                                                                                    |  |  |  |  |
| Agency or Company _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CEI                                                                             | From/To                                                                                                                                                                                                                                                                                        |  |  |  |  |
| Date Performed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5/16/99                                                                         | Jurisdiction                                                                                                                                                                                                                                                                                   |  |  |  |  |
| Analysis Time Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                 | Anarysis Year                                                                                                                                                                                                                                                                                  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 |                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Operational (LOS) Desig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | jn (N) Design (V <sub>p</sub> )                                                 | Planning (LOS) Planning (N) Planning $(V_p)$                                                                                                                                                                                                                                                   |  |  |  |  |
| Flow Inputs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                 |                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Volume, V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | veh/h                                                                           | Peak-hour factor, PHF                                                                                                                                                                                                                                                                          |  |  |  |  |
| Annual avg. daily traffic, AADT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | veh/day                                                                         | % Trucks and buses, P <sub>T</sub> 15                                                                                                                                                                                                                                                          |  |  |  |  |
| Peak-hour proportion of AADT, K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 | % RVs, P <sub>R</sub>                                                                                                                                                                                                                                                                          |  |  |  |  |
| Peak-hour direction proportion, D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                 | General terrain                                                                                                                                                                                                                                                                                |  |  |  |  |
| DDHV = AADT * K * D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | veh/h                                                                           | Level Rolling Mountainous                                                                                                                                                                                                                                                                      |  |  |  |  |
| Driver type Driver type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | y Recreational/Weekend                                                          | Grade Length <u>1.7</u> km Up/Down <u>5/-1</u> %                                                                                                                                                                                                                                               |  |  |  |  |
| Calculate Flow Adjustme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ents                                                                            |                                                                                                                                                                                                                                                                                                |  |  |  |  |
| f <sub>p</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.95                                                                            | E <sub>R</sub>                                                                                                                                                                                                                                                                                 |  |  |  |  |
| ET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.0/1.5                                                                         | $f_{HV} = \frac{1}{1 + P(E - 1) + P(E - 1)} = \frac{0.769/0.930}{0.769/0.930}$                                                                                                                                                                                                                 |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 | 1 + rT(ET - 1) + rR(ER - 1)                                                                                                                                                                                                                                                                    |  |  |  |  |
| Speed Inputs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                 | Calculate Speed Adjustments and FFS                                                                                                                                                                                                                                                            |  |  |  |  |
| Lane width                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | m                                                                               | fuw km/h                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Rtshoulder lateral clearance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | m                                                                               | f <sub>LC</sub> km/h                                                                                                                                                                                                                                                                           |  |  |  |  |
| Interchange density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | l/km                                                                            | f <sub>ID</sub> km/h                                                                                                                                                                                                                                                                           |  |  |  |  |
| Number of lanes, N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                               | f <sub>N</sub> km/h                                                                                                                                                                                                                                                                            |  |  |  |  |
| FFS (measured)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 115/120km/h                                                                     | $FFS = BFFS - t_{LW} - t_{LC} - t_{ID} - t_{N} $ km/h                                                                                                                                                                                                                                          |  |  |  |  |
| Base free-flow speed, BFF3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NII/II                                                                          |                                                                                                                                                                                                                                                                                                |  |  |  |  |
| LOS and Performance M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | leasures                                                                        |                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Operational (LOS) or Planning (LOS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                 | Design (N) or Planning (N) 1st Iteration                                                                                                                                                                                                                                                       |  |  |  |  |
| $v_p = \frac{V \text{ or } DDHV}{PHF * N * f_{rot} * f_r}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1749/1446pc/h/ln                                                                | Nassumed                                                                                                                                                                                                                                                                                       |  |  |  |  |
| S <sup>nv µ</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 112.7/119.8km/h                                                                 | $v_p = \frac{V \text{ or DDHV}}{PHF * N * f_{HV} * f_p} pc/h/ln$                                                                                                                                                                                                                               |  |  |  |  |
| $D = v_p / S$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | pc/km/ln                                                                        | LOS                                                                                                                                                                                                                                                                                            |  |  |  |  |
| LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C/C                                                                             |                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Design (v <sub>p</sub> ) or Planning (v <sub>p</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                 | Design (N) or Planning (N) 2nd Iteration                                                                                                                                                                                                                                                       |  |  |  |  |
| LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                 | Nassumed                                                                                                                                                                                                                                                                                       |  |  |  |  |
| V <sub>p</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | pc/h/ln                                                                         | $v_p = \frac{v_{01} \text{ DDHV}}{\text{PHF} * \text{N} * f_{HV} * f_p} \text{pc/h/ln}$                                                                                                                                                                                                        |  |  |  |  |
| $V = v_p * PHF * N * f_{HV} * f_p$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | veh/h                                                                           | Skm/h                                                                                                                                                                                                                                                                                          |  |  |  |  |
| S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | km/h                                                                            | $D = v_p /S$ pc/km/ln                                                                                                                                                                                                                                                                          |  |  |  |  |
| $D = v_p / S$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | pc/km/ln                                                                        | LOS                                                                                                                                                                                                                                                                                            |  |  |  |  |
| Glossary Factor Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                 |                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Glossary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                 |                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Glossary           N         - Number of lanes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S - Speed                                                                       | E <sub>R</sub> - Exhibits 23-8, 23-10 f <sub>LW</sub> - Exhibit 23-4                                                                                                                                                                                                                           |  |  |  |  |
| Glossary N - Number of lanes V - Hourly volume V - Elow rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S - Speed<br>D - Density<br>EES Error flow apond                                | $ \begin{array}{cccc} E_{\rm R} & - \mbox{ Exhibits 23-8, 23-10} & f_{\rm LW} & - \mbox{ Exhibits 23-4} \\ E_{\rm T} & - \mbox{ Exhibits 23-8, 23-9, 23-11} & f_{\rm LC} & - \mbox{ Exhibit 23-5} \\ f_{\rm L} & - \mbox{ Exhibit 23-6} \\ f_{\rm L} & - \mbox{ Exhibit 23-6} \\ \end{array} $ |  |  |  |  |
| Glossary           N         - Number of lanes           V         - Hourly volume           vp         - Flow rate           LOS         - Level of service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S - Speed<br>D - Density<br>FFS - Free-flow speed<br>BFFS- Base free-flow speed | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                          |  |  |  |  |

# **EXAMPLE PROBLEM 5**

**The Freeway** New urban facility being planned with a forecast opening-day AADT of 75,000 veh/day.

**The Question** What is the minimum number of lanes needed to provide at least LOS D during the peak hour on opening day? What are the speed and density of traffic for the proposed number of lanes?

### The Facts

- √ 75,000 veh/day,
- √ K = 0.090,
- $\sqrt{}$  Directional split = 55/45, and
- $\sqrt{}$  Rolling terrain.

### Comments

- $\sqrt{}$  Several input variables (FFS, PHF, percent trucks) are not given. Reasonable default values are selected as FFS = 110 km/h (in lieu of field measurement), PHF = 0.90, 10 percent trucks, and 0 percent RVs.
- $\sqrt{}$  Assume commuter traffic (f<sub>p</sub> = 1.00).

**Outline of Solution** Flow rate, speed, density, and LOS are calculated starting with a four-lane freeway and then increasing the number of lanes to six, eight, and so forth until LOS D is achieved. The calculation of speed is based on the equation found in Exhibit 23-3.

| Ste | Steps                                                         |                                                                        |  |  |
|-----|---------------------------------------------------------------|------------------------------------------------------------------------|--|--|
| 1.  | Convert AADT to design-hour volume.                           | DDHV = AADT * K * D                                                    |  |  |
|     |                                                               | DDHV = 75,000 * 0.090 * 0.55                                           |  |  |
|     |                                                               | DDHV = 3,713 veh/h                                                     |  |  |
| 2.  | Find f <sub>HV</sub> (use Exhibit 23-8 and<br>Equation 23-3). | f _ <u>1</u>                                                           |  |  |
|     |                                                               | $^{1}HV = 1 + P_{T}(E_{T} - 1) + P_{R}(E_{R} - 1)$                     |  |  |
|     |                                                               | $f_{HV} = \frac{1}{1 + 0.10(2.5 - 1) + 0}$                             |  |  |
|     |                                                               | f <sub>HV</sub> = 0.870                                                |  |  |
| 3.  | For four-lane option (use Equation 23-2).                     | $v_{p} = \frac{3,713}{(0.90)(2)(0.870)(1.00)} = 2,371 \text{ pc/h/ln}$ |  |  |
| 4.  | Determine level of service (use Exhibit 23-2).                | LOS F                                                                  |  |  |
| 5.  | For six-lane option (use Equation 23-2).                      | 3,713                                                                  |  |  |
|     |                                                               | $v_{\rm p} = \frac{1}{(0.90)(3)(0.870)(1.00)}$                         |  |  |
|     |                                                               | v <sub>p</sub> = 1,581 pc/h/ln                                         |  |  |
| 6.  | Determine level of service (use Exhibit 23-2).                | LOS C                                                                  |  |  |
| 7.  | Calculate speed and density                                   | S = 109.8 km/h                                                         |  |  |
|     |                                                               | D = 14.4 pc/km/ln                                                      |  |  |

### The Results

Six lanes are needed, LOS = C, Speed = 110 km/h, and Density = 14 pc/km/ln.

## Highway Capacity Manual 2000

| BASIC FREEWAY SEGMENTS WORKSHEET                                                           |                                 |                                                         |                                   |  |  |  |
|--------------------------------------------------------------------------------------------|---------------------------------|---------------------------------------------------------|-----------------------------------|--|--|--|
| Free-Flow Speed = 120 km/h                                                                 | 1300                            | · ]                                                     |                                   |  |  |  |
| 120 110 km/h                                                                               | 1450                            | Application                                             | nout Outout                       |  |  |  |
| 100 km/h                                                                                   |                                 | Application 1<br>Operational (LOS)                      |                                   |  |  |  |
| 90 km/h                                                                                    | 1750                            | Design (N)                                              | FS, LOS, v <sub>n</sub> N, S, D   |  |  |  |
|                                                                                            |                                 | Design (v <sub>p</sub> ) F                              | FS, LOS, N V <sub>D</sub> , S, D  |  |  |  |
|                                                                                            |                                 | Planning (LOS) F                                        | FS, N, AADT LOS, S, D             |  |  |  |
| e 60                                                                                       |                                 | Planning (N) F                                          | FS, LOS, AADT N, S, D             |  |  |  |
| 50 <u>8</u> , | 2 pc/an/ln pc/an/ln             | Planning (v <sub>p</sub> ) r                            | rs, Lus, N v <sub>p</sub> , s, D  |  |  |  |
| 40 400 80                                                                                  | 00 1200 1600 200                | 00 2400                                                 |                                   |  |  |  |
|                                                                                            | Flow Rate (pc/h/ln)             |                                                         |                                   |  |  |  |
| General Information                                                                        |                                 | Site Information                                        |                                   |  |  |  |
| Analyst                                                                                    | JMYE                            | Highway/Direction of Travel                             |                                   |  |  |  |
| Agency or Company                                                                          | (EI                             | From/To<br>Jurisdiction                                 |                                   |  |  |  |
| Analysis Time Period                                                                       | 4/10/00                         | Analysis Year                                           | 1999                              |  |  |  |
|                                                                                            |                                 |                                                         |                                   |  |  |  |
| Operational (LOS) Desi                                                                     | gn (N) Design (v <sub>p</sub> ) | Planning (LOS) Plannin                                  | ig (N) Planning (v <sub>p</sub> ) |  |  |  |
| Flow Inputs                                                                                |                                 |                                                         |                                   |  |  |  |
| Volume, V                                                                                  | veh/h                           | Peak-hour factor, PHF                                   | 0.90                              |  |  |  |
| Annual avg. daily traffic, AADT                                                            | 75,000veh/day                   | $\%$ Trucks and buses, $P_{T}$                          | 10                                |  |  |  |
| Peak-hour proportion of AADT, K                                                            | 0.090                           | % RVs, P <sub>R</sub>                                   |                                   |  |  |  |
| Peak-hour direction proportion, D                                                          | 0.55                            | General terrain                                         |                                   |  |  |  |
| DDHV = AADT * K * D                                                                        |                                 | 🗅 Level 🖾 Rolling 🗅 Mountai                             | nous                              |  |  |  |
| Driver type 🖾 Commuter/Weekda                                                              | ay Recreational/Weekend         | Grade Length km U                                       | p/Down%                           |  |  |  |
| Calculate Flow Adjustm                                                                     | ents                            |                                                         |                                   |  |  |  |
| fp                                                                                         | 1.00                            | E <sub>R</sub>                                          |                                   |  |  |  |
| Ε <sub>T</sub>                                                                             | 2.5                             | $f_{HV} = \frac{1}{1 + P_T(F_T - 1) + P_D(F_D - 1)}$    | 0.870                             |  |  |  |
|                                                                                            |                                 | · · I\=I ·/ · K(=K ·/                                   |                                   |  |  |  |
| Speed Inputs                                                                               |                                 | Calculate Speed Adjustmen                               | ts and FFS                        |  |  |  |
| Lane width                                                                                 | m                               | f <sub>LW</sub>                                         | km/h                              |  |  |  |
| Rtshoulder lateral clearance                                                               | m                               | f <sub>LC</sub>                                         | km/h                              |  |  |  |
| Interchange density                                                                        | I/km                            | T <sub>ID</sub>                                         | Km/n                              |  |  |  |
| FES (measured)                                                                             | km/h                            | $\frac{1}{10}$ FFS = BFFS - f f f f km/h                |                                   |  |  |  |
| Base free-flow speed, BFFS                                                                 | km/h                            | LIG BILG LW LC ID IN                                    |                                   |  |  |  |
| LOS and Performance M                                                                      | leasures                        |                                                         |                                   |  |  |  |
| Operational (LOS) or Planning (LOS                                                         | <u>)</u>                        | Design (N) or Planning (N) 1st Iteratio                 | in                                |  |  |  |
| $v_{p} = \frac{V \text{ or } DDHV}{DHE * N * f * f}$                                       | pc/h/ln                         | Ν                                                       | assumed                           |  |  |  |
| S FIF N HV Ip                                                                              | km/h                            | $v_{\rm D} = \frac{V \text{ or DDHV}}{PHE * N * f * f}$ | 2371pc/h/ln                       |  |  |  |
| $D = v_p / S$                                                                              | pc/km/ln                        | LOS                                                     | F                                 |  |  |  |
| LOS                                                                                        |                                 |                                                         |                                   |  |  |  |
| Design (v <sub>n</sub> ) or Planning (v <sub>n</sub> )                                     |                                 | Design (N) or Planning (N) 2nd Iterati                  | on                                |  |  |  |
| LOS                                                                                        |                                 | N                                                       |                                   |  |  |  |
| v <sub>p</sub>                                                                             | pc/h/ln                         | $v_p = \frac{V \text{ or } DDHV}{PHF * N * f_m * f_m}$  | 1581pc/h/ln                       |  |  |  |
| V = v <sub>p</sub> * PHF * N * f <sub>HV</sub> * f <sub>p</sub>                            | veh/h                           | S S                                                     | <u>    109.8       km/h</u>       |  |  |  |
| S                                                                                          | km/h                            | $D = v_p / S$                                           | 14.4pc/km/ln                      |  |  |  |
| $D = v_p /S$                                                                               | pc/km/ln                        | LOS                                                     | C                                 |  |  |  |
| Glossary                                                                                   |                                 | Factor Location                                         |                                   |  |  |  |
| N - Number of lanes                                                                        | S - Speed                       | E <sub>R</sub> - Exhibits 23-8, 23-10                   | f <sub>LW</sub> - Exhibit 23-4    |  |  |  |
| V - Hourly volume                                                                          | D - Density                     | E <sub>T</sub> - Exhibits 23-8, 23-9, 23-11             | f <sub>LC</sub> - Exhibit 23-5    |  |  |  |
| vp - Flow rate                                                                             | FFS - Free-flow speed           | t <sub>p</sub> - Page 23-12                             | t <sub>N</sub> - Exhibit 23-6     |  |  |  |
| DDHV - Directional design hours val                                                        | BFFS- Base free-flow speed      | LUS, S, FFS, V <sub>p</sub> - EXNIDITS 23-2, 23-3       | T <sub>ID</sub> - EXNIDIT 23-7    |  |  |  |
| DDHA - Ditectioual desidu-uont kointe                                                      |                                 |                                                         |                                   |  |  |  |

### Example Problem 5

## V. REFERENCES

- Schoen, J., A. May, W. Reilly, and T. Urbanik. Speed-Flow Relationships for Basic Freeway Sections. Final Report, NCHRP Project 3-45. JHK & Associates, Tucson, Ariz., May 1995.
- Reilly, W., D. Harwood, J. Schoen, et al. *Capacity and Level of Service Procedures for Multilane Rural and Suburban Highways*. Final Report, NCHRP Project 3-33. JHK & Associates, Tucson, Ariz., 1988.

- 3. Basic Freeway Sections (Chapter 3). In *Special Report 209: Highway Capacity Manual* (third edition), TRB, National Research Council, Washington, D.C., 1994.
- Hall, F. L., V. F. Hurdle, and J. H. Banks. Synthesis of Recent Work on the Nature of Speed-Flow and Flow-Occupancy (or Density) Relationships on Freeways. In *Transportation Research Record 1365*, TRB, National Research Council, Washington, D.C., 1992, pp. 12–18.
- Urbanik, T., II, W. Hinshaw, and K. Barnes. Evaluation of High-Volume Urban Texas Freeways. In *Transportation Research Record 1320*, TRB, National Research Council, Washington, D.C., 1991, pp. 110–118.
- Banks, J. H. Flow Processes at a Freeway Bottleneck. In *Transportation Research Record 1287*, TRB, National Research Council, Washington, D.C., 1990, pp. 20–28.
- Hall, F. L., and L. M. Hall. Capacity and Speed-Flow Analysis of the Queen Elizabeth Way in Ontario. In *Transportation Research Record 1287*, TRB, National Research Council, Washington, D.C., 1990, pp. 108–118.
- Hall, F. L., and K. Agyemang-Duah. Freeway Capacity Drop and the Definition of Capacity. In *Transportation Research Record 1320*, TRB, National Research Council, Washington, D.C., 1991, pp. 91–98.
- Chin, H. C., and A. D. May. Examination of the Speed-Flow Relationship at the Caldecott Tunnel. In *Transportation Research Record 1320*, TRB, National Research Council, Washington, D.C., 1991, pp. 75–82.
- 10. Banks, J. *Evaluation of the Two-Capacity Phenomenon as a Basis for Ramp Metering.* Final Report, San Diego State University, San Diego, Calif., 1991.
- 11. *Manual of Traffic Engineering Studies*. Institute of Transportation Engineers, Arlington, Va., 1976.
- Webster, N., and L. Elefteriadou. A Simulation Study of Truck Passenger Car Equivalents (PCE) on Basic Freeway Sections. *Transportation Research B*, Vol. 33, No. 5, 1999, pp. 323–336.

## APPENDIX A. COMPOSITE GRADE

In a basic freeway segment analysis, an overall average grade can be substituted for a series of grades if no single portion of the grade is steeper than 4 percent or the total length of the grade is less than 1200 m. For grades outside these limits (i.e., grades having either a total length greater than 1200 m or portions steeper than 4 percent, or both), the composite grade procedure is recommended. The composite grade procedure is used to determine an equivalent grade that will result in the same final truck speed as would a series of varying grades.

As noted in the chapter, the acceleration/deceleration curves presented here are for vehicles with an average weight-to-power ratio of 120 kg/kW, heavier than typical trucks found on freeways. Typical trucks, which average between 80 and 90 kg/kW, are used to determine passenger-car equivalents.

An example is provided to illustrate the process involved in determining an equivalent grade on a freeway with two segments. Segment 1 is 1500 m long with a 2 percent upgrade, and Segment 2 is 1500 m long with a 6 percent upgrade. If the average grade procedure were used (not valid in this case), the result would be as follows:

Total rise = (1500 \* 0.02) + (1500 \* 0.06) = 120 m

Average grade = 120/3000 = 0.04 or 4 percent The solution for the same freeway conditions using the composite grade procedure is ustrated in Euclidean Average line is drawn at 1500 m to intersect with the 2 drawing a horizontal line to intersect with the vertical axis, Point 2. The speed is 75 km/h, which is the speed the truck exits Segment 1 and enters Segment 2.



EXHIBIT A23-1. SAMPLE SOLUTION FOR COMPOSITE GRADE

The intersection of the horizontal line with the 6 percent deceleration curve is Point 3. A vertical line is drawn at this point to intersect with the horizontal axis, Point 4. Point 4 indicates that 75 km/h is the speed as if the truck has traveled 225 m on a 6 percent upgrade from level terrain.

Because the truck travels another 1500 m on a 6 percent grade, 1500 m is added to 225 m, and Point 5 is found at 1725 m. A vertical line is drawn from Point 5 to intersect with the 6 percent deceleration curve, Point 6. A horizontal line is drawn at Point 6 to intersect with the vertical axis. The final truck speed is found to be 36 km/h, Point 7.

The equivalent grade can now be determined by intersecting a horizontal line drawn at 36 km/h with a vertical line drawn at 3000 m, Point 8. The equivalent grade is found to be 6 percent, instead of 4 percent as previously calculated by the average grade technique. The value of  $E_T$  can now be determined on the basis of a 6 percent grade and the length of 3000 m.

The general steps taken in solving the problem are summarized as follows.

1. Enter Exhibit A23-2 with an initial grade and length. Find the truck speed at the end of the first segment.

2. Find the length along the second grade that results in the same truck speed. This point is used as the starting point for the subsequent segment.

3. Add the length of Segment 2 to the length computed in Step 2. Then determine the final truck speed.

4. For each additional segment, repeat Steps 1 through 3.

5. Enter Exhibit A23-2 with the final truck speed and the total segment length to find the equivalent composite grade.

In the analysis, it is important to identify the point at which the truck speed is the lowest, because its effect on traffic flow is the most severe at that point. Thus, the appropriate point to evaluate truck speed may not always be the segment endpoint. For example, if a 4 percent upgrade of 2 km is followed by 1 km of 2 percent upgrade, the point of minimum truck speed will be the end of the first segment, not the end of the following segment.



The composite grade procedure is not applicable in all cases, especially if the first segment is downgrade and the segment length is long, or the segments are too short. In using the performance curves, cases that cannot be solved with this procedure will become apparent to the analyst because lines will not intersect or points will fall outside the limits of the curves. In such cases, field measurement of speeds should be used as input to the selection of appropriate truck equivalency values.

# APPENDIX B. WORKSHEET

BASIC FREEWAY SEGMENTS WORKSHEET

| BASIC FREEWAY SEGMENTS WORKSHEET             |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|----------------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 130<br>Free-Flow Speed = 120 km/h            | 1300                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 110 110 km/h                                 | 1450                            | Application Input Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| 100 km/h                                     |                                 | Operational (LOS) FFS, N, v <sub>p</sub> LOS, S, D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| 90 km/h                                      | 1750                            | Design (N) FFS, LOS, v <sub>p</sub> N, S, D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|                                              |                                 | Design (v <sub>p</sub> ) FFS, LOS, N v <sub>p</sub> , S, D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| 8 70 70                                      | · · · · · · · · · · · · · · · · | Planning (LUS) FFS, N, AADI LUS, S, D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| ab, 60                                       |                                 | $\begin{array}{c} \hline \\ \hline $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|                                              | Locitani 28 polymin             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 0 400 80                                     | 0 1200 1600 2000                | 0 2400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| Concred Information                          | Flow Rate (pc/h/ln)             | Cite Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| Analyst                                      |                                 | Site information<br>Highway/Direction of Travel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Agency or Company                            |                                 | From/To                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Date Performed                               |                                 | Jurisdiction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| Analysis Time Period                         |                                 | Analysis Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                                              |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Uperational (LUS) Desig                      | n (N) Design (V <sub>p</sub> )  | Planning (LOS) Planning (N) Planning $(V_p)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|                                              |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Volume, V                                    | veh/h                           | Peak-hour factor, PHF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| Annual avg. daily traffic, AADI              | veh/day                         | % Irucks and buses, P <sub>T</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| Peak-hour proportion of AADT, K              |                                 | % RVs, P <sub>R</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| Peak-hour direction proportion, D            |                                 | General terrain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| DDHV = AADT * K * D                          | veh/h                           | Level Rolling Mountainous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| Driver type D Commuter/Weekday               | / Recreational/Weekend          | Grade Length km Up/Down %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| Calculate Flow Adjustme                      | ents                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| f <sub>p</sub>                               |                                 | E <sub>R</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| E <sub>T</sub>                               |                                 | $f_{HV} = \frac{1}{1 + P_{T}(F_{T} - 1) + P_{P}(F_{P} - 1)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|                                              |                                 | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| Speed Inputs                                 |                                 | Calculate Speed Adjustments and FFS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| Lane width                                   | m                               | f <sub>LW</sub> km/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| Rtshoulder lateral clearance                 | m                               | t <sub>LC</sub> km/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| Number of lanes N                            | I/KM                            | I <sub>ID</sub> KTI/TI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| FES (measured)                               | km/h                            | $FES = BFES - f_{uv} - f_{vo} - f_{v} - f_{v}$ $km/h$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| Base free-flow speed, BFFS                   | km/h                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| LOS and Performance M                        | easures                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Operational (LOS) or Planning (LOS)          |                                 | Design (N) or Planning (N) 1st Iteration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| $v_{r} = $ V or DDHV                         | nc/h/ln                         | N assumed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| S PHF * N * f <sub>HV</sub> * f <sub>p</sub> | ports.m                         | $v_{c} = \frac{V \text{ or } DDHV}{Dc}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| D = y /S                                     |                                 | *p PHF * N * f <sub>HV</sub> * f <sub>p</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| 10S                                          | pond////                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Design (v.) or Planning (v.)                 |                                 | Design (N) or Planning (N) 2nd Iteration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| 10S                                          |                                 | N Assisted and a second and as                                                                                                                                                                                                                                            |  |  |  |
|                                              | nc/h/ln                         | v_= <u>V or DDHV</u> asufficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| ······································       | po/i/, in                       | PHF * N * f <sub>HV</sub> * f <sub>p</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| S s s s s s s s s s s s s s s s s s s s      | voin/h                          | $D = v_{\rm c}/S \qquad nc/km/ln$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| $D = v_{p}/S$                                |                                 | LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| Glossary                                     | po/                             | Factor Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| N – Number of lanes                          | S - Sneed                       | $F_{n} = F_{n} + F_{n$ |  |  |  |
| V - Hourly volume                            | D – Densitv                     | $E_{T}$ = Exhibits 23-8, 23-9, 23-11 $f_{10}$ = Exhibit 23-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| v <sub>p</sub> - Flow rate                   | FFS - Free-flow speed           | $f_p$ - Page 23-12 $f_N$ - Exhibit 23-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| LOS - Level of service                       | BFFS- Base free-flow speed      | LOS, S, FFS, $v_p$ - Exhibits 23-2, 23-3 $f_{ID}$ - Exhibit 23-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| DDHV - Directional design-hour volu          | ıme                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |