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1 INTRODUCTION 

The mechanical behaviour of soils may be modelled at various degrees of accuracy. 
Hooke's law of linear, isotropic elasticity, for example, may be thought of as the 
simplest available stress-strain relationship. As it involves only two input parameters, 
i.e. Young's modulus, E, and Poisson's ratio, ν, it is generally too crude to capture 
essential features of soil and rock behaviour. For modelling massive structural elements 
and bedrock layers, however, linear elasticity tends to be appropriate. 

1.1 ON THE USE OF DIFFERENT MODELS 

Mohr-Coulomb model (MC) 
The linear-elastic-perfectly-plastic Mohr-Coulomb model involves five input 
parameters, i.e. E and ν for soil elasticity; ϕ and c for soil plasticity and ψ as an angle of 
dilatancy. This Mohr-Coulomb model represents a 'first-order' approximation of soil or 
rock behaviour. It is recommended to use this model for a first analysis of the problem 
considered. For each layer one estimates a constant average stiffness. Due to this 
constant stiffness, computations tend to be relatively fast and one obtains a first 
impression of deformations. Besides the model parameters mentioned above, the initial 
soil conditions play an essential role in most soil deformation problems. Initial 
horizontal soil stresses have to be generated by selecting proper K0-values. 

Jointed Rock model (JR) 
The Jointed Rock model is an anisotropic elastic-plastic model, especially meant to 
simulate the behaviour of rock layers involving a stratification and particular fault 
directions. Plasticity can only occur in a maximum of three shear directions (shear 
planes). Each plane has its own strength parameters ϕ and c. The intact rock is 
considered to behave fully elastic with constant stiffness properties E and ν. Reduced 
elastic properties may be defined for the stratification direction.  

Hardening Soil model (HS) 
The Hardening Soil model is an advanced model for the simulation of soil behaviour. As 
for the Mohr-Coulomb model, limiting states of stress are described by means of the 
friction angle, ϕ, the cohesion, c, and the dilatancy angle, ψ. However, soil stiffness is 
described much more accurately by using three different input stiffnesses: the triaxial 
loading stiffness, E50, the triaxial unloading stiffness, Eur, and the oedometer loading 
stiffness, Eoed. As average values for various soil types, we have Eur ≈ 3 E50 and Eoed ≈ 
E50, but both very soft and very stiff soils tend to give other ratios of Eoed / E50.  

In contrast to the Mohr-Coulomb model, the Hardening Soil model also accounts for 
stress-dependency of stiffness moduli. This means that all stiffnesses increase with 
pressure. Hence, all three input stiffnesses relate to a reference stress, being usually 
taken as 100 kN/m2 (100kPa, 1 bar).  
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Besides the model parameters mentioned above, the initial soil conditions, such as pre-
consolidation, play an essential role in most soil deformation problems. These can be 
taken into account in the initial stress generation. 

Hardening Soil model with small-strain stiffness (HSsmall) 
The HSsmall model is a modification of the above Hardening Soil model that accounts 
for the increased stiffness of soils at small strains. At low strain levels most soils exhibit 
a higher stiffness than at engineering strain levels, and this stiffness varies non-linearly 
with strain. This behaviour is described in the HSsmall model using an additional strain-
history parameter and two additional material parameters, i.e. G0

ref and γ0.7. G0 is the 
small-strain shear modulus and γ0.7 is the strain level at which the shear modulus has 
reduced to 70% of the small-strain shear modulus. The advanced features of the 
HSsmall model are most apparent in working load conditions. Here, the model gives 
more reliable displacements than the HS model. When used in dynamic applications, the 
HSsmall model also introduces hysteretic material damping. 

Soft Soil Creep model (SSC) 
The above Hardening Soil model is suitable for all soils, but it does not account for 
viscous effects, i.e. creep and stress relaxation. In fact, all soils exhibit some creep and 
primary compression is thus followed by a certain amount of secondary compression.  

The latter is most dominant in soft soils, i.e. normally consolidated clays, silts and peat, 
and we thus implemented a model under the name Soft Soil Creep model. Please note 
that the Soft Soil Creep model is a relatively new model that has been developed for 
application to settlement problems of foundations, embankments, etc. For unloading 
problems, as normally encountered in tunnelling and other excavation problems, the Soft 
Soil Creep model hardly supersedes the simple Mohr-Coulomb model. As for the Mohr-
Coulomb model, proper initial soil conditions are also essential when using the Soft Soil 
Creep model. This includes data on the preconsolidation stress, as this model accounts 
for the effect of overconsolidation. 

Soft Soil model (SS) 
The Soft Soil model is a Cam-Clay type model especially meant for primary 
compression of near normally-consolidated clay-type soils. Although the modelling 
capabilities of this model are superceded by the Hardening Soil model, the Soft Soil 
model is still retained in the current version, because existing PLAXIS users might be 
comfortable with this model and still like to use it in their applications. 

Modified Cam-Clay model (MCC) 
The Modified Cam-Clay model is a well known model from international soil modelling 
literature; see for example Muir Wood (1990). It is meant primarily for the modelling of 
near normally-consolidated clay-type soils. This model has been recently added to 
PLAXIS to allow for a comparison with other codes. 



INTRODUCTION 

1-3 

Analyses with different models 
It is advised to use the Mohr-Coulomb model for a relatively quick and simple first 
analysis of the problem considered.  

In many cases, provided one has good data on dominant soil layers, it is recommended 
to use the Hardening Soil model or the HSsmall model in an additional analysis. No 
doubt, one seldom has test results from both triaxial and oedometer tests, but good 
quality data from one type of test can be supplemented by data from correlations and/or 
in situ testing. 

Finally, a Soft Soil Creep analysis can be performed to estimate creep, i.e. secondary 
compression in very soft soils. The above idea of analyzing geotechnical problems with 
different soil models may seem costly, but it tends to pay off. First of all due to the fact 
that the Mohr-Coulomb analysis is relatively quick and simple, and secondly as the 
procedure tends to reduce errors and inaccuracies.  

1.2 LIMITATIONS 

The PLAXIS code and its soil models have been developed to perform calculations of 
realistic geotechnical problems. In this respect PLAXIS can be considered as a 
geotechnical simulation tool. The soil models can be regarded as a qualitative 
representation of soil behaviour whereas the model parameters are used to quantify the 
soil behaviour. Although much care has been taken for the development of the PLAXIS 
code and its soil models, the simulation of reality remains an approximation, which 
implicitly involves some inevitable numerical and modelling errors. Moreover, the 
accuracy at which reality is approximated depends highly on the expertise of the user 
regarding the modelling of the problem, the understanding of the soil models and their 
limitations, the selection of model parameters, and the ability to judge the reliability of 
the computational results.  

Both the soil models and the PLAXIS code are constantly being improved such that each 
new version is an update of the previous ones. Some of the present limitations are listed 
below: 

Linear Elastic model 
Soil behaviour is highly non-linear and irreversible. The linear elastic model is 
insufficient to capture the essential features of soil. The use of the linear elastic model 
may, however, be considered to model massive structures in the soil or bedrock layers. 

Mohr-Coulomb model 
The Mohr-Coulomb model is a first order model that includes only a limited number of 
features that soil behaviour shows in reality. Although the increase of stiffness with 
depth can be taken into account, the Mohr-Coulomb model does neither include stress-
dependency nor stress-path dependency of stiffness or anisotropic stiffness. In general, 
stress states at failure in drained conditions are quite well described using the Mohr-
Coulomb failure criterion with effective strength parameters ϕ’ and c’.  
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However, care must be taken in undrained conditions, since the effective stress path that 
is followed by the Mohr-Coulomb model may not be realistic. This is particularly the 
case for soft soils like normally consolidated clays and peat, and also for very stiff, very 
dense or highly over-consolidated soils. In such cases the effective stress path followed 
may be incorrect, in turn resulting in an incorrect assessment of the resulting shear 
strength. Alternatively, the Mohr-Coulomb model may be used with the friction angle ϕ 
set to 0 and the cohesion c set to cu (su), to enable a direct control of undrained shear 
strength. In that case note that the model does not automatically include the increase of 
shear strength with consolidation. 

HS-model 
It is a hardening model that does not account for softening due to soil dilatancy and de-
bonding effects. In fact, it is an isotropic hardening model so that it models neither 
hysteretic and cyclic loading nor cyclic mobility or anisotropic behaviour. In order to 
model cyclic loading with good accuracy one would need a more complex model. As a 
final remark, the use of the Hardening Soil model generally results in longer calculation 
times, since the material stiffness matrix is formed in each calculation step. 

HSsmall-model 
As the HSsmall-model incorporates the loading history of the soil and a strain-
dependent stiffness, it can, to some extent, be used to model cyclic loading. However, it 
does not incorporate a gradual softening during cyclic loading, so is not suitable for 
cyclic loading problems in which softening plays a role. In fact, just as in the HS-model, 
softening due to soil dilatancy and debonding effects are not taken into account. 
Moreover, the HSsmall model does not incorporate the accumulation of irreversible 
volumetric straining nor liquefaction behaviour with cyclic loading. The use of the 
HSsmall-model will generally result in calculation times that are even longer than those 
of the HS-model. 

SSC-model 
All above limitations also hold true for the Soft Soil Creep model. In addition this model 
tends to over predict the range of elastic soil behaviour. This is especially the case for 
excavation problems, including tunnelling.  

SS-model 
The same limitations (including these in the SSC-model) hold in the SS-model. In fact 
the SS-model is superceded by the HS-model, but is kept for users who are familiar with 
this model. The utilization of the SS-model should be limited to the situations that are 
dominated by compression. It is certainly not recommended for use in excavation 
problems.   

MCC-model 
The same limitations (including those in the SSC-model) hold in the MCC-model. 
Moreover, the MCC-model may allow for unrealistically high shear stresses. This is 
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particularly the case for overconsolidated stress states where the stress path crosses the 
critical state line. Furthermore, the Modified Cam-Clay model may give softening 
behaviour for such stress paths. Without special regularization techniques, softening 
behaviour may lead to mesh dependency and convergence problems of iterative 
procedures. The use of the Modified Cam-Clay model in practical applications is not 
recommended. 

Interfaces 
Interface elements are generally modelled by means of the bilinear Mohr-Coulomb 
model. When a more advanced model is used for the corresponding cluster material data 
set, the interface element will only pick up the relevant data (c, ϕ, ψ, E, ν) for the Mohr-
Coulomb model, as described in Section 3.5.5 of the Reference Manual. In such cases 
the interface stiffness is taken to be the elastic soil stiffness. Hence, E = Eur where Eur is 
stress level dependent, following a power law with Eur proportional to σm (stress to the 
power m). For the Soft-Soil model, the Soft Soil Creep model and the Modified Cam-
Clay model, the power m is equal to 1 and Eur is largely determined by the swelling 
constant κ*.  
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2 PRELIMINARIES ON MATERIAL MODELLING 

A material model is a set of mathematical equations that describes the relationship 
between stress and strain. Material models are often expressed in a form in which 
infinitesimal increments of stress (or 'stress rates') are related to infinitesimal increments 
of strain (or 'strain rates'). All material models implemented in the PLAXIS are based on a 
relationship between the effective stress rates, σ ′& , and the strain rates, ε& . In the 
following section it is described how stresses and strains are defined in PLAXIS. In 
subsequent sections the basic stress-strain relationship is formulated and the influence of 
pore pressures in undrained materials is described. Later sections focus on initial 
conditions for advanced material models.  

 
Hint: Element and material model formulations in PLAXIS are fully three 

dimensional. However, in Version 8 only plane strain and axisymmetric 
conditions are considered.  

 

2.1 GENERAL DEFINITIONS OF STRESS 

Stress is a tensor which can be represented by a matrix in Cartesian coordinates: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

zzzyzx

yzyyyx

xzxyxx

σσσ
σσσ
σσσ

σ  (2.1) 

In the standard deformation theory, the stress tensor is symmetric such that σxy = σyx , σyz 
= σzy and σzx = σxz. In this situation, stresses are often written in vector notation, which 
involve only six different components: 

( T
zxyzxyzzyyxx σσσσσσσ = )  (2.2) 

In plane strain condition, however,  

0== zxyz σσ  

According to Terzaghi's principle, stresses in the soil are divided into effective stresses, 
σ', and pore pressures, σw: 

wσσσ += '  (2.3) 

Pore pressures are generally provoded by water in the pores. Water is considered not to 
sustain any shear stresses. As a result, effective shear stresses are equal to total shear 
stresses. Positive normal stress components are considered to represent tension, whereas 
negative normal stress components indicate pressure (or compression). As water is 
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considered to be isotropic, all normal pore pressure components are equal. Hence pore 
pressures  σw can be represented by a single value, pw. 

( )T
wwww ppp 000=σ  (2.4)  

Material models for soil and rock are generally expressed as a relationship between 
infinitesimal increments of effective stress and infinitesimal increments of strain. In 
such a relationship, infinitesimal increments of effective stress are represented by stress 
rates (with a dot above the stress symbol): 

( T
zxyzxyzzyyxx σσσσσσσ &&&&&&& '''' = )  (2.5) 
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Figure 2.1 General three-dimensional coordinate system and sign convention for 

stresses 

It is simpler and often sufficient to use principal stresses rather than Cartesian stress 
components when formulating material models. Principal stresses are the stresses in 
such a coordinate system direction that all shear stress components are zero. Principal 
stresses are, in fact, the eigenvalues of the stress tensor. Principal effective stresses can 
be determined in the following way: 

( ) 0''det =− Iσσ  (2.6) 

where I is the identity matrix. This equation gives three solutions for σ', i.e. the principal 
effective stresses (σ'1, σ'2, σ'3). In PLAXIS the principal effective stresses are arranged in 
algebraic order: 

σ'1 ≤ σ'2 ≤ σ'3 (2.7) 

Hence, σ'1 is the largest compressive principal stress and σ'3 is the smallest compressive 
principal stress. In this manual, models are often presented with reference to the 
principal stress space, as indicated in Figure 2.2. 
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-σ'1

-σ'3
-σ'2

-σ'1 = -σ'2 = -σ'3

-σ'1

-σ'3
-σ'2

-σ'1 = -σ'2 = -σ'3

 
Figure 2.2  Principal stress space 

In addition to principal stresses it is also useful to define invariants of stress, which are 
stress measures that are independent of the orientation of the coordinate system. Two 
useful stress invariants are: 

( ) ( )3213
1

3
1 ''' σσσσσσ ′+′+′=++=′ zzyyxxp  (2.8a) 

( ) ( ) ( ) ( )( )222222
2
1 6 zxyzxyxxzzzzyyyyxx '''''q σσσσσσσσσ +++−+−+′−= (2.8b) 

where p' is the isotropic effective stress, or mean effective stress, and q is the equivalent 
shear stress. Note that the convention adopted for p' is positive for compression in 
contrast to other stress measures. The equivalent shear stress, q, has the important 
property that it reduces to q = │σ1'-σ3'│ for triaxial stress states with σ2' = σ3'. 

Principal effective stresses can be written in terms of the invariants: 

- ( )πθσ 3
2

3
2

1 sin −+′=′ qp  (2.9a) 

- ( )θσ sin3
2

2 qp +′=′  (2.9b) 

- ( )πθσ 3
2

3
2

3 sin ++′=′ qp  (2.9c) 

in which θ  is referred to as Lode's angle (a third invariant), which is defined as: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= 3

3
3
1

2
27arcsin

q
J

θ  (2.10) 

with 

( )( )( ) ( ) ( ) ( ) zxyzxyxyzzzxyyyzxxzzyyxx p-p-p-p-p-p-J σσσσσσσσσσσσ 2222
3 +′′−′′−′′−′′′′′′=       (2.11) 
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2.2 GENERAL DEFINITIONS OF STRAIN 

Strain is a tensor which can be represented by a matrix with Cartesian coordinates as: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

zzzyzx

yzyyyx

xzxyxx

εεε
εεε
εεε

ε  (2.12) 

Strains are the derivatives of the displacement components, i.e. εij = ∂ui / ∂i , where i is 
either x, y or z. According to the small deformation theory, only the sum of 
complementing Cartesian shear strain components εij and εji result in shear stress. This 
sum is denoted as the shear strain γ. Hence, instead of  εxy, εyx, εyz , εzy, εzx and εxz the 
shear strain components γxy, γyz and γzx are used respectively. Under the above 
conditions, strains are often written in vector notation, which involve only six different 
components: 

( T
zxyzxyzzyyxx γγγεεεε = )  (2.13a) 
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x
u xz
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∂
∂

=+= εεγ  (2.13g) 

Similarly as for stresses, positive normal strain components refer to extension, whereas 
negative normal strain components indicate compression. 
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In the formulation of material models, where infinitesimal increments of strain are 
considered, these increments are represented by strain rates (with a dot above the strain 
symbol). 

( T
zxyzxyzzyyxx γγγεεε &&&&&&& =ε )  (2.14) 

for plane strain conditions, as considered in PLAXIS version 8,  

0=== yzxzzz γγε  

whereas for axisymmetric conditions,  

xzz u
r
1

=ε  and 0== yzxz γγ  (r = radius) 

In analogy to the stresses, there are principal strains (eigen values of the strain tensor). 
The principal strains are arranged in algebraic order 

321 εεε ≤≤  

Hence, ε1 is the largest principal compression strain and ε3 is the smallest principal 
compression strain. It is also useful to define invariants of strain. A strain invariant that 
is often used is the volumetric strain, εν, which is defined as the sum of all normal strain 
components: 

321 εεεεεεε ++=++= zzyyxxv  (2.15) 

The volumetric strain is defined as negative for compaction and as positive for 
dilatancy. Another invariant of strain, εq, is defined as: 

( ) ( ) ( )( ) ( )222222

2
3

2
1

3
2

zxyzxyxxzzzzyyyyxxq γγγεεεεεεε +++−+−+−=  (2.16) 

The scale factor 2/3 has been chosen to ensure that εq = εyy under undrained triaxial 
loading conditions. 
For elastoplastic models, as used in PLAXIS program, strains are decomposed into elastic 
and plastic components: 

εεε pe +=  (2.17) 

Throughout this manual, the superscript e will be used to denote elastic strains and the 
superscript p will be used to denote plastic strains. 
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2.3 ELASTIC STRAINS 

Material models for soil and rock are generally expressed as a relationship between 
infinitesimal increments of effective stress ('effective stress rates') and infinitesimal 
increments of strain ('strain rates'). This relationship may be expressed in the form: 

εσ && M=′  (2.18) 

M is a material stiffness matrix. Note that in this type of approach, pore-pressures are 
explicitly excluded from the stress-strain relationship. 
The simplest material model in PLAXIS is based on Hooke's law for isotropic linear 
elastic behaviour. This model is available under the name Linear Elastic model, but it is 
also the basis of other models. Hooke's law can be given by the equation: 
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The elastic material stiffness matrix is often denoted as De. Two parameters are used in 
this model, the effective Young's modulus, E', and the effective Poisson's ratio, ν'. In the 
remaining part of this manual effective parameters are denoted without dash ('), unless a 
different meaning is explicitly stated. The symbols E and ν are sometimes used in this 
manual in combination with the subscript ur to emphasize that the parameter is 
explicitly meant for unloading and reloading. A stiffness modulus may also be indicated 
with the subscript ref to emphasize that it refers to a particular reference level (yref) (see 
further). 
According to Hooke’s Law, the relationship between Young's modulus E and other 
stiffness moduli, such as the shear modulus G, the bulk modulus K, and the oedometer 
modulus Eoed, is given by: 

( )ν+
=

12
EG  (2.20a) 

( )ν213 −
=

EK  (2.20b) 

( )
( )( )νν

ν
+−

=
121

1
  

E - Eoed  (2.20c) 
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During the input of material parameters for the Linear Elastic model or the Mohr-
Coulomb model the values of G and Eoed are presented as auxiliary parameters 
(alternatives), calculated from Eq. (2.20). Note that the alternatives are influenced by the 
input values of E and ν. Entering a particular value for one of the alternatives G or Eoed 
results in a change of the E modulus.  
It is possible for the Linear Elastic model to specify a stiffness that varies linearly with 
depth. This can be done by entering the advanced parameters window using the 
Advanced button, as shown in Figure 2.3. Here one may enter a value for Eincrement which 
is the increment of stiffness per unit of depth, as indicated in Figure 2.4.  

 

Figure 2.3  Parameters tab for the Linear Elastic model 

 

Figure 2.4  Advanced parameter window 
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Together with the input of Eincrement the input of the reference level yref becomes relevant. 
Above yref the stiffness is equal to Eref. Below the stiffness is given by: 

( ) ( ) refincrementrefref yyEyyEyE <−+=                       (2.21) 

The Linear Elastic model is usually inappropriate to model the highly non-linear 
behaviour of soil, but it is of interest to simulate structural behaviour, such as thick 
concrete walls or plates, for which strength properties are usually very high compared 
with those of soil. For these applications, the Linear Elastic model will often be selected 
together with Non-porous type of material behaviour in order to exclude pore pressures 
from these structural elements. 

2.4 UNDRAINED EFFECTIVE STRESS ANALYSIS WITH EFFECTIVE 
STIFFNESS PARAMETERS 

In PLAXIS it is possible to specify undrained behaviour in an effective stress analysis 
using effective model parameters. This is achieved by identifying the Type of material 
behaviour (Material type) of a soil layer as Undrained. In this section, it is explained 
how PLAXIS deals with this special option. 
The presence of pore pressures in a soil body, usually caused by water, contributes to the 
total stress level. According to Terzaghi's principle, total stresses σ can be divided into 
effective stresses σ' and pore pressures pw (see also Eq. 2.3). However, water is 
supposed not to sustain any shear stress, and therefore the effective shear stresses are 
equal to the total shear stresses: 

wxxxx p+= 'σσ  (2.22a) 

wyyyy p+= 'σσ  (2.22b) 

wzzzz p+= 'σσ  (2.22c) 

xyxy 'σσ =   (2.22d) 

yzyz 'σσ =   (2.22e) 

zxzx 'σσ =   (2.22f) 

Note that, similar to the total and the effective stress components, pw is considered 
negative for pressure. 
A further distinction is made between steady state pore stress, psteady, and excess pore 
stress, pexcess: 
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pw = psteady + pexcess (2.23) 

Steady state pore pressures are considered to be input data, i.e. generated on the basis of 
phreatic levels or groundwater flow. This generation of steady state pore pressures is 
discussed in Section 3.8 of the Reference Manual. Excess pore pressures are generated 
during plastic calculations for the case of undrained material behaviour or during a 
consolidation analysis. Undrained material behaviour and the corresponding calculation 
of excess pore pressures is described below. 

Since the time derivative of the steady state component equals zero, it follows: 

pw&  =  (2.24) pexcess&

Hooke's law can be inverted to obtain: 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+
+

+
−−

−−
−−

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

zx

yz

xy

zz

yy

xx

e
zx

e
yz

e
xy

e
zz

e
yy

e
xx

E

σ
σ
σ
σ
σ
σ

ν
ν

ν
νν

νν
νν

γ
γ
γ
ε
ε
ε

&

&

&

&

&

&

&

&

&

&

&

&

'
'
'

'2200000
0'220000
00'22000
0001''
000'1'
000''1

'
1

 (2.25) 

Substituting Eq. (2.21) gives: 
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 (2.26) 

Considering slightly compressible water, the rate of pore pressure is written as: 

( ) v
we

zz
e
yy

e
xx

w
w n

K +  + 
n

Kp εεεε &&&&& ==  (2.27) 

in which Kw is the bulk modulus of the water and n is the soil porosity.  
The inverted form of Hooke's law may be written in terms of the total stress rates and 
the undrained parameters Eu and νu: 
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where: 

( )ν uu   +   G E 12=  
( )
( )'121

'1'
νμ
νμνν

++
++

=
 

u  (2.29) 

'3
1

K
K 

n  
w=μ  ( )ν ′−

=′
213
'EK  (2.30) 

Hence, the special option for undrained behaviour in PLAXIS is such that the effective 
parameters G and ν are transferred into undrained parameters Eu and νu according to Eq. 
(2.29) and (2.30). Note that the index u is used to indicate auxiliary parameters for 
undrained soil. Hence, Eu and νu should not be confused with Eur and νur as used to 
denote unloading / reloading. 

Fully incompressible behaviour is obtained for νu = 0.5. However, taking νu = 0.5 leads 
to singularity of the stiffness matrix. In fact, water is not fully incompressible, but a 
realistic bulk modulus for water is very large. In order to avoid numerical problems 
caused by an extremely low compressibility, νu is by default taken as 0.495, which 
makes the undrained soil body slightly compressible. In order to ensure realistic 
computational results, the bulk modulus of the water must be high compared with the 
bulk modulus of the soil skeleton, i.e. Kw >>n K'. This condition is sufficiently ensured 
by requiring ν' ≤ 0.35. Users will get a warning as soon as larger effective Poisson's 
ratios ν' are used in combination with undrained material behaviour. 
Consequently, for undrained material behaviour a bulk modulus for water is 
automatically added to the stiffness matrix. The value of the bulk modulus is given by: 

( )
( )( ) KKK

n
K

u

uw ′>′
′+

′−
=′

′+−
′−

= 30
1
495.0300

121
3

ν
ν

νν
νν

 (2.31) 

at least for ν' ≤ 0.35. In retrospect it is worth mentioning here a review about the 
Skempton B-parameter. 
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Skempton B-parameter: 
When the Material type (type of material behaviour) is set to Undrained, PLAXIS 
automatically assumes an implicit undrained bulk modulus, Ku, for the soil as a whole 
(soil skeleton + water) and distinguishes between total stresses, effective stresses and 
excess pore pressures (see Undrained behaviour): 

Total stress: νεΔ=Δ uKp  

Effective stress: νεΔ′=Δ−=′Δ KpBp )1(  

Excess pore pressure: νεΔ=Δ=Δ
n

KpBp w
w  

Note that effective stiffness parameters should be entered in the material data set, i.e. E' 
and ν' and not Eu and νu, or the respective stiffness parameters in advanced models. The 
undrained bulk modulus is automatically calculated by PLAXIS using Hooke's law of 
elasticity: 

)21(3
)1(2

u

u
u

GK
ν
ν

−
+

=  where 
)'1(2

'
ν+

=
EG  

and 495.0=uν   (when using the Standard setting) 

or 
)'21(3
)'21('3

ν
ννν

−−
−+

=
B
B

u  (when using the Manual setting) 

A particular value of the undrained Poisson's ratio, νu, implies a corresponding reference 
bulk stiffness of the pore fluid, Kw,ref / n: 

', KK
n

K
u

refw −=  where 
)'21(3

''
ν−

=
EK  

This value of Kw,ref / n is generally much smaller than the real bulk stiffness of pure 
water, Kw

0 (= 2⋅106 kN/m2).  
If the value of Skempton's B-parameter is unknown, but the degree of saturation, S, and 
the porosity, n, are known instead, the bulk stiffness of the pore fluid can be estimated 
from: 

nS)K(SK
KK

n
K

wair

airww 1
1 0

0

−+
=  where 

ν')(
E'K'

213 −
=  
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and Kair = 200 kN/m2 for air under atmospheric pressure. The value of Skempton's B-
parameter can now be calculated from the ratio of the bulk stiffnesses of the soil 
skeleton and the pore fluid: 

wK
nKB '1

1

+
=  

The rate of excess pore pressure is calculated from the (small) volumetric strain rate, 
according to: 

ε&& v
w

w  
n

Kp =  (2.32) 

The type of elements used in PLAXIS are sufficiently adequate to avoid mesh locking 
effects for nearly incompressible materials. 
This special option to model undrained material behaviour on the basis of effective 
model parameters is available for all material models in the PLAXIS program. This 
enables undrained calculations to be executed with effective input parameters, with 
explicit distinction between effective stresses and (excess) pore pressures.  
Such an analysis requires effective soil parameters and is therefore highly convenient 
when such parameters are available. For soft soil projects, accurate data on effective 
parameters may not always be available. Instead, in situ tests and laboratory tests may 
have been performed to obtain undrained soil parameters. In such situations measured 
undrained Young's moduli can be easily converted into effective Young's moduli by: 

( )
uEE

3
'12 ν+

=′  (2.33) 

For advanced models there is no such direct conversion possible. In that case it is 
recommended to estimate the required effective stiffness parameter from the measured 
undrained stiffness parameter, then perform a simple undrained test to check the 
resulting undrained stiffness and adapt the effective stiffness if needed. 

2.5 UNDRAINED EFFECTIVE STRESS ANALYSIS WITH EFFECTIVE 
STRENGTH PARAMETERS  

In general for soils, stress states at failure are quite well described by the Mohr-Coulomb 
failure criterion with effective strength parameters ϕ’ and c’. This also applies to 
undrained conditions. In Plaxis, effective strength parameters can be used quite well in 
combination with the Material type set to Undrained, since PLAXIS distinguishes 
between effective stresses and (excess) pore pressures (= effective stress analysis). The 
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advantage of using effective strength parameters in undrained conditions is that the 
increase of shear strength with consolidation is automatically obtained.  
However, especially for soft soils, effective strength parameters are not always 
available, and one has to deal with measured undrained shear strength (cu or su) as 
obtained from undrained tests. Undrained shear strength, however, cannot easily be used 
to determine the effective strength parameters ϕ’ and c’. Moreover, even if one would 
have proper effective strength parameters, care has to be taken as to whether these 
effective strength parameters will provide the correct undrained shear strength in the 
analysis. This is because the effective stress path that is followed in an undrained 
analysis may not be the same as in reality, due to the limitations of the applied soil 
model.  
For example, when using the Mohr-Coulomb model with the Material type set to 
Undrained, the model will follow an effective stress path where the mean effective 
stress, p’, remains constant all the way up to the failure. It is known that especially soft 
soils, like normally consolidated clays and peat, will follow an effective stress path in 
undrained loading where p’ reduces significantly. As a result, the maximum deviatoric 
stress that can be reached in the model is over-estimated. In other words, the mobilized 
shear strength in the model supersedes the available undrained shear strength. On the 
other hand, advanced models do include, to some extent, the reduction of mean effective 
stress in undrained loading, but even when using advanced models it is generally 
advised to check the mobilised shear strength against the available (undrained) shear 
strength. 

2.6 UNDRAINED EFFECTIVE STRESS ANALYSIS WITH UNDRAINED 
STRENGTH PARAMETERS 

It is difficult to use undrained shear strengths to determine the effective strength 
parameters ϕ’ and c’. As an alternative for undrained analyses with effective strength 
parameters, PLAXIS offers the possibility of an undrained effective stress analysis 
(Material type = Undrained) with direct input of the undrained shear strength, i.e. ϕ = ϕu 
= 0 and c = cu. This option is only available for the Mohr-Coulomb model, the 
Hardening Soil model and the HSsmall model, but not for the Soft Soil model, the Soft 
Soil Creep model and the Modified Cam-Clay model. 

Note that if the Hardening Soil model or the HSsmall model is used with ϕ = 0, the 
stiffness moduli in the model are no longer stress-dependent and the model exhibits no 
compression hardening, although the model retains its separate unloading-reloading 
modulus and shear hardening. 

Further note that whenever the Material type parameter is set to Undrained, effective 
values must still be entered for the stiffness parameters (Young’s modulus E and 
Poisson ratio ν in case of the Mohr-Coulomb model or the respective stiffness 
parameters in the advanced models.)  
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2.7 UNDRAINED TOTAL STRESS ANALYSIS WITH UNDRAINED 
PARAMETERS 

If, for any reason, it is desired not to use the Undrained option in PLAXIS to perform an 
undrained analysis, one may simulate undrained behaviour using a total stress analysis 
with undrained parameters. In that case, stiffness is modelled using an undrained 
Young’s modulus Eu and an undrained Poisson ratio νu, and strength is modelled using 
an undrained shear strength cu (su) and ϕ = ϕu = 0°. Typically, for the undrained Poisson 
ratio a value close to 0.5 is selected (between 0.495 and 0.499). A value of 0.5 exactly is 
not possible, since this would lead to singularity of the stiffness matrix. 
In PLAXIS it is possible to perform a total stress analysis with undrained parameters if 
the Mohr-Coulomb model is used. In this case, one should select Non-porous as the 
Material type (and not Undrained). The disadvantage of this approach is that no 
distinction is made between effective stresses and pore pressures. Hence, all output 
referring to effective stresses should now be interpreted as total stresses and all pore 
pressures are equal to zero. Note that in graphical output of stresses the stresses in Non-
porous clusters are not plotted. If one does want graphical output of stresses one should 
select Drained instead of Non-porous for the type of material behaviour and make sure 
that no pore pressures are generated in these clusters. 

Also note that a direct input of undrained shear strength does not automatically give the 
increase of shear strength with consolidation. 
This type of approach is not possible when using the Soft-Soil model, the Soft-Soil 
Creep model or the Modified Cam-Clay model. If the Hardening Soil model or HSsmall 
model is used in a total stress analysis using undrained parameters, i.e. ϕ = ϕu = 0°, the 
stiffness moduli in the model are no longer stress-dependent and the model exhibits no 
compression hardening, although the model retains its separate unloading-reloading 
modulus and shear hardening. 

2.8 THE INITIAL PRECONSOLIDATION STRESS IN ADVANCED 
MODELS  

When using advanced models in PLAXIS an initial preconsolidation stress has to be 
determined. In the engineering practice it is common to use a vertical preconsolidation 
stress, σp, but PLAXIS needs an equivalent isotropic preconsolidation stress, pp

eq to 
determine the initial position of a cap-type yield surface. If a material is 
overconsolidated, information is required about the Over-Consolidation Ratio (OCR), 
i.e. the ratio of the greatest vertical effective stress previously reached, σp (see Figure 
2.5), and the in-situ effective vertical stress, σyy'0 . 

0'
 = 

yy

pOCR
σ
σ  (2.34) 
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It is also possible to specify the initial stress state using the Pre-Overburden Pressure 
(POP) as an alternative to prescribing the overconsolidation ratio. The Pre-Overburden 
Pressure is defined by: 

|' - | = 0
yypPOP σσ  (2.35) 

These two ways of specifying the vertical preconsolidation stress are illustrated in 
Figure 2.5. 
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Figure 2.5 Illustration of vertical preconsolidation stress in relation to the in-situ 
vertical stress. 2.5a. Using OCR; 2.5b. Using POP 

The pre-consolidation stress σp is used to compute pp
eq which determines the initial 

position of a cap-type yield surface in the advanced soil models. The calculation of pp
eq 

is based on the stress state: 

p' σσ =1  and:   (2.36) p
NCK'' σσσ 032 ==

Where  is the -value associated with normally consolidated states of stress, 
which is an input parameter for the advanced soil models. For the Hardening Soil model 
the default parameter settings is such that we follow the Jaky formula . 
For the Soft Soil Creep model, the default setting is slightly different, but differences 
with the Jaky correlation are modest. 

K NC
0 K 0

φK NC sin10 −≈

2.9 ON THE INITIAL STRESSES 

In overconsolidated soils the coefficient of lateral earth pressure is larger than for 
normally consolidated soils. This effect is automatically taken into account for advanced 
soil models when generating the initial stresses using the K0 procedure. The procedure 
that is followed here is described below. 
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Consider a one-dimensional compression test, preloaded to σyy'=σp and subsequently 
unloaded to σyy' = σyy'0. During unloading the sample behaves elastically and the 
incremental stress ratio is, according to Hooke's law, given by (see Figure 2.6): 
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 (2.37) 

where K0
nc is the stress ratio in the normally consolidated state. Hence, the stress ratio of 

the overconsolidated soil sample is given by: 

0

0

'
'
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xx
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σ

 = ( 1
10  - OCR 

ν 
ν  OCR K

ur

urNC

−
− )  (2.38) 

The use of a small elastic Poisson's ratio will lead to a relatively large ratio of lateral 
stress and vertical stress, as generally observed in overconsolidated soils. Note that Eq. 
(2.38) is only valid in the elastic domain, because the formula was derived from Hooke's 
law of elasticity. If a soil sample is unloaded by a large amount, resulting in a high 
degree of overconsolidation, the stress ratio will be limited by the Mohr-Coulomb 
failure condition. 
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Figure 2.6 Overconsolidated stress state obtained from primary loading and subsequent 
unloading 
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3 THE MOHR-COULOMB MODEL  (PERFECT-PLASTICITY) 

Plasticity is associated with the development of irreversible strains and it limits 
allowable stress states. In order to evaluate whether or not plasticity occurs in a 
calculation, a yield function, f, is introduced as a function of stress and strain. Plastic 
yielding is related to the condition f = 0. This condition can be presented as a surface in 
principal stress space. A perfectly-plastic model is a constitutive model with a fixed 
yield surface, i.e. a yield surface that is fully defined by model parameters and not 
affected by (plastic) straining. For stress states represented by points within the yield 
surface, the behaviour is purely elastic and all strains are reversible. 

3.1 ELASTIC PERFECTLY-PLASTIC BEHAVIOUR 

The basic principle of elastoplasticity is that strains and strain rates are decomposed into 
an elastic part and a plastic part (see Figure 3.1): 

εεε pe   +=  εεε &&& pe   +=  (3.1) 

Hooke's law is used to relate the stress rates to the elastic strain rates. Substitution of Eq. 
(3.1) into Hooke's law (2.18) leads to: 

’σ&  = ε&ee D  = ( )εε && pe   D −  (3.2) 

According to the classical theory of plasticity (Hill, 1950), plastic strain rates are 
proportional to the derivative of the yield function with respect to the stresses. This 
means that the plastic strain rates can be represented as vectors perpendicular to the 
yield surface. This classical form of the theory is referred to as associated plasticity. 
However, for Mohr-Coulomb type yield functions, the theory of associated plasticity 
leads to an overprediction of dilatancy. Therefore, in addition to the yield function, a 
plastic potential function g is introduced. The case g ≠ f is denoted as non-associated 
plasticity. In general, the plastic strain rates are written as: 

ε& p  = 
’ 

g  
σ

λ
∂
∂  (3.3) 

in which λ is the plastic multiplier. For purely elastic behaviour λ is zero, whereas in the 
case of plastic behaviour λ is positive: 

λ  = 0 for: f < 0 or: 0  ε D 
’σ 

 f e
T

≤
∂
∂

&       (Elasticity) (3.4a) 

λ  > 0 for: f = 0 and: 0 >  D 
’ 
f e

T

ε
σ

&
∂
∂

            (Plasticity) (3.4b) 
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σ’ 

ε εe εp  

Figure 3.1  Basic idea of an elastic perfectly plastic model 

These equations may be used to obtain the following relationship between the effective 
stress rates and strain rates for elastoplasticity (Smith & Griffith, 1982; Vermeer & de 
Borst, 1984): 

’σ&  = ε
σσ

α
&   D 

’ 
f  

’ 
g  D 

d
D  e

T  
ee

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂

∂
∂

−  (3.5a) 

where: 
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g  D 
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f e

T

σσ ∂
∂

∂
∂

 (3.5b) 

The parameter α is used as a switch. If the material behaviour is elastic, as defined by 
Eq. (3.4a), the value of α is equal to zero, whilst for plasticity, as defined by Eq. (3.4b), 
the value of α is equal to unity. 
The above theory of plasticity is restricted to smooth yield surfaces and does not cover a 
multi surface yield contour as present in the Mohr-Coulomb model. For such a yield 
surface the theory of plasticity has been extended by Koiter (1960) and others to account 
for flow vertices involving two or more plastic potential functions: 

ε& p  = ...    
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g 
      

’ 
g 

  +
∂
∂

+
∂
∂

σ
λ

σ
λ 2

2
1

1  (3.6) 

Similarly, several quasi independent yield functions (f1, f2, ...) are used to determine the 
magnitude of the multipliers (λ1, λ2, ...). 
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3.2 FORMULATION OF THE MOHR-COULOMB MODEL 

The Mohr-Coulomb yield condition is an extension of Coulomb's friction law to general 
states of stress. In fact, this condition ensures that Coulomb's friction law is obeyed in 
any plane within a material element.  
The full Mohr-Coulomb yield condition consists of six yield functions when formulated 
in terms of principal stresses (see for instance Smith & Griffith, 1982): 
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Figure 3.2  The Mohr-Coulomb yield surface in principal stress space (c = 0) 
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The two plastic model parameters appearing in the yield functions are the well-known 
friction angle ϕ and the cohesion c. The condition f = 0 for all yield functions together 
(where fi is used to denote each individual yield function) represent a hexagonal cone in 
principal stress space as shown in Figure 3.2.  
In addition to the yield functions, six plastic potential functions are defined for the 
Mohr-Coulomb model: 
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The plastic potential functions contain a third plasticity parameter, the dilatancy angle ψ. 
This parameter is required to model positive plastic volumetric strain increments 
(dilatancy) as actually observed for dense soils. A discussion of all of the model 
parameters used in the Mohr-Coulomb model is given at the end of this section.  
When implementing the Mohr-Coulomb model for general stress states, special 
treatment is required for the intersection of two yield surfaces. Some programs use a 
smooth transition from one yield surface to another, i.e. the rounding-off of the corners 
(see for example Smith & Griffith, 1982). In PLAXIS, however, the exact form of the full 
Mohr-Coulomb model is implemented, using a sharp transition from one yield surface to 
another. For a detailed description of the corner treatment the reader is referred to the 
literature (Koiter, 1960; van Langen & Vermeer, 1990). 

For c > 0, the standard Mohr-Coulomb criterion allows for tension. In fact, allowable 
tensile stresses increase with cohesion. In reality, soil can sustain none or only very 
small tensile stresses. This behaviour can be included in a PLAXIS analysis by specifying 
a tension cut-off. In this case, Mohr circles with positive principal stresses are not 
allowed. The tension cut-off introduces three additional yield functions, defined as: 

f4 = σ1' – σt ≤ 0 (3.9a) 

f5 = σ2' – σt ≤ 0 (3.9b) 

f6 = σ3' – σt ≤ 0 (3.9c) 

3-4 PLAXIS Version 8 



THE MOHR-COULOMB MODEL  (PERFECT-PLASTICITY) 

When this tension cut-off procedure is used, the allowable tensile stress, σt, is, by 
default,  taken equal to zero. For these three yield functions an associated flow rule is 
adopted. For stress states within the yield surface, the behaviour is elastic and obeys 
Hooke's law for isotropic linear elasticity, as discussed in Section 2.2. Hence, besides 
the plasticity parameters c, ϕ, and ψ, input is required on the elastic Young's modulus E 
and Poisson's ratio ν. 

3.3 BASIC PARAMETERS OF THE MOHR-COULOMB MODEL 

The Mohr-Coulomb model requires a total of five parameters, which are generally 
familiar to most geotechnical engineers and which can be obtained from basic tests on 
soil samples. These parameters with their standard units are listed below: 

E : Young's modulus [kN/m2] 

ν : Poisson's ratio [-] 

ϕ : Friction angle [°] 

c : Cohesion [kN/m2] 

ψ : Dilatancy angle [°] 

 

Figure 3.3  Parameter tab sheet for Mohr-Coulomb model 
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Young's modulus (E) 
PLAXIS uses the Young's modulus as the basic stiffness modulus in the elastic model and 
the Mohr-Coulomb model, but some alternative stiffness moduli are displayed as well. 
A stiffness modulus has the dimension of stress. The values of the stiffness parameter 
adopted in a calculation require special attention as many geomaterials show a non-
linear behaviour from the very beginning of loading. In soil mechanics the initial slope 
is usually indicated as E0 and the secant modulus at 50% strength is denoted as E50 (see 
Figure 3.4). For materials with a large linear elastic range it is realistic to use E0, but for 
loading of soils one generally uses E50. Considering unloading problems, as in the case 
of tunnelling and excavations, one needs Eur instead of E50. 

 

strain -ε1 

|σ1- σ 3| 1 

E0
E50

1 

 
Figure 3.4  Definition of E0 and E50 for standard drained triaxial test results 

For soils, both the unloading modulus, Eur, and the first loading modulus, E50, tend to 
increase with the confining pressure. Hence, deep soil layers tend to have greater 
stiffness than shallow layers. Moreover, the observed stiffness depends on the stress 
path that is followed. The stiffness is much higher for unloading and reloading than for 
primary loading. Hence, when using a constant stiffness modulus to represent soil 
behaviour one should choose a value that is consistent with the stress level and the stress 
path development. Note that some stress-dependency of soil behaviour is taken into 
account in the advanced models in PLAXIS, which are described in Chapters 5 and 6. For 
the Mohr-Coulomb model, PLAXIS offers a special option for the input of a stiffness 
increasing with depth (see Section 3.4). 

Poisson's ratio (ν) 
Standard drained triaxial tests may yield a significant rate of volume decrease at the very 
beginning of axial loading and, consequently, a low initial value of Poisson's ratio (ν0). 
For some cases, such as particular unloading problems, it may be realistic to use such a 
low initial value, but in general when using the Mohr-Coulomb model the use of a 
higher value is recommended.  
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The selection of a Poisson's ratio is particularly simple when the elastic model or Mohr-
Coulomb model is used for gravity loading (increasing ΣMweight from 0 to 1 in a plastic 
calculation). For this type of loading PLAXIS should give realistic ratios of K0 = σh / σν. 
As both models will give the well-known ratio of σh / σν = ν / (1-ν) for one-dimensional 
compression it is easy to select a Poisson's ratio that gives a realistic value of K0. Hence, 
ν is evaluated by matching K0. This subject is treated more extensively in Appendix A 
of the Reference Manual, which deals with initial stress distributions. In many cases one 
will obtain ν values in the range between 0.3 and 0.4. In general, such values can also be 
used for loading conditions other than one-dimensional compression. For unloading 
conditions, however, it is more common to use values in the range between 0.15 and 
0.25. 

Cohesion (c) 
The cohesive strength has the dimension of stress. PLAXIS can handle cohesionless sands 
(c = 0), but some options will not perform well. To avoid complications, non-
experienced users are advised to enter at least a small value (use c > 0.2 kN/m2).  
PLAXIS offers a special option for the input of layers in which the cohesion increases 
with depth (see Section 3.4). 

Friction angle (ϕ) 
The friction angle, ϕ (phi), is entered in degrees. High friction angles, as sometimes 
obtained for dense sands, will substantially increase plastic computational effort. 

 

Φ 

-σ3 

-σ1 

-σ2 -σ3 -σ2 -σ1 

c 
normal 
stress 

shear 
stress 

 

Figure 3.5  Stress circles at yield; one touches Coulomb's envelope  

The computing time increases more or less exponentially with the friction angle. Hence, 
high friction angles should be avoided when performing preliminary computations for a 
particular project. The friction angle largely determines the shear strength as shown in 
Figure 3.5 by means of Mohr's stress circles. A more general representation of the yield 
criterion is shown in Figure 3.2. The Mohr-Coulomb failure criterion proves to be better 
for describing soil strength than the Drucker-Prager approximation.  
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Dilatancy angle (ψ) 
The dilatancy angle, ψ (psi), is specified in degrees. Apart from heavily over-
consolidated layers, clay soils tend to show little dilatancy (ψ ≈ 0). The dilatancy of 
sand depends on both the density and on the friction angle. For quartz sands the order of 
magnitude is ψ ≈ ϕ - 30°. For ϕ-values of less than 30°, however, the angle of dilatancy 
is mostly zero. A small negative value for ψ is only realistic for extremely loose sands. 
For further information about the link between the friction angle and dilatancy, see 
Bolton (1986). 
A positive dilatancy angle implies that in drained conditions the soil will continue to 
dilate as long as shear deformation occurs. This is clearly unrealistic, as most soils will 
reach a critical state at some point and further shear deformation will occur without 
volume changes. In undrained conditions a positive dilatancy angle, combined with the 
restriction on volume changes, leads to a generation of tensile pore pressures. In an 
undrained effective stress analysis therefore the strength of the soil may be 
overestimated. 

3.4 ADVANCED PARAMETERS OF THE MOHR-COULOMB MODEL 

When using the Mohr-Coulomb model, the Advanced button in the Parameters tab sheet 
may be clicked to enter some additional parameters for advanced modelling features. As 
a result, an additional window appears as shown in Figure 3.6. The advanced features 
comprise the increase of stiffness and cohesive strength with depth and the use of a 
tension cut-off. In fact, the latter option is used by default, but it may be deactivated 
here, if desired. 

 

Figure 3.6  Advanced Mohr-Coulomb parameters window 
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Increase of stiffness (Eincrement ) 
In real soils, the stiffness depends significantly on the stress level, which means that the 
stiffness generally increases with depth. When using the Mohr-Coulomb model, the 
stiffness is a constant value. In order to account for the increase of the stiffness with 
depth the Eincrement-value may be used, which is the increase of the Young's modulus per 
unit of depth (expressed in the unit of stress per unit depth). At the level given by the yref 
parameter, and above this level, the stiffness is equal to the reference Young's modulus, 
Eref, as entered in the Parameters tab sheet. The actual value of Young's modulus in the 
stress points is obtained from the reference value and Eincrement. Note that during 
calculations a stiffness increasing with depth does not change as a function of the stress 
state. 

Increase of cohesion (cincrement ) 
PLAXIS offers an advanced option for the input of clay layers in which the cohesion 
increases with depth. In order to account for the increase of the cohesion with depth the 
cincrement-value may be used, which is the increase of cohesion per unit of depth 
(expressed in the unit of stress per unit depth). At the level given by the yref parameter, 
and above this level, the cohesion is equal to the (reference) cohesion, cref, as entered in 
the Parameters tab sheet. The actual value of cohesion in the stress points is obtained 
from the reference value and cincrement. 

Tension cut-off 
In some practical problems an area with tensile stresses may develop. According to the 
Coulomb envelope shown in Figure 3.5 this is allowed when the shear stress (radius of 
Mohr circle) is sufficiently small. However, the soil surface near a trench in clay 
sometimes shows tensile cracks. This indicates that soil may also fail in tension instead 
of in shear. Such behaviour can be included in PLAXIS analysis by selecting the tension 
cut-off. In this case Mohr circles with positive principal stresses are not allowed. When 
selecting the tension cut-off the allowable tensile strength may be entered. For the 
Mohr-Coulomb model and the Hardening Soil model the tension cut-off is, by default, 
selected with a tensile strength of zero.  
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4 THE JOINTED ROCK MODEL  (ANISOTROPY) 

Materials may have different properties in different directions. As a result, they may 
respond differently when subjected to particular conditions in one direction or another. 
This aspect of material behaviour is called anisotropy. When modelling anisotropy, 
distinction can be made between elastic anisotropy and plastic anisotropy. Elastic 
anisotropy refers to the use of different elastic stiffness properties in different directions. 
Plastic anisotropy may involve the use of different strength properties in different 
directions, as considered in the Jointed Rock model. Another form of plastic anisotropy 
is kinematic hardening. The latter is not considered in PLAXIS program. 

major joint 
direction 

stratification 

rock formation 

 
Figure 4.1  Visualization of concept behind the Jointed Rock model 

The Jointed Rock model is an anisotropic elastic perfectly-plastic model, especially 
meant to simulate the behaviour of stratified and jointed rock layers. In this model it is 
assumed that there is intact rock with an eventual stratification direction and major joint 
directions. The intact rock is considered to behave as a transversly anisotropic elastic 
material, quantified by five parameters and a direction. The anisotropy may result from 
stratification or from other phenomena. In the major joint directions it is assumed that 
shear stresses are limited according to Coulomb's criterion. Upon reaching the maximum 
shear stress in such a direction, plastic sliding will occur. A maximum of three sliding 
directions ('planes') can be defined, of which the first plane is assumed to coincide with 
the direction of elastic anisotropy. Each plane may have different shear strength 
properties. In addition to plastic shearing, the tensile stresses perpendicular to the three 
planes are limited according to a predefined tensile strength (tension cut-off). 

The application of the Jointed Rock model is justified when families of joints or joint 
sets are present. These joint sets have to be parallel, not filled with fault gouge, and their 
spacing has to be small compared to the characteristic dimension of the structure.   
Some basic characteristics of the Jointed Rock model are: 

• Anisotropic elastic behaviour for intact rock Parameters E1, E2, ν1, ν2, G2 

• Shear failure according to Coulomb in three directions, i Parameters ci, ϕi and ψi 

• Limited tensile strength in three directions, i Parameters σt,i 
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4.1 ANISOTROPIC ELASTIC MATERIAL STIFFNESS MATRIX 

The elastic material behaviour in the Jointed Rock model is described by an elastic 
material stiffness matrix, D*. In contrast to Hooke's law, the D*-matrix as used in the 
Jointed Rock model is transversely anisotropic. Different stiffnesses can be used normal 
to and in a predefined direction ('plane 1'). This direction may correspond to the 
stratification direction or to any other direction with significantly different elastic 
stiffness properties. 

Consider, for example, a horizontal stratification, where the stiffness in horizontal 
direction, E1, is different from the stiffness in vertical direction, E2. In this case the 
'plane 1' direction is parallel to the x-z-plane and the following constitutive relations 
exist (See: Zienkiewicz & Taylor: The Finite Element Method, 4th Ed.): 
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The inverse of the anisotropic elastic material stiffness matrix, (D*)-1, follows from the 
above relations. This matrix is symmetric. The regular material stiffness matrix D* can 
only be obtained by numerical inversion. 
In general, the stratification plane will not be parallel to the global x-z-plane, but the 
above relations will generally hold for a local (n,s,t) coordinate system where the 
stratification plane is parallel to the s-t-plane. The orientation of this plane is defined by 
the dip angle and dip direction (see 4.3). As a consequence, the local material stiffness 
matrix has to be transformed from the local to the global coordinate system. Therefore 
we consider first a transformation of stresses and strains: 

σ R = σ xyzσnst  σ R = σ nst
-
σxyz
1  (4.2a) 
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ε R = ε xyzεnst  ε R = ε nst
-
εxyz
1  (4.2b) 
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nx, ny, nz, sx, sy, sz, tx, ty and tz are the components of the normalized n, s and t-vectors in 
global (x,y,z)-coordinates (i.e. 'sines' and 'cosines'; see 4.3). For plane condition 

0==== yxzz ttsn  and 1=zt .  

It further holds that : 
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A local stress-strain relationship in (n,s,t)-coordinates can be transformed to a global 
relationship in (x,y,z)-coordinates in the following way: 

xyzε
*
nstxyzσ

xyzεnst

xyzσnst

nst
*

nstnst

εRDR
εRε

R
εD

=⇒
⎪
⎭

⎪
⎬

⎫

=
=
=

σσσ
σ

 (4.6) 

Hence,  
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Using to above condition (4.5): 
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Actually, not the D*-matrix is given in local coordinates but the inverse matrix (D*)-1. 
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Instead of inverting the (D*
nst)-1-matrix in the first place, the transformation is 

considered first, after which the total is numerically inverted to obtain the global 
material stiffness matrix D*

xyz. 

4.2 PLASTIC BEHAVIOUR IN THREE DIRECTIONS 

A maximum of 3 sliding directions (sliding planes) can be defined in the Jointed Rock 
model. The first sliding plane corresponds to the direction of elastic anisotropy. In 
addition, a maximum of two other sliding directions may be defined. However, the 
formulation of plasticity on all planes is similar. On each plane a local Coulomb 
condition applies to limit the shear stress, ⏐τ⏐. Moreover, a tension cut-off criterion is 
used to limit the tensile stress on a plane. Each plane, i, has its own strength parameters 

ψϕ iii   ,  ,c  and σt,i .  

In order to check the plasticity conditions for a plane with local (n,s,t)-coordinates it is 
necessary to calculate the local stresses from the Cartesian stresses. The local stresses 
involve three components, i.e. a normal stress component, σn, and two independent 
shear stress components, τs and τt. 

σσ  T
ii T =  (4.11) 

where 

( T
tsni ττσσ = )   (4.12a) 

( T
zxyzxyzzyyxx σσσσσσσ = )   (4.12b) 
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T
i

T  = transformation matrix (3x6), for plane i  

As usual in PLAXIS, tensile (normal) stresses are defined as positive whereas 
compression is defined as negative. 
 

α1

s 
n 

y 

x 

sliding plane 

α1

 
Figure 4.2  Plane strain situation with a single sliding plane and vectors n, s  

Consider a plane strain situation as visualized in Figure 4.2. Here a sliding plane is 
considered under an angle α1 (= dip angle) with respect to the x-axis. In this case the 
transformation matrix TT becomes: 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+  

-s-c

c-s-scsc

sc-cs

  = TT

0000

000

0020

22

22

  (4.13) 

where 

 s = sin α1

 c = cos α1

In the general three-dimensional case the transformation matrix is more complex, since 
it involves both the dip angle and the dip direction (see 4.3):  
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Note that the general transformation matrix, TT, for the calculation of local stresses 
corresponds to rows 1, 4 and 6 of Rσ (see Eq. 4.3). 
After having determined the local stress components, the plasticity conditions can be 
checked on the basis of yield functions. The yield functions for plane i are defined as: 

iins
c

i cφ=f −+ tanστ  (Coulomb)  (4.15a) 

itn
t
i  f ,σσ −=   ( iiit    c  ϕσ cot, ≤  ) (Tension cut-off) (4.15b) 

Figure 4.3 visualizes the full yield criterion on a single plane. 
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|τ|

-σn 

 

Figure 4.3  Yield criterion for individual plane 

The local plastic strains are defined by: 

σ
λε

j

c
j

j
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j

g
   = 

∂

∂
Δ  (4.16) 

where gj is the local plastic potential function for plane j: 

jjnj
c
j c = g −+ ϕστ tan  (Coulomb) (4.17a) 

jtn
t
j = g ,σσ −  (Tension cut-off) (4.17b) 

The transformation matrix, T, is also used to transform the local plastic strain increments 
of plane j, Δε  p

j, into global plastic strain increments, Δε p: 

p
jj

p T = εε ΔΔ     (4.18) 
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The consistency condition requires that at yielding the value of the yield function must 
remain zero for all active yield functions. For all planes together, a maximum of 6 yield 
functions exist, so up to 6 plastic multipliers must be found such that all yield functions 
are at most zero and the plastic multipliers are non-negative.  
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This means finding up to 6 values of λi ≥ 0 such that all fi ≤ 0 and λi fi = 0 
When the maximum of 3 planes are used, there are 26 = 64 possibilities of (combined) 
yielding. In the calculation process, all these possibilities are taken into account in order 
to provide an exact calculation of stresses.  

4.3 PARAMETERS OF THE JOINTED ROCK MODEL 

Most parameters of the jointed rock model coincide with those of the isotropic Mohr-
Coulomb model. These are the basic elastic parameters and the basic strength 
parameters. 

Elastic parameters as in Mohr-Coulomb model (see Section 3.3): 

E1  : Young's modulus for rock as a continuum   [kN/m2] 

ν1 : Poisson's ratio for rock as a continuum    [−] 

Anisotropic elastic parameters 'Plane 1' direction (e.g. stratification direction): 

E2  : Young's modulus in 'Plane 1' direction    [kN/m2] 
G2 : Shear modulus in 'Plane 1' direction    [kN/m2] 

ν2 : Poisson's ratio in 'Plane 1' direction    [−] 

Strength parameters in joint directions (Plane i=1, 2, 3): 

ci : Cohesion       [kN/m2] 

ϕi : Friction angle      [°] 

ψi : Dilatancy angle      [°] 

σt,i : Tensile strength      [kN/m2] 
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Definition of joint directions (Plane i=1, 2, 3): 

n : Numer of joint directions (1 ≤ n ≤ 3) 

α1,i : Dip angle       [°] 

α2,i : Dip direction      [°] 

 

Figure 4.4  Parameters for the Jointed Rock model 

Elastic parameters 
The elastic parameters E1 and ν1 are the (constant) stiffness (Young's modulus) and 
Poisson's ratio of the rock as a continuum according to Hooke's law, i.e. as if it would 
not be anisotropic.  
Elastic anisotropy in a rock formation may be introduced by stratification. The stiffness 
perpendicular to the stratification direction is usually reduced compared with the general 
stiffness. This reduced stiffness can be represented by the parameter E2, together with a 
second Poisson's ratio, ν2. In general, the elastic stiffness normal to the direction of 
elastic anisotropy is defined by the parameters E2 and ν2. 
Elastic shearing in the stratification direction is also considered to be 'weaker' than 
elastic shearing in other directions. In general, the shear stiffness in the anisotropic 
direction can explicitly be defined by means of the elastic shear modulus G2. In contrast 
to Hooke's law of isotropic elasticity, G2 is a separate parameter and is not simply 
related to Young's modulus by means of Poisson's ratio (see Eq. 4.1d and e).  

If the elastic behaviour of the rock is fully isotropic, then the parameters E2 and ν2 can 
be simply set equal to E1 and ν1 respectively, whereas G2 should be set to ½E1/(1+ν1).  
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Strength parameters 
Each sliding direction (plane) has its own strength properties ci, ϕi and σt,i and dilatancy 
angle ψi. The strength properties ci and ϕi determine the allowable shear strength 
according to Coulomb's criterion and σt determines the tensile strength according to the 
tension cut-off criterion. The latter is displayed after pressing Advanced button. By 
default, the tension cut-off is active and the tensile strength is set to zero. The dilatancy 
angle, ψi, is used in the plastic potential function g, and determines the plastic volume 
expansion due to shearing. 

Definition of joint directions 
It is assumed that the direction of elastic anisotropy corresponds with the first direction 
where plastic shearing may occur ('plane 1'). This direction must always be specified. In 
the case the rock formation is stratified without major joints, the number of sliding 
planes (= sliding directions) is still 1, and strength parameters must be specified for this 
direction anyway. A maximum of three sliding directions can be defined. These 
directions may correspond to the most critical directions of joints in the rock formation. 

The sliding directions are defined by means of two parameters: The Dip angle  (α1) (or 
shortly Dip) and the Dip direction (α2). Instead of the latter parameter, it is also 
common in geology to use the Strike. However, care should be taken with the definition 
of Strike, and therefore the unambiguous Dip direction as mostly used by rock engineers 
is used in PLAXIS. The definition of both parameters is visualized in Figure 4.5. 

N
t 

n

s*

s 
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α2

sliding plane

α1

α1 

 

Figure 4.5  Definition of dip angle and dip direction 

Consider a sliding plane, as indicated in Figure 4.5. The sliding plane can be defined by 
the vectors (s,t), which are both normal to the vector n. The vector n is the 'normal' to 
the sliding plane, whereas the vector s is the 'fall line' of the sliding plane and the vector 
t is the 'horizontal line' of the sliding plane. The sliding plane makes an angle α1 with 
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respect to the horizontal plane, where the horizontal plane can be defined by the vectors 
(s*,t), which are both normal to the vertical y-axis. The angle α1 is the dip angle, which 
is defined as the positive 'downward' inclination angle between the horizontal plane and 
the sliding plane. Hence, α1 is the angle between the vectors s* and s, measured 
clockwise from s* to s when looking in the positive t-direction. The dip angle must be 
entered in the range [0°, 90°].  

The orientation of the sliding plane is further defined by the dip direction, α2, which is 
the orientation of the vector s* with respect to the North direction (N). The dip direction 
is defined as the positive angle from the North direction, measured clockwise to the 
horizontal projection of the fall line (=s*-direction) when looking downwards. The dip 
direction is entered in the range [0°, 360°]. 
In addition to the orientation of the sliding planes it is also known how the global (x,y,z) 
model coordinates relate to the North direction. This information is contained in the 
Declination parameter, as defined in the General settings in the Input program. The 
Declination is the positive angle from the North direction to the positive z-direction of 
the model.  

N 
z 

x 
s*

α2

α3

declination 

y

 

Figure 4.6  Definition of various directions and angles in the horiziontal plane 

In order to transform the local (n,s,t) coordinate system into the global (x,y,z) coordinate 
system, an auxiliary angle α3 is used internally, being the difference between  the Dip 
direction and the Declination: 

α3 = α2 − Declination (4.19) 

Hence, α3 is defined as the positive angle from the positive z-direction clockwise to the 
s*-direction when looking downwards.  
From the definitions as given above, it follows that: 
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Below some examples are shown of how sliding planes occur in a 3D models for 
different values of α1, α2 and Declination:  
 y 

z 

x 

 

α1 = 45º 

α2 = 0º 
Declination = 0º 
 
 

z 

x 

y 
 

α1 = 45º 

α2 = 90º 
Declination = 0º 
 
 

z 

x 

y 
 

α1 = 45º 

α2 = 0º 
Declination = 90º 
 

Figure 4.7  Examples of failure directions defined by α1 , α2 and Declination  
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4-12 PLAXIS Version 8 

As it can be seen, for plane strain conditions (the cases considered in Version 8) only α1 
is required. By default, α2  is fixed at 90º and the declination is set to 0º.  
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5 THE HARDENING SOIL MODEL  (ISOTROPIC HARDENING) 

In contrast to an elastic perfectly-plastic model, the yield surface of a hardening 
plasticity model is not fixed in principal stress space, but it can expand due to plastic 
straining. Distinction can be made between two main types of hardening, namely shear 
hardening and compression hardening. Shear hardening is used to model irreversible 
strains due to primary deviatoric loading. Compression hardening is used to model 
irreversible plastic strains due to primary compression in oedometer loading and 
isotropic loading. Both types of hardening are contained in the present model.  

The Hardening Soil model is an advanced model for simulating the behaviour of 
different types of soil, both soft soils and stiff soils, Schanz (1998). When subjected to 
primary deviatoric loading, soil shows a decreasing stiffness and simultaneously 
irreversible plastic strains develop. In the special case of a drained triaxial test, the 
observed relationship between the axial strain and the deviatoric stress can be well 
approximated by a hyperbola. Such a relationship was first formulated by Kondner 
(1963) and later used in the well-known hyperbolic model (Duncan & Chang, 1970). 
The Hardening-Soil model, however, supersedes the hyperbolic model by far. Firstly by 
using the theory of plasticity rather than the theory of elasticity. Secondly by including 
soil dilatancy and thirdly by introducing a yield cap. Some basic characteristics of the 
model are: 

• Stress dependent stiffness according to a power law.  Input parameter m 

• Plastic straining due to primary deviatoric loading.  Input parameter  Eref
50

• Plastic straining due to primary compression.   Input parameter  Eref
oed

• Elastic unloading / reloading.     Input parameters , νEref
ur ur 

• Failure according to the Mohr-Coulomb model.   Parameters c, ϕ and ψ 
A basic feature of the present Hardening-Soil model is the stress dependency of soil 
stiffness. For oedometer conditions of stress and strain, the model implies for example 
the relationship ( )mrefref

oedoed p /   E   =   E '1σ− . In the special case of soft soils it is 
realistic to use m = 1. In such situations there is also a simple relationship between the 
modified compression index λ*, as used in the the Soft-Soil model and the oedometer 
loading modulus (see also Section 7.7) 

( )01
                                 

e
p

E
ref

ref
oed +

== ∗
∗

λλ
λ

 

where  pref  is a reference pressure. Here we consider a tangent oedometer modulus at a 
particular reference pressure pref. Hence, the primary loading stiffness relates to the 
modified compression index λ* or to the standard Cam-Clay compression index λ.  
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Similarly, the unloading-reloading modulus relates to the modified swelling index κ* or 
to the standard Cam-Clay swelling index κ. There is the approximate relationship: 

( )
( )01

213 κ    κ                    νp = E ur
ref

ref
ur =

− ∗  
eκ +∗

in,

r the formulation of the Hardening-Soil model is the hyperbolic 
relationship between the vertical strain, ε1, and the deviatoric stress, q, in primary 
triaxial loading. Here standard drained triaxial tests tend to yield curves that can 
described by: 

Aga  this relationship applies in combination with the input value  m = 1. 

5.1 HYPERBOLIC RELATIONSHIP FOR STANDARD DRAINED 
TRIAXIAL TEST 

A basic idea fo

be 

f
ai

qqq
<=−  :for                    1

1ε  (5.1) 
q / qE −1

here qa is the asympt tial stiffness, wW otic value of the shear strength and Ei the ini hich 
is equal to 
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This relationship is plotted in Figure 5.1. The parameter E50 is the confining stress 
dependent stiffness modulus for primary loading and is given by the equation: 

⎟
⎟
⎠

⎜
⎜
⎝ +

′−
=  

p  c
  c

  E ref
ref

ϕϕ
ϕσϕ

sincos
sincos 3

50 50  (5.3) 

where Eref
50  is a reference stiffness modulus corresponding to the reference confining 

pressure p

⎞⎛
E

m

rithmic compression 
nbu 

(1980) reports various different values in the range 0.5 < m < 1.0.  
The ultimate deviatoric stress, qf, and the quantity qa in Eq. (5

ref. In PLAXIS, a default setting pref = 100 stress units is used. The actual 
stiffness depends on the minor principal stress, σ3', which is the confining pressure in a 
triaxial test. Please note that σ'3 is negative for compression. The amount of stress 
dependency is given by the power m. In order to simulate a loga
behaviour, as observed for soft clays, the power should be taken equal to 1.0. Ja
(1963) reports values of m around 0.5 for Norwegian sands and silts, whilst Von Soos 

.1) are defined as: 
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( )
f

f
af R

q
q cq =

−
′−=      :and       

sin1
sin2cot 3 ϕ

ϕσϕ  (5.4) 

Again it is remarked that σ'3 is usually negative. The above relationship for qf is derived 

lastic yielding 

tio between qf and qa is given by the failure ratio Rf, which should obviously be 
smaller than 1. In PLAXIS, Rf = 0.9 is chosen as a suitable default setting. 
For unloading and reloading stress paths, another
used: 

from the Mohr-Coulomb failure criterion, which involves the strength parameters c and 
ϕ. As soon as  q = qf , the failure criterion is satisfied and perfectly p
occurs as described by the Mohr-Coulomb model.  
The ra

 stress-dependent stiffness modulus is 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

′−
=  

p  c
  c

  E refur
ref
ur ϕϕ

ϕσϕ
sincos
sincos 3  (5.5) 

whe ef is the reference Young's modulus for unl

E
m

r ur oading and reloading, corresponding 

to the reference pressure pref. In many practical cases it is appropriate to set  equal 
to 3 ; this is the default setting used in PLAXIS. 

e Er

Eref
ur

Eref
50

 

axial strain -ε1

|σ1-σ3|

1
Eur

E50

1

qa

qf

asymptote

failure line

deviatoric stress

Ei

1

 

Figure 5.1 Hyperbolic stress-strain relation in primary loading for a standard drained 
triaxial test 

5.2 APPROXIMATION OF HYPERBOLA BY THE HARDENING-SOIL 
MODEL 

For the sake of convenience, restriction is made here to triaxial loading conditions with 
σ2' = σ3' and σ1' being the major compressive stress. Moreover, it is assumed that  q < qf, 
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as also indicated in Figure 5.1. It should also be realised that compressive stress and 
strain are considered negative. For a more general presentation of the Hardening-Soil 
model the reader is referred to Schanz et al (1999). In this section it will be shown that 
this model gives vi
considering stress pat

tion of the form: 

rtually the hyperbolic stress strain curve of Eq. (5.1) when 
hs of standard drained triaxial tests. Let us first consider the 

corresponding plastic strains. This stems from ashear strain yield func

γ p ff −=  (5.6) 

where  f is a function of stress and γ p is a function of plastic strains: 

5-4 PLAXIS Version 8 

 f   =  
E

q   
q / q    

q 
E urai

2
1

2
−

−
 ( ) pp

v
pp

11 22 εεεγ −−−=  (5.7) 

with q, q

≈

st the superscript p is used to 

e

efinitions for

a, Ei and Eur as defined by Eqs. (5.1) to (5.5), whil

denote plastic strains. For hard soils, plastic volum  changes (ε p
v ) tend to be relatively 

small and this leads to the approximation pp
12εγ −≈ . The above definition of the 

strain-hardening parameter γ p will be referred to later. 

An essential feature of the above d   f
ent, one has 

 is that it matches the well-known 
hyperbolic law (5.1). For checking this statem to consider primary loading, 
as this i lie e yie condition  f = 0.  For pmp s th ld rimary loading, it thus yields  γ p =  f  
and it follows from Eqs. (5.6) that: 

−ε p
1  ≈  f  2

1 = 
E
q  

q / q  
q 

E urai

−
−1

1
 (5.8) 

In addition to the plastic strains, the model accounts for elastic strains. Plastic strains 
develop in primary loading alone, but elastic strains develop both in primary loading and 
unloading / r ng or drain d 
elastic Youn odulus Eur remai n
equations: 

 eloadi . F e triaxial test stress paths with σ2' = σ3' = constant, the 
g's m ns co stant and the elastic strains are given by the 

−ε e
1  = 

E
q
ur

 −ε e
2  = −ε e

3  = 
E
q  
ur

urν−  (5.9) 

where νur is the unloading / reloading Poisson's ratio. Here it should be realised that 
restriction is made to strains that develop during deviatoric loading, whilst the strains 
that develop during the very first stage of the test (isotropic compression with 
consolidation) are not considered.  
For the deviatoric loading stage of the triaxial test, the axial strain is the sum of an 
elastic component given by Eq. (5.9) and a p
Hence, it follows that: 

lastic component according to Eq. (5.8). 
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q / q E ai −1111

This relationship holds exactly in absence of plastic volume strains, i.e. when ε p
v  = 0.  

In reality, pl

q pe ≈−−=−
1εεε  (5.10) 

astic volumetric strains will never be precisely equal to zero, but for many 

 shape of the yield loci depend on the exponent m. For 
m = 1, straight lines are obtained, but slightly curved yield loci correspond to lower 
values of the exponent. Figure 5.2 shows the shape of successive yield loci for m = 0.5, 
being typical for hard soils.  

soils plastic volume changes tend to be small when compared with the axial strain, so 
that this formulation yields a hyperbolic stress-strain curve under triaxial testing 
conditions. 

For a given constant value of the hardening parameter, γ p, the yield condition f = 0, can 
be visualised in p'-q-plane by means of a yield locus. When plotting such yield loci, one 
has to use Eq. (5.7) as well as Eqs. (5.3) and (5.5) for E50 and Eur respectively. Because 
of the latter expressions, the

 

Mean effective stress

|σ 1-σ3| 
deviatoric stress

Mohr-Coulomb failure line

 

Figure 5.2 Successive yield loci for various constant values of the hardening  

Ha re ttention is now focused 

on the plastic volumetric strain, . As for all plasticity models, the Hardening Soil 
model invol n

 and . This shear hardening flow rule has the linear form: 

v m .11) 

parameter γ p

5.3 PLASTIC VOLUMETRIC STRAIN FOR TRIAXIAL STATES OF 
STRESS 

ving p sented a relationship for the plastic shear strain, γ p, a
ε p

v
ves a relatio ship between rates of plastic strain, i.e. a relationship between 

ε&v

p   =  sinψ  γ& p  (5

p γ& p

ε&
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Clearly, further detail is needed by specifying the mobilised dilatancy angle ψm. For the 
present model the following is considered: 

ψ  = 0 For sinϕm < 3/4 sinϕ : m

For sinϕ  ≥ 3/4 sinϕ  and ψ > 0 
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m ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
−

0,
sinsin1
sinsin

max
ϕϕ
ϕϕ

cvm

cvm

    
    

(5.12) 

 0 
where ϕcν is the critical state friction angle, being a material constant independent of 
density, and ϕm is the mobilised friction

=  sinψ m

For sinϕm ≥ 3/4 sinϕ  and ψ ≤ 0 ψm = ψ 
If ϕ = 0  ψm =

 angle: 

ϕσσ
σσϕ

cot2
sin

31

31

c +m −′′
′−′

=  (5.13) 

The above equations are a small adaptation from the the well-known stress-dilatancy 
theory by Rowe (1962), as explained by Schanz & Vermeer (1996). The mobilised 
dilatancy angle, ψm, follows Rowe’s theory for larger values of the mobilised friction 
angle, as long as this results in a positive value of ψm. For small mobilised friction 
ngles and for negative a values of ψm, as computed by Rowe’s formula (as long as the 

ratios (ϕm < ϕcν), whilst dilatancy occurs for high stress ratios (ϕm > ϕcν).  At 
failure, when the mobilised friction angle equals the failure angle ϕ, it is found from Eq. 
(5.12) that: 

dilatancy angle ψ is positive), ψm is taken zero. Furthermore, in all cases when ϕ = 0, 
ψm is set equal to zero. 

The essential property of the stress-dilatancy theory is that the material contracts for 
small stress 

ϕϕ
ϕϕ

cv

cv 
sinsin1
sinsin

−
−

=ψsin  (5.14a) 

or equivalently: 

ψ
ψ  

cv sinsin1
sinsinsin

ϕ
ϕϕ

−
−

=  (5.14b) 

Hence, the critical state angle can be computed from the failure angles ϕ and ψ. PLAXIS 

Instead, one has to provide input data on the ultimate friction angle, ϕ, and the ultimate 

performs this computation automatically and so users do not need to specify a value for 
ϕcν. 

dilatancy angle, ψ.  
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5.4 PARAMETERS OF THE HARDENING-SOIL MODEL 

Some parameters of the present hardening model coincide with those of the non-
hardening Mohr-Coulomb model. These are the failure parameters c, ϕ and ψ. 

 

Fig  Hardening Soil model 

Failure para ulomb model (see Section 3.3): 

 [kN/m2] 

ϕ : (Effective) angle of internal friction [°] 

ψ  : Angle of dilatancy [ ] 

Basic paramet
2] 

 : Tangent stiffness for primary oedometer loading [kN/m2] 

/m2] 

Advanc g): 

 

 stress units) 

ure 5.3  Basic parameters tab sheet for the

meters as in Mohr-Co

c  : (Effective) cohesion 

°

ers for soil stiffness: 

E : Secant stiffness in standard drained triaxial test [kN/mref
50  

Eref
oed

Eur : Unloading / reloading stiffness  (default  Eur  = 3 E50 ) [kNref ref ref

m : Power for stress-level dependency of stiffness [-] 

ed parameters  (it is advised to use the default settin

νur : Poisson's ratio for unloading-reloading (default  νur = 0.2)  [-] 

pref : Reference stress for stiffnesses (default  pref = 100 [kN/m2] 

K nc
0  : K0-value for normal consolidation (default K nc

0  = 1 [-] - sinϕ) 
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Rf : Failu tio qre ra   qf / e Figure 5.1) [-] 

the user ha
l soils this stiffness depends 

of isotropic 

ur 50
e is no simple conversion from E50 to G50.  

In contrast to elasticity based models, the elastoplastic Hardening Soil model does not 
involve a fixed relationship between the (drained) triaxial stiffness E50 and the 
oedometer stiffness Eoed for one-dimensional compression. Instead, these stiffnesses can 
be inputted independently. 

a  (default  Rf  = 0.9) (se

σtension  : Tensile strength (default  σtension = 0  stress units) [kN/m2] 

cincrement : As in Mohr-Coulomb model  (default  cincrement = 0) [kN/m3] 

Stiffness moduli ref
50E , ref

oedE & ref
urE  and power m 

The advantage of the Hardening Soil model over the Mohr-Coulomb model is not only 
the use of a hyperbolic stress-strain curve instead of a bi-linear curve, but also the 
control of stress level dependency. When using the Mohr-Coulomb model, s 
to select a fixed value of Young's modulus whereas for rea

evel. It is therefore neceson the stress l sary to estimate the stress levels within the soil 
and use these to obtain suitable values of stiffness. With the Hardening Soil model, 
however, this cumbersome selection of input parameters is not required. Instead, a 
stiffness modulus E ref

50  is defined for a reference minor principal stress of refp=′− 3σ . 
As a default value, the program uses pref = 100 stress units. 

As some PLAXIS users are familiar with the input of shear moduli rather than the above 
stiffness moduli, shear moduli will now be discussed. Within Hooke's law 
elasticity conversion between E and G goes by the equation E = 2 (1+ν) G.  As Eur is a 
real elastic stiffness, one may thus write  Eur = 2 (1+ν) Gur, where Gur is an elastic shear 
modulus. Please note that PLAXIS allows for the input of Eur and νur but not for a direct 
input of Gur. In contrast to E , the secant modulus E  is not used within a concept of 
elasticity. As a consequence, ther

 

-ε1

-σ 1

pref
1 

ref
oedE

 

Figure 5.4  Definition of  in oedometer test results  Eref
oed
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Having defined E50 by Eq. (5.3), it is now important to define the oedometer stiffness. 
Here we use the equation: 

⎟⎟
⎠

⎜⎜
⎝ +

−
=  

p  c
  c  EE refoed

ref
oed ϕϕ

ϕσϕ
sincos
sincos 1  .15) 

here E

⎞⎛ ′
m

(5

w  as indicated in Figure 5.4. Hence,  is a 
r principal stress of  −σ'1 = pref. Note that we use σ1 rather than 

Realistic values of  νur  are about 0.2 and this value is thus used as a default setting, as 
indicated in Figure 5.5.  

oed is a tangent stiffness modulus Eref
oed

tangent stiffness at a majo
σ3 and that we consider primary loading. 

Advanced parameters 

 

Figure 5.5  Advanced  parameters window 

In contrast to the Mohr-Coulomb model, K nc
0 is not simply a function of Poisson's ratio, 

but an independent nput parameter. As a default setting  i
i

lues

50 ur ur d

PLAXIS uses the correlation 
K nc

0 = 1−sinϕ. It s suggested to maintain this value as the correlation is quite realistic. 
However, users do have the possibility to select different values. All possible different 
input va  for K nc

0  cannot be accommodated for. Depending on other parameters, 
such as E ref, Eoed

ref, E ref and ν , there happens to be a certain range of vali  K nc
0 -
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values. K nc
0 values outside this range are rejected by PLAXIS. On inputting values, the 

 einit, and the maximum void 
ratio, e , of the material must be entered as general parameters. As soon as the volume 
change lts in a state of maximum void, the mobilised dilatancy angle, ψm, is 
automa et back to zero, as indicated in Figure 5.6. 

program shows the nearest possible value that will be used in the computations. 

Dilatancy cut-off 
After extensive shearing, dilating materials arrive in a state of critical density where 
dilatancy has come to an end, as indicated in Figure 5.6. This phenomenon of soil 
behaviour can be included in the Hardening Soil model by means of a dilatancy cut-off. 
In order to specify this behaviour, the initial void ratio,

max

resu
tically s

 

dilatancy cut-off ON 

maximum porosity reached 

ε1 

1 – sinψ 

εv 

dilatancy cut-off OFF 

2 sinψ 

 

Figure 5.6 Resulting strain curve for a standard drained triaxial test when including 
ut-off 

emax: 

dilatancy c

ϕ
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for   e < sinψm  = 
ϕ ϕ

ϕ

cv1 m

cvm

      
    

sinsin
sinsin

−
−

  

where: inϕs cν  =  
ψϕ

ψϕ     sinsin
−

−
 (5.16a) 

      sin1 sin

for  e ≥ emax: ψm =  0 (5.16b) 

The void ratio is related to the volumetric strain, εν by the relationship: 

− ( )init  −  = εε vv ⎟
⎠

⎜
⎝ e + init1

where an increment of ε

⎟
⎞

⎜
⎛ e +    1ln  (5.17) 

v is positive for dilatancy. 



THE HARDENING SOIL MODEL  (ISOTROPIC HARDENING) 

The initial void ratio, einit, is the in-situ void ratio of the soil body. The maximum void 
ratio is the void ratio of the material in a state of critical void (critical state). As soon as 

id ratios is done 
in the 'general' tab sheet of the material data set window and not in the 'parameters' tab 
sheet. The selection of the dilatancy cut-off is only available when the Hardening Soil 
model has been selected. By default, the dilatancy cut-off is not active. 

the maximum void ratio is reached, the dilatancy angle is set to zero. The minimum void 
ratio, emin, of a soil can also be inputted, but this general soil parameter is not used 
within the context of the Hardening-Soil model. 

Please note that the selection of the dilatancy cut-off and the input of vo

 

Figure 5.7  Advanced general properties window 

5.5 ON THE CAP YIELD SURFACE IN THE HARDENING SOIL MODEL 

Shear hardening yield surfaces as indicated in Figure 5.2 do not explain the plastic 
volume strain that is measured in isotropic compression. A second type of yield surface 
must therefore be introduced to close the elastic region for compressive (compaction 
hardening) stress paths. Without such a cap type yield surface it would not be possible to 
formulate a model with independent input of both ref  and Eref

oed . The triaxial modulus 
largely controls the shear yield surface and the oedometer modulus controls the cap 
yield surface. In fact, Eref

50  largely controls the magnitude of the plastic strains that are 

E50

associated with the shea ld surface. Similarly,  is used to control the magnitude 
of plastic strains that originate from the yield cap. In this section the yield cap will be 
described in full detail. To this 

r yie Eref
oed

end we consider the definition of the cap yield surface: 

p  p + qf p
c 22

2

2

'
~

−=
α

 (5.18) 

where α is an auxiliary model parameter that relates to K nc
0  as will be discussed later. 

Further more we have p' = (σ'1 + σ'2 + σ'3) /3 and q~  = σ'1 + ( − 1) σ'δ 2 − δ σ'3 with δ=(3 
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+ sinϕ ) / (3 − sinϕ ). q~  is a special stress measure for deviatoric stresses. In the special 
case of triaxial compression (−σ'1 > −σ'2 = −σ'3) it yields q~  = −(σ'1 − σ'3)  and for 
triaxial extension (− −σ'2 > −σ'3) σ'1 = q~  reduces to q~  = −δ (σ'1 − σ'3). The magnitude 
of the yield cap is determined 
hardening law relating pp to volu

by the isotropic pre-consolidation stress pp. We have a 
metric cap strain ε pc : v

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
−

p

p
m ref

p
m

pc
v

1

1
βε  (5.19) 

The volumetric cap strain is the plastic volumetric strain in isotropic compression. In 
addition to the well othe t β. Both 
α and β are cap parameters, but these are not used as direct input parameters. Instead, 
there are relationships of 

 

 known constants m and pref there is an r model constan

the form: 

K nc
0 (default: ϕsin10 −=K nc  ) 

Eref
oed↔β  (default: Eref

oed  = Eref
50 ) 

↔α

such that K nc
0 and E ref

oed  can be used as input parameters that determine the magnitude 
of α and β respectively. For understanding the shape of the yield cap, it should first of 
all be realised that it is an ellipse in p- q~ -plane, as indicated in Figure 5.8.  

The ellipse has length  p  on the p-axis and α p  on the qp p
~ -axis. Hence, p  determines its p

magnitude and α its aspect ratio. High values of α lead to steep caps underneath the 
Mohr-Coulom herea α es define caps that are 
around the p- th as a yield surface and
Hence:  

b line, w s small -valu much more pointed 
axis. The ellipse is used bo  as a plastic potential. 
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ε& pc  = 
'σ

λ
 
f   

c

∂
∂

      with:        
p
p

  
p
p

p ref
p

ref
p

m
&

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

'2
βλ  (5.20) 

This expression for λ derives from the yield condition  f c = 0  and Eq. (5.19) for pp.  
Input data on initial pp-values is provided by means of the PLAXIS procedure for initial 
stresses. Here, pp is either computed from the entered overconsolidation ratio (OCR) or 
the pre-overburden pressure (POP) (see Section 2.8).  

For understanding the yield surfaces in full detail, one should consider both Figure 5.8 
and Figure 5.9. The first figure shows simple yield lines, whereas the second one depicts 
yield surfaces in principal stress space. Both the shear locus and the yield cap have the 
hexagonal shape of the classical Mohr-Coulomb failure criterion. In fact, the shear yield 
locus can expand up to the ultimate Mohr-Coulomb failure surface. The cap yield 
surface expands as a function of the pre-consolidation stress pp. 
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 q ~

pp 

αpp

c cot φ

elastic region 

p 
 

Figure 5.8 Yield surfaces of Hardening Soil model in p- q~ -plane. The elastic region 
can be further reduced by means of a tension cut-off 

-σ1

-σ2

-σ 3

Figure 5.9 Representation of total yield contour of the Hardening Soil model in 
principal stress space for cohesionless soil 
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6 THE HARDENING SOIL MODEL WITH SMALL-STRAIN STIFFNESS 
(HSSMALL) 

The original Hardening Soil model assumes elastic material behaviour during unloading 
and reloading. However, the strain range in which soils can be considered truly elastic, 
i.e. where they recover from applied straining almost completely, is very small. With 
increasing strain amplitude, soil stiffness decays nonlinearly. Plotting soil stiffness 
against log(strain) yields characteristic S-shaped stiffness reduction curves. Figure 6.1 
gives an example of such a stiffness reduction curve. It outlines also the characteristic 
shear strains that can be measured near geotechnical structures and the applicable strain 
ranges of laboratory tests. It turns out that at the minimum strain which can be reliably 
measured in classical laboratory tests, i.e. triaxial tests and oedometer tests without 
special instrumentation, soil stiffness is often decreased to less than half its initial value.  

Shear strain   [‐]γS

Dynamic methods

Local gauges

Conventional soil testing

Sh
ea
r m

od
ul
us
 G

/G
 [‐
]

0

1e‐6 1e‐5 1e‐4 1e‐3 1e‐2 1e‐1

1

0

Retaining walls

Tunnels

Foundations

Small strains

Larger strains

Very
small 
strains

 

Figure 6.1 Characteristic stiffness-strain behavior of soil with typical strain ranges for 
laboratory tests and structures (after Atkinson & Sallfors [47]) 

The soil stiffness that should be used in the analysis of geotechnical structures is not the 
one that relates to the strain range at the end of construction according Figure 6.1. 
Instead, very small-strain soil stiffness and its non-linear dependency on strain 
amplitude should be properly taken into account. In addition to all features of the 
Hardening Soil model, the HSsmall model offers the possibility to do so.  

The HSsmall model implemented in PLAXIS is based on the Hardening Soil model and 
uses almost entirely the same parameters (see Section 6.4). In fact, only two additional 
parameters are needed to describe the stiffness behavior at small strains: 

• the initial or very small-strain shear modulus G0 
• the shear strain level γ0.7 at which the secant shear modulus G is reduced to 70% of 

G0  
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6.1 DESCRIBING SMALL-STRAIN STIFFNESS WITH A SIMPLE 
HYPERBOLIC LAW 

In soil dynamics, small-strain stiffness has been a well known phenomenon for a long 
time. In static analysis, the findings from soil dynamics have long been considered not 
to be applicable.  

Seeming differences between static and dynamic soil stiffness have been attributed to 
the nature of loading (e.g. inertia forces and strain rate effects) rather than to the 
magnitude of applied strain which is generally small in dynamic conditions (earthquakes 
excluded). As inertia forces and strain rate have only little influence on the initial soil 
stiffness, dynamic soil stiffness and small-strain stiffness can in fact be considered as 
synonyms.  

The probably most frequently used model in soil dynamics is the Hardin-Drnevich 
relationship. From test data, sufficient agreement is found that the stress-strain curve for 
small strains can be adequately described by a simple hyperbolic law. The following 
analogy to the hyperbolic law for larger strains by Kondner [25] (see previous Section) 
was proposed by Hardin & Drnevich [49]: 

r

G
G

γ
γ

+
=

1

1

0

 (6.1) 

where the threshold shear strain γr is quantified as: 

0

max

Gr
τγ =  (6.2) 

with τmax being the shear stress at failure. Essentially, Eq. (6.1) and Eq. (6.2) relate large 
(failure) strains to small-strain properties which often work well.  

More straightforward and less prone to error is the use of a smaller threshold shear 
strain. Santos & Correia [52], for example suggest to use the shear strain γr = γ0.7 at 
which the shear modulus G0 is reduced to 70 % of its initial value. Eq. (6.1) can then be 
rewritten as: 

7.0

0 1

1

γ
γa

G
G

+
=   where  

7
3

=a . (6.3) 

Figure 6.2 shows the fit of the modified Hardin-Drnevich relationship (Eq. (6.3) to 
normalized test data.   
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Figure 6.2 Results from the Hardin-Drnevich relationship compared to test data by 
Santos & Correia [52] 

6.2 APPLYING THE HARDIN-DRNEVICH RELATIONSHIP IN THE HS 
MODEL 

The decay of soil stiffness at small strains can be associated with loss of intermolecular 
and surface forces within the soil skeleton. Once the direction of loading is reversed, the 
stiffness regains a maximum recoverable value which is in the order of the initial soil 
stiffness. Then, while loading in the reversed direction is continued, the stiffness 
decreases again. A strain history dependent, multi-axial extension of the Hardin-
Drnevich relationship is therefore needed in order to apply it in the HS model. Such an 
extension has been proposed by Benz [48] in the form of the small-strain overlay model. 
Benz derives a scalar valued shear strain γhist by the following projection: 

e
eH

hist Δ
Δ

= 3γ    (6.4) 

where eΔ  is the actual deviatoric strain increment and H is a symmetric tensor that 
represents the deviatoric strain history of the material. Whenever a strain reversal is 
detected the tensor H is partially or fully reset before the actual strain increment eΔ  is 
added. As the criterion for strain reversals serves a criterion similar as in Simpson’s 
brick model [53]:  All three principal deviatoric strain directions are checked for strain 
reversals separately which resembles three independent brick models. When there is no 
principal strain rotation, the criterion reduces to two independent brick-models. For 
further details on the strain tensor H and its transformation at changes in the load path 
it is referred to Benz [48]. 
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The scalar valued shear strain γ = γhist calculated in Eq. (6.4) is applied subsequently 
used in Eq. (6.3). Note that in both, Eq. (6.3) and Eq. (6.4), the scalar valued shear strain 
is defined as: 

qεγ
2
3

=  (6.5) 

where εq is the second deviatoric strain invariant. In triaxial conditions γ can therefore 
be expressed as: 

lateralaxial εεγ −=  (6.6) 

The stiffness reduction curve defined in Eq. (6.3) reaches far into the plastic material 
domain. In the Hardening Soil and HSsmall model, stiffness degradation due to plastic 
straining is simulated with strain hardening. In the HSsmall model, the small-strain 
stiffness reduction curve is therefore bounded by a certain lower limit, determined by 
conventional laboratory tests:  

• The lower cut-off is introduced at the unloading reloading stiffness Gur which is 
defined by the material parameters Eur and νur.  

• The cut-off shear strain γcut-off calculates as: 

7.0
0 1

3
7 γγ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=−

ur
offcut G

G
   where   

)1(2 ur

ur
ur

EG
ν+

=  (6.7) 

Within the HSsmall model, the actual quasi-elastic tangent shear modulus is calculated 
by integrating the secant stiffness modulus reduction curve over the actual shear strain 
increment. An example of a stiffness reduction curve used in the HSsmall model is 
shown in Figure 6.3. 
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Figure 6.3  Cut-off of the small-strain degradation curve as used in the HS-Small model 
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6.3 VIRGIN (INITIAL) LOADING VS. UNLOADING / RELOADING 

Masing [51] described the hysteretic behaviour of materials in unloading / reloading 
cycles in the form of the following rules:  
• The shear modulus in unloading is equal to the initial tangent modulus for the initial 

loading curve.  
• The shape of the unloading and reloading curves is equal to the initial loading 

curve, but twice its size. In terms of the above introduced threshold shear strain γ0.7, 
Masing’s rule can be fulfilled by the following setting in the Hardin-Drnevich 
relation: 

loadingvirginloadingre −− = 7.07.0 2γγ   (6.8) 

 

Figure 6.4 Left: Hysteretic material behaviour. Right: HSsmall stiffness reduction in 
initial- or primary loading and in unloading / reloading 
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The HSsmall model consequently adopts Masing’s rule by doubling the threshold shear 
strain provided by the user for virgin loading. If hardening plasticity readily accounts for 
more rapidly decaying small-strain stiffness during virgin loading, the user defined 
threshold shear strain is always doubled. Next, the hardening laws of the HSsmall model 
are fitted such, that the small-strain stiffness reduction curve is reasonably well 
approximated. Figure 6.4 illustrates Masing’s rule and the secant stiffness reduction in 
virgin loading and unloading / reloading. 

6.4 MODEL PARAMETERS 

Compared to the standard HS model, the HSsmall model requires two additional 
stiffness parameters as input: and γrefG0 0.7. All other parameters remain the same as in 

the standard HS model. defines the shear modulus at very small strains e.g. 

 at a reference minor principal stress of .  

refG0
610−<ε refp=′− 3σ

Poisson’s ratio νur is assumed a constant, as everywhere in Plaxis,  so that the shear 
modulus   can also be calculated from the very small strain Young’s modulus as 

= /(2(1+ν

refG0
refG0

refE0 ur)). The threshold shear strain γ0.7  is the shear strain at which the 

secant shear modulus is decayed to . The threshold shear strain γrefG refG07.0 0.7   is to 
be supplied for virgin loading. In summary, the input stiffness parameters of the 
HSsmall model are listed below:  

 m  :  Power for stress-level dependency of stiffness [-] 
refE50  :  Secant stiffness in standard drained triaxial test [kN/m2] 

ref
oedE  :  Tangent stiffness for primary oedometer loading [kN/m2] 

ref
urE   :  unloading/reload. stiffness at engineering strains (ε  ≈ 10-3~10-2) [kN/m2] 

νur : Poisson’s ratio for unloading-reloading [-] 
refG0  : reference shear modulus at very small strains (ε  < 10-6) [kN/m2] 

γ0.7 : shear strain at which Gsecant = 0.7 G0 [-] 

Figure 6.5 illustrates the model’s stiffness parameters in a triaxial test , , and 

. For the order of strains at which urE and 0  are defined and 
determined, one may refer to e.g. 

50E urE
( urGE ν+= 12 00 ) G

Figure 6.1 and Figure 6.3. If the default setting for 
 =  is used, no small strain hardening behaviour occurs and the HSsmall 

model defaults back to the standard HS model. 

refG0
ref
urG
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q = σ1-σ3

 
axial strain ε1

Figure 6.5 Stiffness parameters , , and 50E urE ( )urGE ν+= 12 00  of the HSsmall 
model in a triaxial test 

6.5 ON THE PARAMETERS G0 AND γ0.7  

A number of factors influence the small-strain parameters G0 and γ0.7. Most importantly 
they are influenced by the material’s actual state of stress and void ratio e. In the 
HSsmall model, the stress dependency of the shear modulus G0 is taken into account 
with the power law: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

′−
=  

p  c
  c

  GG
ref

m
ref

ϕϕ
ϕσϕ

sincos
sincos 1

0 0  (6.9) 

which resembles the ones used for the other stiffness parameters. The threshold shear 
strain γ0.7 is taken independently of mean stress. 
Assuming that within a HSsmall (or HS) computation void ratio changes are rather 
small, the material parameters are not updated for changes in the void ratio. Knowledge 
of a material’s initial void ratio can nevertheless be very helpful in deriving its small-
strain shear stiffness G0. Many correlations are offered in the literature (e.g. [48]). A 
good estimation for many soils is for example the relation given by Hardin & Black 
[50]: 

( ) ][33
1
97.2 2

0 MPa
e
e Gref

+
−

=  (6.10) 

Alpan [46] empirically related dynamic soil stiffness to static soil stiffness (Figure 6.6). 
The dynamic soil stiffness in Alpan’s chart is equivalent to the small-strain stiffness G0 
or E0. Considering that the static stiffness Estatic defined by Alpan equals approximately 
the unloading / reloading stiffness Eur in the HSsmall model, Alpan’s chart can be used 
to guess a soil’s small-strain stiffness entirely based on its unloading / reloading 

6-7 



MATERIAL MODELS MANUAL 

stiffness Eur. Although Alpan suggests that the ratio E0/Eur can exceed 10 for very soft 
clays, the maximum ratio E0/Eur  or G0/Gur permitted in the HSsmall model is limited to 
10. 

 

Figure 6.6 Relation between dynamic (Ed = E0) and static soil stiffness (Es ≈ Eur) after 
Alpan [46]. 
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Figure 6.7 Influence of plasticity index (PI) on stiffness reduction after Vucetic & 
Dobry [54]. 

In the absence of test data, correlations are also available for the threshold shear strain 
γ0.7. Figure 6.7 for example gives a correlation between the threshold shear strain and the 
Plasticity Index. Using the original Hardin-Drnevich relationship, the threshold shear 
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strain γ0.7 might be also related to the model’s failure parameters. Applying the Mohr-
Coulomb failure criterion in Eq. (6.2) and Eq. (6.3) yields: 

[ ] Kc
G

)'2sin()1('))'2cos(1('2
9

1
01

0
7.0 ϕσϕγ +−+≈  (6.11) 

where K0 is the earth pressure coefficient at rest and σ1‘ is the effective vertical stress 
(pressure negative). 

6.6 MODEL INITIALIZATION 

Stress relaxation erases a soil’s memory of previous applied stress. Soil ageing in the 
form of particle (or assembly) reorganization during stress relaxation and formation of 
bonds between them can erase a soil’s strain history. Considering that the second 
process in a naturally deposited soil develops relatively fast, the strain history should 
start from zero ( 0=H ) in most boundary value problems. This is the default setting in 
the HSsmall model.  

However, sometimes an initial strain history may be desired. In this case the strain 
history can be adjusted by applying an extra load step before starting the actual analysis. 
Such an additional load step might also be used to model overconsolidated soils. Usually 
the overconsolidation’s cause has vanished long before the start of calculation, so that 
the strain history should be reset afterwards. Unfortunately, strain history is already 
triggered by adding and removing a surcharge. In this case the strain history can be reset 
manually, by replacing the material or applying a small reverse load step. More 
convenient is the use of the initial stress procedure. 

When using the HSsmall model, caution should be given to NIL steps. The strain 
increments in NIL steps are purely derived from the small numerical unbalance in the 
system which is due to the accepted tolerated error in the computation. The strain 
increment direction in NIL steps is therefore arbitrary. Hence, a NIL step may function 
as randomly reverse load step which is in most cases not desired. 

6.7 OTHER DIFFERENCES BETWEEN THE HS AND THE HSSMALL 
MODEL 

6.7.1 THE MOBILISED DILATANCY ANGLE 
The shear hardening flow rule of both, the HS and the HSsmall model have the linear 
form: 

ε& p
v   =  sinψm  (6.12) γ& p
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The mobilised dilatancy angle ψm in compression however, is defined differently. The 
HS model assumes the following: 

For sinϕm < 3/4 sinϕ : ψm = 0 

For sinϕm ≥ 3/4 sinϕ  and ψ > 0 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
−

=  0,
sinsin1
sinsin

maxsin
ϕϕ
ϕϕ

ψ
cvm

cvm
m     

    
 (6.13) 

For sinϕm ≥ 3/4 sinϕ  and ψ ≤ 0 ψm = ψ 

If ϕ = 0  ψm = 0 

where ϕcν is the critical state friction angle, being a material constant independent of 
density, and ϕm is the mobilised friction angle: 

ϕσσ
σσϕ

cot2
sin

31

31

c +m −′′
′−′

=  (6.14) 

For small mobilised friction angles and for negative values of ψm, as computed by 
Rowe’s formula, ψm in the HS model is taken zero. Bounding the lower value of ψm 
may sometimes yield too little plastic volumetric strains though. Therefore, the HSsmall 
model adapts an approach by Li & Dafalias [x12] whenever ψm, as computed by Rowe’s 
formula, is negative. In that case, the mobilized dilatancy in the HSsmall model is 
calculated by the following Equation: 

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
+=  ⎥

⎥
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⎤
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⎞
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⎝

⎛

ηψ
η

aq
q

M
m M

ln
15
1

exp
10
1sin  (6.15) 

where M is the stress ratio at failure, and η  = q/p is the actual stress ratio. Eq. (6.15) is a 
simplified version of the void ratio dependent formulation by Li & Dafalias. 

6.7.2 FAILURE CRITERION 
The HSsmall model has an optional Matsuoka-Nakai failure criterion built in. Currently 
the Matsuoka-Nakai failure criterion is recommended for research applications only. For 
details on the activation of the optional yield criterion please contact the PLAXIS head 
office.  
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7 SOFT SOIL CREEP MODEL  (TIME DEPENDENT BEHAVIOUR) 

7.1 INTRODUCTION 

As soft soils we consider near-normally consolidated clays, clayey silts and peat. A 
special feature of these materials is their high degree of compressibility. This is best 
demonstrated by oedometer test data as reported for instance by Janbu in his Rankine 
lecture (1985). Considering tangent stiffness moduli at a reference oedometer pressure 
of 100 kN/m2, he reports for normally consolidated clays Eoed = 1 to 4 MN/m2, 
depending on the particular type of clay considered. The differences between these 
values and stiffnesses for primarily loaded sands are considerable as here we have 
values in the range of 10 to 50 MN/m2, at least for non-cemented laboratory samples. 
Hence, in oedometer testing normally consolidated clays behave ten times softer than 
primarily loaded sands. This illustrates the extreme compressibility of soft soils. 

Another feature of the soft soils is the linear stress-dependency of soil stiffness. 
According to the Hardening Soil model we have: 

( )mref
oed

ref
oed pEE /'1σ−=  

at least for c = 0, and a linear relationship is obtained for m = 1. Indeed, on using an 
exponent equal to one, the above stiffness law reduces to: 

λσ /'1−= ∗
oedE  where  Epref ref

oed/=∗λ

For this special case of m = 1, the Hardening Soil model yields ε&  = λ* 
1'σ& / 1'σ , which 

can be integrated to obtain the well-known logarithmic compression law ε = -λ* 
ln ( )refp1'σ−   for primary oedometer loading.  

For many practical soft-soil studies, the modified compression index λ* will be known 
and the PLAXIS user can compute the oedometer modulus from the relationship: 

∗= λ/refref
oed pE  

From the above considerations it would seem that the Hardening Soil model is perfectly 
suitable for soft soils. Indeed, most soft soil problems can be analysed using this model, 
but the Hardening Soil model is not suitable when considering creep, i.e. secondary 
compression. All soils exhibit some creep, and primary compression is thus always 
followed by a certain amount of secondary compression. Assuming the secondary 
compression (for instance during a period of 10 or 30 years) to be a percentage of the 
primary compression, it is clear that creep is important for problems involving large 
primary compression. This is for instance the case when constructing embankments on 
soft soils. Indeed, large primary settlements of dams and embankments are usually 
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followed by substantial creep settlements in later years. In such cases it is desirable to 
estimate the creep from FEM-computations. 

Dams or buildings may also be founded on initially overconsolidated soil layers that 
yield relatively small primary settlements. Then, as a consequence of the loading, a state 
of normal consolidation may be reached and significant creep may follow. This is a 
treacherous situation as considerable secondary compression is not preceded by the 
warning sign of large primary compression. Again, computations with a creep model are 
desirable.  

Buisman (1936) was probably the first to propose a creep law for clay after observing 
that soft-soil settlements could not be fully explained by classical consolidation theory. 
This work on 1D-secondary compression was continued by other researchers including, 
for example, Bjerrum (1967), Garlanger (1972), Mesri (1977) and Leroueil (1977). 
More mathematical lines of research on creep were followed by, for example, Sekiguchi 
(1977), Adachi and Oka (1982) and Borja et al. (1985). This mathematical 3D-creep 
modelling was influenced by the more experimental line of 1D-creep modelling, but 
conflicts exist. 

3D-creep should be a straight forward extension of 1D-creep, but this is hampered by 
the fact that present 1D-models have not been formulated as differential equations. For 
the presentation of the Soft-Soil-Creep model we will first complete the line of 1D-
modelling by conversion to a differential form. From this 1D differential equation an 
extension was made to a 3D-model. This Chapter gives a full description of the 
formulation of the Soft-Soil-Creep model. In addition, attention is focused on the model 
parameters. Finally, a validation of the 3D model is presented by considering both 
model predictions and data from triaxial tests. Here, attention is focused on constant 
strain rate triaxial tests and undrained triaxial creep tests. For more applications of the 
model the reader is referred to Vermeer et al. (1998) and Brinkgreve (2004).  

Some basic characteristics of the Soft Soil Creep model are: 

• Stress-dependent stiffness (logarithmic compression behaviour) 

• Distinction between primary loading and unloading-reloading 

• Secondary (time-dependent) compression 

• Memory of pre-consolidation stress 

• Failure behaviour according to the Mohr-Coulomb criterion 

7.2 BASICS OF ONE-DIMENSIONAL CREEP 

When reviewing previous literature on secondary compression in oedometer tests, one is 
struck by the fact that it concentrates on behaviour related to step loading, even though 
natural loading processes tend to be continuous or transient in nature. Buisman (1936) 
was probably the first to consider such a classical creep test. He proposed the following 
equation to describe creep behaviour under constant effective stress: 
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⎟⎟
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⎞
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⎝

⎛
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c
Bc t

tC= logεε  for: t > tc (7.1) 

where εc is the strain up to the end of consolidation, t the time measured from the 
beginning of loading, tc the time to the end of primary consolidation and CB is a material 
constant.  

B

Please note that we do not follow the soil mechanics convention that compression is 
considered positive. Instead, compressive stresses and strains are taken to be negative. 
For further consideration, it is convenient to rewrite this equation as: 
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c

c
Bc logεε  for t' > 0  (7.2) 

with  t' = t - tc  being the effective creep time.  

Based on the work by Bjerrum on creep, as published for instance in 1967, Garlanger 
(1972) proposed a creep equation of the form: 
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⎝
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τ
τ

α
c

c
c

t   C  ee log      with:   ( )0B eC = C +1α     for:   t' > 0  (7.3) 

Differences between Garlanger’s and Buisman’s forms are modest. The engineering 
strain ε is replaced by void ratio e and the consolidation time tc is replaced by a 
parameter τc. Eqs. 7.2 and 7.3 are entirely identical when choosing τc = tc. For the case 
that τc ≠ tc differences between both formulations will vanish when the effective creep 
time t’ increases. 

For practical consulting, oedometer tests are usually interpreted by assuming tc = 24h. 
Indeed, the standard oedometer test is a Multiple Stage Loading Test with loading 
periods of precisely one day. Due to the special assumption that this loading period 
coincides to the consolidation time tc, it follows that such tests have no effective creep 
time. Hence one obtains t' = 0 and the log-term drops out of Eq. (7.3) It would thus 
seem that there is no creep in this standard oedometer test, but this suggestion is entirely 
false. Even highly impermeable oedometer samples need less than one hour for primary 
consolidation. Then all excess pore pressures are zero and one observes pure creep for 
the other 23 hours of the day. Therefore we will not make any assumptions about the 
precise values of τc and tc. 
Another slightly different possibility to describe secondary compression is the form 
adopted by Butterfield (1979): 
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τεε
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cH
c

H tC ln  (7.4) 

where εH is the logarithmic strain defined as: 
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with the subscript 0 denoting the initial values. The subscript H is used to denote 
logarithmic strain, as the logarithmic strain measure was originally used by Hencky. For 
small strains it is possible to show that: 

( ) 10ln10ln1 0

C = 
  e+ 

C = C B

⋅
α  (7.6) 

because then logarithmic strain is approximately equal to the engineering strain. Both 
Butterfield (1979) and Den Haan (1994) showed that for cases involving large strain, the 
logarithmic small strain supersedes the traditional engineering strain. 

7.3 ON THE VARIABLES τ C AND ε C 

In this section attention will first be focussed on the variable τc. Here a procedure is to 
be described for an experimental determination of this variable. In order to do so we 
depart from Eq. (7.4) By differentiating this equation with respect to time and dropping 
the superscript H  to simplify notation, one finds: 

t +
C =  

c ′
−

τ
ε&  or inversely: 

C
t + = 

 
c ′

−
τ

ε&
1

 (7.7) 

which allows one to make use of the construction developed by Janbu (1969) for 
evaluating the parameters C and τc from experimental data. Both the traditional way, 
being indicated in Figure 7.1a, as well as the Janbu method of Figure 7.1b can be used to 
determine the parameter C from an oedometer test with constant load.  

 

εc 

1 
C 

(a) 

tc ln t 

-ε 

(b) 

-1/ε

tc 

t’τc 
t 

1 

C 

.

t’ = t - tc 

 

Figure 7.1  Consolidation and creep behaviour in standard oedometer test 
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The use of the Janbu method is attractive, because both τc and C follow directly when 
fitting a straight line through the data. In Janbu’s representation of  

Figure 7.1b, τc is the intercept with the (non-logarithmic) time axis of the straight creep 
line. The deviation from a linear relation for t < tc is due to consolidation. 

Considering the classical literature it is possible to describe the end-of-consolidation 
strain εc, by an equation of the form: 
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Note that ε is a logarithmic strain, rather than a classical small strain although we 
conveniently omit the subscript H. In the above equation σ'0 represents the initial 
effective pressure before loading and σ' is the final effective loading pressure. The 
values σp0 and σpc representing the pre-consolidation pressure corresponding to before-
loading and end-of-consolidation states respectively. In most literature on oedometer 
testing, one adopts the void ratio e instead of ε, and log instead of ln, and the swelling 
index Cr instead of A, and the compression index Cc instead of B. The above constants A 
and B relate to Cr and Cc as: 

( ) 10ln1 0 ⋅+ e 
C = A r  

( )
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−
e

CC = B rc  (7.9) 

Combining Eqs. 7.4 and 7.8 it follows that: 
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 (7.10) 

where ε is the total logarithmic strain due to an increase in effective stress from σ'0 to σ' 
and a time period of tc+t'. In Figure 7.2 the terms of Eq. (7.10) are depicted in a ε−lnσ 
diagram. 

σ’ σpcσp0 

A 

σ’0

1 

A+B

1 

NC-line 

-ε
C ln(1+t’/τc) 

ln(-σ’)

e
cε

c
cε

 

Figure 7.2 Idealised stress-strain curve from oedometer test with division of strain 
increments into an elastic and a creep component. For t' + tc = 1 day, one 
arrives precisely on the NC-line 
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Up to this point, the more general problem of creep under transient loading conditions 
has not yet been addressed, as it should be recalled that restrictions have been made to 
creep under constant load. For generalising the model, a differential form of the creep 
model is needed. No doubt, such a general equation may not contain t' and neither τc as 
the consolidation time is not clearly defined for transient loading conditions. 

7.4 DIFFERENTIAL LAW FOR 1D-CREEP 

The previous equations emphasize the relation between accumulated creep and time, for 
a given constant effective stress. For solving transient or continuous loading problems, it 
is necessary to formulate a constitutive law in differential form, as will be described in 
this section. In a first step we will derive an equation for τc. Indeed, despite the use of 
logarithmic strain and ln instead of log, equation (7.10) is classical without adding new 
knowledge. Moreover, the question on the physical meaning of τc is still open. In fact, 
we have not been able to find precise information on τc in the literature, apart from 
Janbu’s method of experimental determination.  

In order to find an analytical expression for the quantity τc, we adopt the basic idea that 
all inelastic strains are time dependent. Hence total strain is the sum of an elastic part εe 
and a time-dependent creep part εc. For non-failure situations as met in oedometer 
loading conditions, we do not assume an instantaneous plastic strain component, as used 
in traditional elastoplastic modelling. In addition to this basic concept, we adopt 
Bjerrum’s idea that the pre-consolidation stress depends entirely on the amount of creep 
strain being accumulated in the course of time. In addition to Eq. (6.10) we therefore 
introduce the expression: 
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Please note that εc is negative, so that  σp  exceeds σp0. The longer a soil sample is left to 
creep the larger σp grows. The time-dependency of the pre-consolidation pressure σp is 
now found by combining Eqs. 7.10 and 7.11 to obtain: 
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This equation can now be used for a better understanding of τc, at least when adding 
knowledge from standard oedometer loading. In conventional oedometer testing the load 
is stepwise increased and each load step is maintained for a constant period of  tc + t' = τ, 
where τ is precisely one day.  

7-6 PLAXIS Version 8 



SOFT SOIL CREEP MODEL  (TIME DEPENDENT BEHAVIOUR) 

In this way of stepwise loading the so-called normal consolidation line (NC-line) with 
σp = σ' is obtained. On entering σp = σ' and t' = τ -tc into Eq. (7.12) it is found that:  
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It is now assumed that (τc − tc) << τ. This quantity can thus be disregarded with respect 
to τ and it follows that: 
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Hence τc depends both on the effective stress σ' and the end-of-consolidation pre-
consolidation stress σpc. In order to verify the assumption (τc - tc) << τ, it should be 
realised that usual oedometer samples consolidate for relatively short periods of less 
than one hour. Considering load steps on the normal consolidation line, we have OCR = 
1 both in the beginning and at the end of the load step. During such a load step σp 
increases from σp0 up to σpc during the short period of (primary) consolidation. Hereafter 
σp increases further from σpc up to σ' during a relatively long creep period. Hence, at the 
end of the day the sample is again in a state of normal consolidation, but directly after 
the short consolidation period the sample is under-consolidated with σp < σ'. For the 
usually very high ratios of B/C ≥ 15, we thus find very small τc-values from Eq. (7.14). 
Hence not only tc but also τc tends to be small with respect to τ. It thus follows that the 
assumption (τc − tc) << τ is certainly correct. 

Having derived the simple expression in Eq. (7.14) for τc, it is now possible to formulate 
the differential creep equation. To this end Eq. (6.10) is differentiated to obtain: 
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where τc+ t' can be eliminated by means of Eq. (7.12) to obtain: 
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Again it is recalled that εc is a compressive strain, being considered negative in this 
manual. Eq. (6.14) can now be introduced to eliminate τc and σpc and to obtain:  
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7.5 THREE-DIMENSIONAL-MODEL 

On extending the 1D-model to general states of stress and strain, the well-known stress 
invariants for pressure p' and deviatoric stress q are adopted. These invariants are used 
to define a new stress measure named peq:   

)cot(2

2

ϕcpM
qp = peq

−′
−′  (7.18) 

In Figure 7.3 it is shown that the stress measure peq is constant on ellipses in p-q-plane. 
In fact we have the ellipses from the Modified Cam-Clay-Model as introduced by 
Roscoe and Burland (1968).  

 

isotropic stress   

deviatoric stress   

peq 

1 

M 

pp
eq

q 

-p  

Figure 7.3  Diagram of peq-ellipse in a p-q-plane 

The soil parameter M represents the slope of the so-called ‘critical state line’ as also 
indicated in Figure 7.3. We use the general 3D-definition (2.8b) for the deviatoric stress 
q and: 

ϕ
ϕ

cv

cvM = 
sin3

sin6
−

 (7.19) 
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where ϕcv is the critical-void friction angle, also referred to as critical-state friction 
angle. On using Eq. (2.8b) for q, the equivalent pressure peq is constant along ellipsoids 
in principal stress space. To extend the 1D-theory to a general 3D-theory, attention is 
now focused on normally consolidated states of stress and strain as met in oedometer 
testing. In such situations it yields σ'2 = σ'3 = σ'K NC

0 1 , and it follows from Eq. (7.18) 
that: 
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where pp
eq is a generalised pre-consolidation pressure, being simply proportional to the 

one-dimensional one. For known values of  , pK NC
0

eq can thus be computed from σ' , 
and pp

eq can thus be computed from σp. Omitting the elastic strain in the 1D-equation 
(7.17), introducing the above expressions for  peq and pp

eq and writing εν instead of ε it is 
found that: 
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For one-dimensional oedometer conditions, this equation reduces to Eq. (7.17), so that 
one has a true extension of the 1D-creep model. It should be noted that the subscript 0 is 
once again used in the equations to denote initial conditions and that εν

c = 0 for time 
t = 0. 

Instead of the parameters A, B and C of the 1D-model, we will now change to the 
material parameters κ*, λ* and μ*, who fit into the framework of critical-state soil 
mechanics. Conversion between constants follows the rules: 

A  κ* 2≈  , B - ** =κλ   ,    (7.22) C = *μ

On using these new parameters, Eq. (7.21) changes to become: 
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    p = p exp0  (7.23) 

As yet the 3D-creep model is incomplete, as we have only considered a volumetric creep 
strain εν

c, whilst soft soils also exhibit deviatoric creep strains. For introducing general 
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creep strains, we adopt the view that creep strain is simply a time-dependent plastic 
strain. It is thus logic to assume a flow rule for the rate of creep strain, as usually done in 
plasticity theory. For formulating such a flow rule, it is convenient to adopt the vector 
notation and considering principal directions: 

( 321     σσσ T = σ )            and:               ( )321     εεεε T =   

where T is used to denote a transpose. Similar to the 1D-model we have both elastic and 
creep strains in the 3D-model. Using Hooke’s law for the elastic part, and a flow rule for 
the creep part, one obtains: 

σ
g + λσ D = ε + ε = ε

c
-ce

′∂
∂′&&&& 1  (7.24) 

where the elasticity matrix and the plastic potential function are defined as: 
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Hence we use the equivalent pressure peq as a plastic potential function for deriving the 
individual creep strain-rate components. The subscripts ‘ur’ are introduced to emphasize 
that both the elasticity modulus and Poisson’s ratio will determine unloading-reloading 
behaviour. Now it follows from the above equations that: 
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Hence we define α = ∂peq/∂p’. Together with Eqs. 7.23 and 7.24 this leads to: 
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where: 
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7.6 FORMULATION OF ELASTIC 3D-STRAINS  

Considering creep strains, it has been shown that the 1D-model can be extended to 
obtain the 3D-model, but as yet this has not been done for the elastic strains.  

To get a proper 3D-model for the elastic strains as well, the elastic modulus Eur has to 
been defined as a stress-dependent tangent stiffness according to: 

( ) ( )
κ
p KE

*urururur
′

−−=−= νν 213213  (7.27) 

Hence, Eur is not a new input parameter, but simply a variable quantity that relates to the 
input parameter κ*. On the other hand νur is an additional true material constant. Hence 
similar to Eur, the bulk modulus Kur is stress dependent according to the rule Kur= p' / κ*. 
Now it can be derived for the volumetric elastic strain that: 
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Hence in the 3D-model the elastic strain is controlled by the mean stress p', rather than 
by principal stress σ' as in the 1D-model. However mean stress can be converted into 
principal stress. For one-dimensional compression on the normal consolidation line, we 
have both 3p'= (1 + 2 )σ' and 3pK NC

0 0 = (1 + 2 )σK NC
0 0  and it follows that p'/p0 = σ'/σ0.  

As a consequence we derive the simple rule -εν
c =κ* ln(σ'/σ0), whereas the 1D-model 

involves -εν
c
 =A ln(σ'/σ0). It would thus seem that κ* coincides with A. Unfortunately 

this line of thinking cannot be extended towards overconsolidated states of stress and 
strain. For such situations, it can be derived that: 
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and it follows that: 
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where K0 depends to a great extent on the degree of overconsolidation. For many 
situations, it is reasonable to assume K0 ≈ 1 and together with νur ≈ 0.2 one obtains -2εν

c 
≈ κ* ln(σ'/σ0). Good agreement with the 1D-model is thus found by taking κ* ≈ 2A. 

7.7 REVIEW OF MODEL PARAMETERS 

As soon as the Mohr-Coulomb failure yield criterion f (σ', c,ϕ) = 0 is met, instantaneous 
plastic strain rates develop according to the flow rule 
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For details see Chapter 3 on the Mohr-Coulomb model. This gives additional soil 
parameters such as the effective cohesion, c, the Mohr-Coulomb friction angle, ϕ, and 
the dilatancy angle ψ. For fine grained, cohesive soils, the dilatancy angle tends to be 
small, it may often be assumed that ψ is equal to zero.  

In conclusion, the Soft Soil Creep model requires the following material constants: 

Failure parameters as in the Mohr-Coulomb model: 

c : Cohesion [kN/m2] 
ϕ : Friction angle   [°] 
ψ : Dilatancy angle [°] 

Basic stiffness parameters: 

κ* : Modified swelling index [-] 
λ* : Modified compression index  [-] 
μ* : Modified creep index [-] 

Advanced parameters (it is advised to use the default setting): 

νur : Poisson's ratio for unloading-reloading (default 0.15) [-] 

K NC
0  : σ'xx / σ'yy stress ratio in a state of normal consolidation [-] 

M : K -related parameter (see below) [-] NC
0

 

Figure 7.4  Parameters tab sheet for the Soft Soil Creep model 
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By default, M is calculated from Eq. (7.19), using ϕcν = ϕ + 0.1°, this is not an 
experimental finding, but just a practical default value. Please note that this default 
setting is different than the default setting for M in the Soft Soil model. Also note that 
the particular value of M has an influence on lateral deformation of pseudo-vertical 
loading problems. For details, see Brinkgreve (2004). In addition, PLAXIS displays the 
approximate value of that corresponds to the default setting of M. In general, 
resulting default values of tend to be somewhat higher than the ones that follow 
from Jaky's formula = 1 – sinϕ. Alternatively, values of may be entered after 
which the corresponding value of M is calculated from the relation (Brinkgreve, 1994): 

K NC
0

K NC
0

K NC
0 K NC

0

( )
( )

( )( )( )
( )( ) ( )( )ur

NC**
ur

NC

**
ur

NC

NC

NC

νKκ/λνK
κ/λνK

K

KM
+−−−+

−−−
+

+

−
=

112121
1211

21

13
00

0
2

0

2
0  (7.31) 

Hence the user can not enter directly a particular value of M. Instead he can choose 
values for . K NC

0

 

Figure 7.5  Advanced parameters for Soft Soil Creep model  

Modified swelling index, modified compression index and modified creep 
index 
These parameters can be obtained both from an isotropic compression test and an 
oedometer test. When plotting the logarithm of stress as a function of strain, the plot can 
be approximated by two straight lines (see Figure 7.2). The slope of the normal 
consolidation line gives the modified compression index λ*, and the slope of the 
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unloading (or swelling) line can be used to compute the modified swelling index κ*, as 
explained in section 7.6. Note that there is a difference between the modified indices κ* 
and λ* and the original Cam-Clay parameters κ and λ. The latter parameters are defined 
in terms of the void ratio e instead of the volumetric strain εν. The parameter μ* can be 
obtained by measuring the volumetric strain on the long term and plotting it against the 
logarithm of time (see Figure 7.1).  

Table 7.1a  Relationship to Cam-Clay parameters 

 + e
λ = λ* 1

 
 + e
κ = κ*

1
 

- - - 

Table 6.1b  Relationship to A,B, C parameters 
*κ+ = Bλ*  A  κ* 2≈  C=*μ - - - 

Table 6.1c  Relationship to internationally normalized parameters 

( ) + e.
C = λ c*

132
 

e
C 

.
  κ r*

+
≈

132
2

 ( ) + e.
C = μ α*

132
 

 
In Table 6.1c, the value 2.3 is in fact ln10 and stems from the conversion from 10log to 
natural logarithm. 

As already indicated in section 6.6, there is no exact relation between the isotropic 
compression index κ* and the one-dimensional swelling indices A and Cr, because the 
ratio of horizontal and vertical stress changes during one-dimensional unloading. For the 
approximation it is assumed that the average stress state during unloading is an isotropic 
stress state, i.e. the horizontal and vertical stresses are equal. 

For a rough estimate of the model parameters, one might use the correlation 
λ*≈Ip(%)/500, the fact that λ* / μ* is in the range between 15 to 25 and the general 
observation λ*/κ* is in the range around 5 to 10. 

For characterising a particular layer of soft soil, it is also necessary to know the initial 
pre-consolidation pressure σp0. This pressure may, for example, be computed from a 
given value of the overconsolidation ratio (OCR). Subsequently σp0 can be used to 
compute the initial value of the generalised pre-consolidation pressure pp

eq 
(see Section 2.8). 

Poisson's ratio 
In the case of the Soft Soil Creep model, Poisson's ratio is purely an elasticity constant 
rather than a pseudo-elasticity constant as used in the Mohr-Coulomb model. Its value 
will usually be in the range between 0.1 and 0.2. If the standard setting for the Soft Soil 
Creep model parameters is selected, then the value νur = 0.15 is automatically adopted. 
For loading of normally consolidated materials, Poisson's ratio plays a minor role, but it 
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becomes important in unloading problems. For example, for unloading in a one-
dimensional compression test (oedometer), the relatively small Poisson's ratio will result 
in a small decrease of the lateral stress compared with the decrease in vertical stress. As 
a result, the ratio of horizontal and vertical stress increases, which is a well-known 
phenomenon for overconsolidated materials. Hence, Poisson's ratio should not be based 
on the normally consolidated -value, but on the ratio of difference in horizontal 
stress to difference in vertical stress in oedometer unloading and reloading: 

K NC
0

yy

xx

ur

ur  = 
ν
ν

σ
σ

Δ
Δ

−1
 (unloading and reloading) (7.32) 

7.8 VALIDATION OF THE 3D-MODEL 

This section briefly compares the simulated response of undrained triaxial creep 
behaviour of Haney clay with test data provided by Vaid and Campanella (1977), using 
the material parameters summarized below. An extensive validation of the Soft-Soil-
Creep model is also provided in Stolle et al. (1997). All triaxial tests considered were 
completed by initially consolidating the samples under an effective isotropic confining 
pressure of 525 kN/m2 for 36 hours and then allowing them to stand for 12 hours under 
undrained conditions before starting a shearing part of the test.  
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Figure 7.6 Results of the undrained triaxial tests (CU-tests) with different rates of 
strain The faster the test the higher the undrained shear strength 
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The material properties for Haney Clay are: 

κ*= 0.016 λ* = 0.105 μ* = 0.004 
c = 0 kN/m2ϕmc = 32o ψ = 0o

ϕcs = 32.1o
K NC

0 = default ν = 0.25 
 
The end-of-consolidation pre-consolidation pressure, pp

eq, was found to be -373 kN/m2. 
This value was determined by simulating the consolidation part of the test. The pre-
consolidation pressure pp

eq of -373 kN/m2 is less than -525 kN/m2, which would have 
been required for an OCR of 1. It is clear that the pre-consolidation pressure not only 
depends on the applied maximum consolidation stress, but also on creep time as 
discussed in previous sections. In Figure 7.6 we can see the results of Vaid and 
Campanella’s tests (1977) for different strain rates and the computed curves, that were 
calculated with the present creep model. It is observed that the model describes the tests 
very well. 

Constant strain rate shear tests 
Undrained triaxial compression tests, as considered in Figure 7.6, performed under 
constant rates of vertical strain 1ε&  and constant horizontal pressure σ3 where the shear 
stress q can move. This behaviour is shown in Figure 7.7. 

 

isotropic stress  

deviatoric stress   

“Slow” tests

“Fast” tests

q   

-p   

Figure 7.7  Strain rate dependency of the effective stress path in undrained triaxial tests 

During these undrained tests it yields or equivalently . 
Hence, creep compaction is balanced by elastic swelling of the sample. The slower a test 
is performed, the larger the creep compaction is and finally the elastic swelling. The 
expression , where  is the elastic bulk modulus, shows that elastic 
swelling implies a decrease of the mean stress.  
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e
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For extremely fast tests there is no time for creep; it yields  and consequently 

also . Hence in this extreme case there is no elastic volume change and 
consequently neither a change of the mean stress. This implies a straight vertical path for 
the effective stress in p-q-plane. On inspecting all numerical results, it appears that the 
undrained shear strength, c

0=c
vε&

0=e
vε&

u, may be approximated by the equation: 

ε  . + .  
c
c

*
u

u &log090021≈  (7.33) 

where cu
* is the undrained shear strength in an undrained triaxial test with a strain rate of 

1% per hour. This agrees well with the experimental data summarized by Kulhawy and 
Mayne (1990). 

Undrained triaxial creep tests 
These tests begin with isotropic consolidation up to a mean stress of 525 kN/m2. Then a 
deviatoric stress q is applied in undrained loading. Finally all external stresses are kept 
constant and the sample is subjected to undrained creep.  
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Figure 7.8  Results of triaxial creep tests. 

Samples were first consolidated under the same isotropic stress. Then undrained samples 
were loaded up to different deviatoric stresses. Creep under constant deviatoric stress is 
observed, being well predicted by the Soft Soil Creep model. 
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The amount of creep depends on the applied deviatoric stress q or rather on the applied 
stress ratio q/p. For relatively small stress ratios, creep rates are small and they decrease 
in course of time. For large stress ratios, however, creep rates increase with time and 
samples will finally fail, i.e. strain rates become infinitely large. 

Figure 7.8 shows the actual creep strain evolution for samples with three different 
deviatoric stresses. 
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Figure 7.9  Results of triaxial creep tests. 

All tests have different constant deviatoric stress. The creep rupture time is the creep 
time up to a creep rate ∞− = 1ε& , as indicated by the asymptotes in Figure 7.8. Figure 
7.9 shows the experimental and the calculated relation  between the creep rupture time 
and different deviatoric stresses. 
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8 THE SOFT SOIL MODEL 

To highlight the significance of the Soft Soil model, it is worth mentioning that starting 
from Version 7 some changes to the soil modelling strategy of PLAXIS have been 
introduced. Up to Version 6 PLAXIS material models had consisted of Mohr-Coulomb 
model, Soft Soil model and Hard Soil model. In Version 7, however, the idea of using 
separate models for soft soil and hard soil has been excluded. Instead, the Hard Soil 
model was further developed to become an advanced model for soils ranging from soft 
to hard. This has resulted into the current Hardening Soil model. At the same time the 
Soft Soil Creep model was implemented to capture some of the very special features of 
soft soil. As a result, the Soft Soil model can be substituted by the new Hardening Soil 
model or the Soft Soil Creep model. However, in order not to deny users’ preferences to 
use models that they have got to know well, it was decided to keep the Soft Soil model 
in PLAXIS Version 8. Some features of the Soft Soil model are: 

• Stress dependent stiffness (logarithmic compression behaviour). 
• Distinction between primary loading and unloading-reloading. 
• Memory for pre-consolidation stress. 
• Failure behaviour according to the Mohr-Coulomb criterion. 

8.1 ISOTROPIC STATES OF STRESS AND STRAIN (σ'1 = σ'2 = σ'3) 

In the Soft-Soil model, it is assumed that there is a logarithmic relation between the 
volumetric strain, εν, and the mean effective stress, p', which can be formulated as:  

εε 0
vv  -  = - ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

p
p’  0

* lnλ  (virgin compression) (8.1) 

In order to maintain the validity of Eq. (8.1) a minimum value of p' is set equal to a unit 
stress. The parameter λ* is the modified compression index, which determines the 
compressibility of the material in primary loading. Note that λ* differs from the index λ 
as used by Burland (1965).  

The difference is that Eq. (8.1) is a function of volumetric strain instead of void ratio. 
Plotting Eq. (8.1) gives a straight line as shown in Figure 8.1.  

During isotropic unloading and reloading a different path (line) is followed, which can 
be formulated as: 

εε e0
v

e
v  -  = - ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

p
p’  0

* lnκ  (unloading and reloading) (8.2) 

Again, a minimum value of p' is set equal to a unit stress. The parameter κ* is the 
modified swelling index, which determines the compressibility of the material in 
unloading and subsequent reloading. Note that κ* differs from the index κ as used by 
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Burland. The ratio λ*/κ* is, however, equal to Burland's ratio λ /κ. The soil response 
during unloading and reloading is assumed to be elastic as denoted by the superscript e 
in Eq. (8.2). The elastic behaviour is described by Hooke's law (see Section 2.2) and Eq. 
(8.2) implies linear stress dependency on the tangent bulk modulus such that: 

κν *
ur

ur
ur

p’ = 
) 2 - (1  3

E  K ≡  (8.3) 

in which the subscript ur denotes unloading / reloading. Note that effective parameters 
are considered rather than undrained soil properties, as might be suggested by the 
subscripts ur. Neither the elastic bulk modulus, Kur, nor the elastic Young's modulus, 
Eur, is used as an input parameter. Instead, νur and κ* are used as input constants for the 
part of the model that computes the elastic strains. 

 

Figure 8.1  Logarithmic relation between volumetric strain and mean stress 

An infinite number of unloading / reloading lines may exist in Figure 8.1, each 
corresponding to a particular value of the isotropic pre-consolidation stress pp. The pre-
consolidation stress represents the largest stress level experienced by the soil. During 
unloading and reloading, this pre-consolidation stress remains constant. In primary 
loading, however, the pre-consolidation stress increases with the stress level, causing 
irreversible (plastic) volumetric strains. 

8.2 YIELD FUNCTION FOR TRIAXIAL STRESS STATE (σ'2 = σ'3) 

The Soft Soil model is capable to simulate soil behaviour under general states of stress. 
However, for clarity, in this section, restriction is made to triaxial loading conditions 
under which σ'2 = σ'3. For such a state of stress the yield function of the Soft Soil model 
is defined as: 

p - f = f p  (8.4) 
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where f  is a function of the stress state (p', q) and pp, the pre-consolidation stress, is a 
function of plastic strain such that: 

p’ + 
)  c +(p’   M

q = f
2

2

ϕcot
 (8.5) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  

  -  
 -   pp **

p
v0

pp
κλ

εexp  (8.6) 

The yield function f describes an ellipse in the p'-q-plane, as illustrated in Figure 8.2. 
The parameter M in Eq. (8.5) determines the height of the ellipse. The height of the 
ellipse is responsible for the ratio of horizontal to vertical stresses in primary one-
dimensional compression. 

 

Figure 8.2  Yield surface of the Soft Soil model in p'-q-plane 

As a result, the parameter M determines largely the coefficient of lateral earth pressure 
K0

nc. In view of this, the value of M can be chosen such that a known value of K0
nc is 

matched in primary one-dimensional compression. Such an interpretation and use of M 
differs from the original critical state line idea, but it ensures a proper matching of K0

nc. 

The tops of all ellipses are located on a line with slope M in the p'-q-plane. In the 
Modified Cam-Clay model (Burland 1965, 1967) the M-line is referred to as the critical 
state line and represents stress states at post peak failure. The parameter M is then based 
on the critical state friction angle. In the Soft Soil model, however, failure is not 
necessarily related to critical state. The Mohr-Coulomb failure criterion is a function of 
the strength parameters ϕ and c, which might not correspond to the M-line. The isotropic 
pre-consolidation stress pp determines the extent of the ellipse along p' axis. During 
loading, infinitely many ellipses may exist (see Figure 8.2) each corresponds to a 
particular value of pp. In tension (p' < 0), the ellipse extends to c cotϕ (Eq. (8.5) and 
Figure 8.2). In order to make sure that the right hand side of the ellipse (i.e. the 'cap') 
will remain in the 'compression' zone (p' > 0) a minimum value of c cotϕ is adopted for 
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pp. For c = 0, a minimum value of pp equal to a stress unit is adopted. Hence, there is a 
'threshold' ellipse as illustrated in Figure 8.2. 

The value of pp is determined by volumetric plastic strain following the hardening 
relation, Eq. (8.6). This equation reflects the principle that the pre-consolidation stress 
increases exponentially with decreasing volumetric plastic strain (compaction). pp

0 can 
be regarded as the initial value of the pre-consolidation stress. The determination of pp

0 
is treated in Section 2.8. According to Eq. (8.6) the initial volumetric plastic strain is 
assumed to be zero. 

In the Soft-Soil model, the yield function, Eq. (8.4), describes the irreversible volumetric 
strain in primary compression, and forms the cap of the yield contour. To model the 
failure state, a perfectly-plastic Mohr-Coulomb type yield function is used. This yield 
function represents a straight line in p'-q-plane as shown in Figure 8.2. The slope of the 
failure line is smaller than the slope of the M-line. 

The total yield contour, as shown by the bold lines in Figure 8.2, is the boundary of the 
elastic stress area. The failure line is fixed, but the cap may increase in primary 
compression. Stress paths within this boundary give only elastic strain increments, 
whereas stress paths that tend to cross the boundary generally give both elastic and 
plastic strain increments.  

For general states of stress, the plastic behaviour of the Soft Soil model is defined by a 
total of six yield functions; three compression yield functions and three Mohr-Coulomb 
yield functions. The total yield contour in principal stress space, resulting from these six 
yield functions, is indicated in Figure 8.3. 

−σ’
2 

−σ’
3 

−σ’
1 

cap 

failure surface 

 
Figure 8.3 Representation of total yield contour of the Soft Soil model in principal 

stress space 
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8.3 PARAMETERS OF THE SOFT SOIL MODEL 

The parameters of the Soft Soil model coincide with those of the Soft Soil Creep model. 
However, since the Soft Soil model does not include time, the modified creep index μ* 
is not considered. Thus, the Soft Soil model requires the following material constants: 

Basic parameters: 

 λ* : Modified compression index    [-] 
κ* : Modified swelling index    [-] 
c : Cohesion      [kN/m2] 
ϕ : Friction angle     [°] 
ψ : Dilatancy angle     [°] 

Advanced parameters (use default settings): 

 νur : Poisson's ratio for unloading / reloading  [-] 
K0

NC : Coefficient of lateral stress in normal consolidation [-] 
M : K0

NC-parameter     [-] 
Figure 8.4 shows PLAXIS window for inputting the values of the model parameters. M is 
calculated automatically from the coefficient of the lateral earth pressure, K0

NC, by 
means of Eq. (8.8). Note that, physically, in the current model M differs from that in the 
Modified Cam-Clay model where it is related to the material friction. 

 

Figure 8.4  Parameters tab sheet for the Soft Soil model 

Modified swelling index and modified compression index 
These parameters can be obtained from an isotropic compression test including isotropic 
unloading. When plotting the logarithm of the mean stress as a function of the 
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volumetric strain for clay-type materials, the plot can be approximated by two straight 
lines (see Figure 8.1). The slope of the primary loading line gives the modified 
compression index, and the slope of the unloading (or swelling) line gives the modified 
swelling index. Note that there is a difference between the modified indices κ* and λ* 
and the original Cam-Clay parameters κ and λ. The latter parameters are defined in 
terms of the void ratio e instead of the volumetric strain εν. 

Apart from the isotropic compression test, the parameters κ* and λ* can be obtained 
from the one-dimensional compression test. Here a relationship exists with the 
internationally recognized parameters for one-dimensional compression and 
recompression, Cc and Cr. Another relationship exists with the Dutch parameters for 
one-dimensional compression, Cp' and Ap. These relationships are summarized in Table 
8.1. 

Table 8.1a  Relationship to Cam-Clay parameters 

 1. 
 + e
λ = λ* 1

  2             
 + e
κ = κ*

1
 

Table 8.1b  Relationship to Dutch engineering practice 

 3. 
’C

 = λ
p

* 1
  4. 

A
  κ

p

* 2
≈  

Table 8.1c  Relationship to internationally normalized parameters 

 5. 
 + e) ( .

C = λ c*

132
  6. ( ) + e

C   κ r*

13.2
2

≈  

 
Remarks on Table 8.1: 

• In relations 1 and 2, the void ratio, e, is assumed to be constant. In fact, e will 
change during a compression test, but this will give a relatively small difference in 
void ratio. For e one can use the average void ratio that occurs during the test or just 
the initial value. 

• In relations 4 and 6 there is no exact relation between κ* and the one-dimensional 
swelling indices, because the ratio of horizontal and vertical stresses changes during 
one-dimensional unloading. For approximation it is assumed that the average stress 
state during unloading is an isotropic stress state, i.e. the horizontal and vertical 
stresses are equal. 

• The factor 2.3 in relation 5 is obtained from the ratio between the logarithm of base 
10 and the natural logarithm. 

• The ratio λ*/κ* (=λ /κ) ranges, in general, between 3 and 7. 
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Cohesion 
The cohesion has the dimension of stresses. Any effective cohesion may be used, 
including a cohesion of zero. When using the standard setting the cohesion is set equal 
to 1 kPa. Entering a cohesion will result in an elastic region that is partly located in the 
'tension' zone, as illustrated in Figure 8.2. The left hand side of the ellipse crosses the p'-
axis at a value of -c cotϕ. In order to maintain the right hand side of the ellipse (i.e. the 
cap) in the 'pressure' zone of the stress space, the isotropic pre-consolidation stress pp 
has a minimum value of c cotϕ. This means that entering a cohesion larger than zero 
may result in a state of 'over-consolidation', depending on the magnitude of the cohesion 
and the initial stress state. As a result, a stiffer behaviour is obtained during the onset of 
loading. It is not possible to specify undrained shear strength by means of high cohesion 
and a friction angle of zero. Input of model parameters should always be based on 
effective values. 

Friction angle 
The effective angle of internal friction represents the increase of shear strength with 
effective stress level. It is specified in degrees. Zero friction angle is not allowed. On the 
other hand, care should be taken with the use of high friction angles. It is often 
recommended to use ϕcν, i.e. the critical state friction angle, rather than a higher value 
based on small strains.  

Moreover, using a high friction angle will substantially increase the computational 
requirements. 

Dilatancy angle 
For the type of materials, which can be described by the Soft Soil model, the dilatancy 
can generally be neglected. A dilatancy angle of zero degrees is considered in the 
standard settings of the Soft-Soil model. 

Poisson's ratio 
In the Soft Soil model, the Poisson's ratio ν is the well known pure elastic constant 
rather than the pseudo-elasticity constant as used in the Mohr-Coulomb model. Its value 
will usually be in the range between 0.1 and 0.2. If the standard setting for the Soft Soil 
model parameters is selected, then νur = 0.15 is automatically used. For loading of 
normally consolidated materials, Poisson's ratio plays a minor role, but it becomes 
important in unloading problems. For example, for unloading in a one-dimensional 
compression test (oedometer), the relatively small Poisson's ratio will result in a small 
decrease of the lateral stress compared with the decrease in vertical stress. As a result, 
the ratio of horizontal and vertical stress increases, which is a well-known phenomenon 
in overconsolidated materials. Hence, Poisson's ratio should not be based on the 
normally consolidated K0

NC-value, but on the ratio of the horizontal stress increment to 
the vertical stress increment in oedometer unloading and reloading test such that: 

yy

xx

ur

ur  = 
- 1 σ

σ
ν

ν
Δ
Δ

 (unloading and reloading) (8.7) 
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K0 
NC-parameter 

The parameter M is automatically determined based on the coefficient of lateral earth 
pressure in normally consolidated condition, K0

NC, as entered by the user. The exact 
relation between M and K0

NC gives (Brinkgreve, 1994): 
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13
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0  (8.8) 

The value of M is indicated in the input window. As can be seen from Eq. (8.8), M is 
also influenced by the Poisson's ratio νur and by the ratio λ*/κ*. However, the influence 
of K0

NC is dominant. Eq. (8.8) can be approximated by: 

NC2.8K - 3.0M 0≈  (8.9) 
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9 MODIFIED CAM-CLAY MODEL 

The Modified Cam-Clay model is described in several textbooks on critical state soil 
mechanics (for example Muir Wood, 1990). In this chapter a short overview is given of 
the basic equations. 

In the Modified Cam-Clay model, a logarithmic relation is assumed between void ratio e 
and the mean effective stress p’ in virgin isotropic compression, which can be 
formulated as: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=− 0

0 'ln
p
pee λ  (virgin isotropic compression) (9.1) 

The parameter λ is the Cam-Clay compression index, which determines the 
compressibility of the material in primary loading. When plotting relation (9.1) in a e-
lnp’ diagram one obtains a straight line. During unloading and reloading, a different line 
is followed, which can be formulated as: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=− 0

0 'ln
p
pee κ  (isotropic unloading and reloading)  (9.2) 

The parameter κ is the Cam-Clay swelling index, which determines the compressibility 
of material in unloading and reloading. In fact, an infinite number of unloading and 
reloading lines exists in p’-e-plane each corresponding to a particular value of the 
preconsolidation stress pc. 

The model, as implemented in the Plaxis program, uses a slightly different formulation 
internally, namely: 

⎟⎟
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vv λεε  (virgin isotropic compression)   (9.3) 
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−=− 0
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p
p

vv κεε  (isotropic unloading and reloading)   (9.4) 

where λ* and κ* are the modified compression index and the modified swelling index, 
respectively. These indices are determined from the user input as 
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The yield function of the Modified Cam-Clay model is defined as: 

( cppp
M
q

f −+= ''2

2

)  (9.6) 

The yield surface (f = 0) represents an ellipse in p’-q plane as indicated in Figure 9.1. 
The yield surface is the boundary of the elastic stress states. Stress paths within this 
boundary only give elastic strain increments, whereas stress paths that tend to cross the 
boundary generally give both elastic ans plastic strain increments. 

In p’-q plane, the top of the ellipse intersects a line that we can be written as: 

q = M p’  (9.7) 

This line is called the critical state line (CSL) and gives the relation between p’ and q in 
a state of failure (i.e. the critical state). The constant M is the tangent of the critical state 
line and determines the extent to which the ultimate deviatoric stress, q, depends on the 
mean effective stress, p’. Hence, M can be regarded as a friction constant. Moreover, M 
determines the shape of the yield surface (height of the ellipse) and influences the 
coefficient of lateral earth pressure K0

NC in a normally consolidated stress state. 

pc

1

M

q
Critical State Line

K0
NC-line

p'
 

Figure 9.1  Yield surface of the Modified Cam-Clay model in p’-q-plane 

The preconsolidation stress, pc, determines the size of the ellipse. In fact, an infinite 
number of ellipses exist, each corresponding to a particular value of pc. 

The left hand side of the yield ellipse (often described as the ‘dry side’ of the crirical 
state line) may be thought of as a failure surface. In this region plastic yielding is 
associated with softening, and therefore failure. The values of q can become 
unrealistically large in this region. 

Fore more detailed information on Cam-Clay type models, the reader is referred to Muir 
Wood (1990). 

9-2 PLAXIS Version 8 



MODIFIED CAM-CLAY MODEL 

9-3 

In conclusion, the Modified Cam-Clay model is based on five parameters: 

 νur : Poisson’s ratio 

 κ : Cam-Clay swelling index 

 λ : Cam-Clay compression index 

 M : Tangent of the critical state line 

 e : Void ratio 

Poisson’s ratio 
Poisson’s ratio νur is a real elastic parameter and not a pseudo-elasticity constant as used 
in the Mohr-Coulomb model. Its value will usually be in the range between 0.1 and 0.2. 

Compression index and swelling index 
These parameters can be obtained from an isotropic compression test including isotropic 
unloading. When plotting the natural logarithm of the mean stress as a function of the 
void ratio for clay-type materials, the plot can be approximated by two straight lines. 
The slope of the primary loading line gives the compression index and the slope of the 
unloading line gives the swelling index. These parameters can be obtained from a one-
dimensional compression test, as discussed in Section 8.3. 

Tangent of the critical state line 
In order to obtain the correct shear strength, the parameter M should be based on the 
friction angle ϕ. The critical state line is comparable with the Drucker-Prager failure 
line, and represents a (circular) cone in principle stress space. Hence, the value of M can 
be obtained from ϕ in a similar way as the Drucker-Prager friction constant α is 
obtained from ϕ. In addition to determining the shear strength, the parameter M has an 
important influence on the value of the coefficient of lateral earth pressure, K0

NC, in a 
state of normal consolidation. In general, when M is chosen such that the model predicts 
the correct shearing strength, the value of K0

NC is too high. 

Warning 
The modified Cam-Clay model may allow for extremely large shear stresses. This is 
particularly the case for stress paths that cross the critical state line. Moreover, the 
Modified Cam-Clay model may give softening behaviour for particular stress paths. 
Without special regularization techniques, softening behaviour may lead to mesh 
dependency and convergence problems of iterative procedures. The use of the Modified 
Cam-Clay model in practical applications is not recommended. 
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10 APPLICATIONS OF ADVANCED SOIL MODELS 

In this chapter, advanced soil models will be utilised in various applications in order to 
illustrate the particular features of these models. For applications on the standard Mohr-
Coulomb model, the reader is referred to the Tutorial Manual.  

10.1 HS MODEL: RESPONSE IN DRAINED AND UNDRAINED TRIAXIAL 
TESTS 

In this Section, the Hardening Soil model is utilised for the simulations of drained and 
undrained triaxial tests. Arbitrary sets of model parameters, Table 10.1, representing 
sands of different properties, are considered.  

Table 10.1  Arbitrary Hardening Soil parameters for sands of different densities 

Parameter Loose Medium Dense Unit 

E50
ref    (for  pref  = 100 kPa) 20000 30000 40000 kN/m2

Eur
ref    (for  pref  = 100 kPa) 60000 90000 120000 kN/m2

Eoed
ref  (for  pref  = 100 kPa) 20000 30000 40000 kN/m2

Cohesion  c 0.0 0.0 0.0 kN/m2

Friction angle  ϕ 30  35 40 ° 
Dilatance angle  ψ 0 5 10 ° 
Poisson's ratio  νur 0.2 0.2 0.2 - 
Power  m 0.5 0.5 0.5 - 
K0

nc   (using Cap) 0.5 0.43 0.36 - 
Tensile strength 0.0 0.0 0.0 kN/m2

Failure ratio 0.9 0.9 0.9 - 
 
A triaxial test can simply be modelled by means of an axisymmetric geometry of unit 
dimensions (1m x 1m), that represent a quarter of the soil specimen, Figure 10.1. These 
dimensions are not realistic, but they are selected for simplicity. The dimension of the 
model does not influence the results, provided that the soil weight is not taken into 
account. In this configuration the stresses and strains are uniformly distributed over the 
geometry. The deformation magnitudes in x- and y-direction of the top right hand corner 
correspond to the horizontal and vertical strains respectively.  

The left hand side and the bottom of the geometry are axes of symmetry. At these 
boundaries the displacements normal to the boundary are fixed and the tangential 
displacements are kept free to allow for 'smooth' movements. The remaining boundaries 
are fully free to move. 

As in Version 7 the value of the applied loads can be controlled by the load multipliers 
such as ΣMloadA and ΣMloadB. However, in Version 8, and as described in the 
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Reference manual, the load configurations and magnitudes can be specified in the Input 
program. Then in the calculation program these loads can be activated or deactivated by 
means of the Staged construction option. For this case, and to simulate the confining 
pressure p', distributed loads of -100 kN/m2 representing the principal stresses  σ'1 (load 
A) and σ'3 (load B) are applied in the Input program, as shown in Figure 10.1.  

A very course mesh is sufficient for this simple geometry. Initial stresses and steady 
pore pressures are not taken into account. 

 

Figure 10.1  Simplified configuration of a triaxial test 

In the Calculation program, the calculation of all phases can be done by means of the 
Staged construction process. In the first phase, the confinement pressure p' is applied by 
activating load A and B. In the second phase the displacements are reset to zero and the 
sample is vertically loaded up to failure while the horizontal load is kept constant. This 
implies modification of load A by double clicking the load in the geometry model. As a 
result a load window appears in which the input values of the load can be changed. 
(Details of the procedure can be found in the Reference and Tutorial manuals.) The 
latter phase is carried out for drained as well as undrained conditions. 

These calculations are performed for the three different sets of material parameters, 
Table 10.1. The computational results are presented in the figures on the following 
pages.  

Figure 10.2 shows the principal stress difference versus the axial strain for the drained 
condition. This shows a hyperbolic relationship between the stress and the strain, which 
is typical for the Hardening Soil model. Obviously, the failure level is higher when the 
sand is denser. The HS model does not include softening behaviour, so after reaching 
failure the stress level does not reduce, at least in the drained tests.  

10-2 PLAXIS Version 8 



APPLICATIONS OF ADVANCED SOIL MODELS 

 

0 0.01 0.02 0.03 0.04 0.05 0.06 
0

100

200

300

400

ε1

⏐σ1-σ3⏐ [kN/m2] 

dense 

medium 

loose 

 

Figure 10.2 Results of drained triaxial tests using the Hardening Soil model, Principal 
stress difference versus axial strain 
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Figure 10.3 Results of drained triaxial tests using the Hardening Soil model, Volumetric 
strain versus axial strain 

Figure 10.3 shows the axial strain versus the volumetric strain for the drained test. This 
graph clearly shows the influence of dilatancy in the denser sands. In contrast to the 
Mohr-Coulomb model, the transition from elastic behaviour to failure is much more 
gradual when using the Hardening Soil model. In fact, in the HS model, plastic strain 
occurs immediately after load application.  
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Figure 10.4 Results of undrained triaxial tests using the Hardening Soil model, Principal 

stress difference versus axial strain 
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Figure 10.5 Results of undrained triaxial tests using the Hardening Soil model, Excess 

pore pressure vs axial strain 
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In the undrained tests, Figure 10.4, the failure level is, in principle, lower than that of the 
drained tests. However, for the medium and dense sands the stress level continues to 
increase after reaching the failure level due to the fact that dilatancy occurs which 
causes reduction of excess pore pressures and thus increase of the effective stresses. 
This can be seen in Figure 10.5. 

 

Figure 10.6  Stress paths for drained and undrained triaxial tests using the HS model 

Figure 10.6 shows the effective stress paths, for the medium sand, during both the 
drained and undrained tests. During first phase (isotropic loading), both tests were 
drained. In the second phase there is a clear distinction between the two tests. In the 
undrained test the effective horizontal stress reduces while the vertical stress increases 
due to the development of excess pore pressures. The decrease in horizontal effective 
stress is more than when if the Mohr-Coulomb model would have been used. This is 
attributed to the plastic compaction (Cap hardening) that occurs in the HS model. 
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10.2 APPLICATION OF THE HARDENING SOIL MODEL ON REAL SOIL 
TESTS 

In this section the ability of the Hardening Soil model to simulate laboratory tests on 
sand is examined by comparing PLAXIS calculation results with those obtained from 
laboratory tests. Extensive laboratory tests were conducted on loose and dense Hostun 
sand. On the basis of these tests the model parameters for the Hardening Soil model 
were determined, Table 10.2. 

Table 10.2  Hardening Soil parameters for loose and dense Hostun sand 

Parameter Loose sand Dense sand Unit 

Volumetric weight  γ 17 17.5 kN/m3

E50
ref    (pref  = 100 kPa) 20000 37000 kN/m2

Eur
ref    (pref  = 100 kPa) 60000 90000 kN/m2

Eoed
ref  (pref  = 100 kPa) 16000 29600 kN/m2

Cohesion  c 0.0 0.0 kN/m2

Friction angle  ϕ 34 41 ° 
Dilatancy angle ψ 0 14 ° 
Poisson's ratio  νur 0.20 0.20 - 
Power   m 0.65 0.50 - 
K0

nc 0.44 0.34 - 
Tensile strength 0.0 0.0 kN/m2

Failure ratio 0.9 0.9 - 
 

Triaxial test 
Standard drained triaxial tests were performed on loose and dense sand specimens. In 
PLAXIS the procedure for the simulation of the triaxial tests has been described in 
Section 10.1. In the first phase the sample is isotropically compressed up to a confining 
pressure of p' = -300 kN/m2. In the second phase the sample is vertically loaded up to 
failure while the horizontal stress (confining pressure) is kept constant. The 
computational results and the measured data are presented in Figure 10.7, Figure 10.8 
and Figure 10.9.  

The figures show that the computational results match reasonably with the test data. It 
can be seen that the material response (measured and computed) show gradual transition 
from elastic to plastic behaviour. As such the relation between the deviatoric stress and 
the axial strain can be approximated by a hyperbola.  

The failure level is fully controlled by the friction angle (the cohesion is zero). The test 
results on dense sand show softening behaviour after the peak load has been reached. 
Modelling of the softening behaviour, however, is not incorporated in the Hardening 
Soil model, and thus, the deviatoric stress remains constant. It can also be seen from the 
test data that the dilatancy reduces during softening. However, in the Hardening Soil 
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model the dilatancy continues to infinity, unless the dilatancy cut-off option has been 
used. 
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Figure 10.7 Results of drained triaxial tests on loose Hostun sand, principal stress ratio 
versus axial strain 
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Figure 10.8 Results of drained triaxial tests on dense Hostun sand, principal stress ratio 
versus axial strain 
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Figure 10.9 Results of drained triaxial tests on dense Hostun sand, volumetric strain 
versus axial strain 

Oedometer test 
As for the triaxial test, a set of oedometer test on both loose and dense sands, Table 10.2, 
was conducted. In PLAXIS the oedometer test is simulated as an axisymmetric geometry 
with unit dimensions, Figure 10.10. A coarse mesh is sufficient for this case. 

 

 

Figure 10.10  Simplified configuration of an oedometer test 
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The computational results as compared with those obtained from the laboratory tests are 
shown in Figure 10.11 and Figure 10.12. 
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Figure 10.11 Results of oedometer test on loose Hostun sand, axial stress versus axial 
strain 
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Figure 10.12 Results of oedometer test on dense Hostun sand, axial stress versus axial 

strain 
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From a stress free state the loose sand sample is loaded consecutively to 25 kPa, 50 kPa, 
100 kPa and 200 kPa with intermediate unloading. The dense sand sample is loaded to 
50 kPa, 100 kPa, 200 kPa and 400 kPa with intermediate unloading.  

As it can be seen, the computational results show a reasonable agreement with the test 
data. No doubt, distinction should be made between loose and dense soil, but it seems 
that for a soil with a certain density the stiffness behaviour under different stress paths 
can be well captured with a single set of model parameters. (A small offset of 0.15% has 
been applied to the computational results of the loose sample in order to account for the 
relative soft response at the beginning of the test.)  

Pressiometer test 
In this Section the Pressiometer test is simulated and results from PLAXIS and laboratory 
experimentation are compared. Laboratory testing results on dense sand with material 
parameters listed in Table 10.2 are used.  

In the field, the pressiometer with 44 mm in diameter covered with a membrane with 
160 mm in height is attached to the Cone penetration shaft. In the laboratory, the 
pressiometer is attached to a 44 mm pipe and placed in a circular calibration chamber 
with a diameter of 1.2 m and a height of 0.75 m. A large overburden pressure of 500 kPa 
is applied at the surface to simulate the stress state at larger depths. In PLAXIS only half 
of the geometry is simulated by an axisymmetric model, Figure 10.13. The overburden 
pressure is simulated by load A, and the expansion of the pressiometer is simulated by 
imposing a horizontal distributed load, load B. Therefore the initial standard boundary 
conditions have to be changed near the pressiometer in order to allow for free horizontal 
displacements.  

 

Figure 10.13  Geometry model for pressiometer test 
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To allow for a discontinuity in horizontal displacements, a vertical interface along the 
shaft of the pressiometer borehole and a horizontal interface just above the pressiometer 
are introduced. Both interfaces are set rigid (Rinter = 1.0). Extra geometry lines are 
created around the pressiometer to locally generate a finer mesh. 

After the generation of initial stresses, the vertical overburden load (load A) is applied 
using the standard boundary fixities. From the calculations, the lateral stress around the 
pressiometer appears to be 180 kPa. Subsequently, the horizontal fixity near the 
pressiometer is removed, in the Input program, and replaced by Load B with a 
magnitude of 180 kPa. In the next calculation the pressure (load B) is further increased 
by use of Staged construction in an Updated Mesh analysis. The results of this 
calculation are presented in Figure 10.14 and Figure 10.15. 

 

Figure 10.14 Stress distribution in deformed geometry around the pressiometer at a 
pressure of 2350 kPa 

Figure 10.14 shows details of the deformations and the stress distribution when the 
pressure in the pressiometer was 2350 kPa. The high passive stresses appear very locally 
near the pressiometer. Just above the pressiometer the vertical stress is very low due to 
arching effects. Away from the pressiometer, a normal K0-like stress state exists. 

Figure 10.15 shows a comparison of the numerical results with those obtained from the 
laboratory test. In the figure the pressiometer pressure is presented as a function of the 
relative volume change. The latter quantity cannot directly be obtained from PLAXIS and 
was calculated from the original radius R0 and the lateral expansion ux of the 
pressiometer: 
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Up to a pressure of 1600 kPa the results match quite well. Above 1600 kPa there is a 
sudden decrease in stiffness in the real test data, which cannot be explained. 
Nevertheless, the original set of parameters for the dense sand that were derived from 
triaxial testing also seem to match the pressiometer data quite well. 
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Figure 10.15  Comparison of numerical results and pressiometer test data 

Conclusion 
The above results indicate that by use of the Hardening Soil model it is possible to 
simulate different laboratory tests with different stress paths. This cannot be obtained 
with simple models such as Mohr-Coulomb without changing input parameters. Hence, 
the parameters in the Hardening Soil model are consistent and more or less independent 
from the particular stress path. This makes the HS model a powerful and an accurate 
model, which can be used in many applications.  

10.3 APPLICATION OF THE HSSMALL MODEL ON REAL SOIL TESTS 

In this Section, the ability of the HSSmall model to simulate laboratory tests is 
examined. Both, the laboratory test data and the basic HS parameters are identical to 
those presented in the previous Section. The two additional small strain parameters used 
in the HSsmall model are quantified in Table 10.3.  

Table 10.3  Additional HSsmall parameters for loose and dense Hostun sand 

Parameter Loose sand Dense sand Unit 

G0
ref  (pref  = 100 kPa) 70000 112500 kN/m2

Shear strain γ0.7 0.0001 0.0002 - 
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Triaxial tests on loose and dense Hostun sand are presented in Figure 10.16 and Figure 
10.17 respectively. As a reference, the previously obtained results from the HS model 
are plotted as well. The overall stress-strain data obtained from both models seems 
almost identical. Only a closer look at the small-strain domain shows a clear difference: 
The HSsmall model follows a S-shaped stiffness reduction curve with much higher 
initial stiffness than the one of the HS model. Generally, both models match the test data 
at different confining pressures reasonably well.  

 

Figure 10.16 Excavation Drained triaxial tests on loose Hostun sand at confining 
pressures of 100, 300, and 600 kPa. Left: Stress-strain data. Right: Shear 
modulus reduction. 
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Figure 10.17 Drained triaxial tests on dense Hostun sand at confining pressures of 100, 
300, and 600 kPa. Left: Stress-strain data. Right: Shear modulus 
reduction. 

Figure 10.18 presents results from a cyclic triaxial test by Rivera & Bard on dense sand. 
The HSsmall simulation of the test shows material damping which could not be obtained 
when simulating the test with the HS model. As virgin loading is conducted in triaxial 
compression, the unloading sequence in triaxial extension gives some plasticity. 
Therefore the first unloading / reloading loop is not closed. 
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Figure 10.18 Hysteresis loop in a drained triaxial test on dense Hostun sand. Test data 
published in Biarez & Hicher [55]. 

10.4 SSC MODEL: UNDRAINED TRIAXIAL TESTS AT DIFFERENT 
LOADING RATES 

In this section the Soft Soil Creep model is utilised for the simulation of clay in an 
undrained triaxial test at different strain rates. The model parameters are obtained from 
test results on Haney Clay (see Chapter 6) and are listed in Table 10.4. 

Table 10.4  Soft Soil Creep model parameters for Haney clay 

Parameter Symbol Value Unit 

Modified compression index λ* 0.105 - 
Modified swelling index κ* 0.016 - 
Secondary compression index μ* 0.004 - 
Poisson's ratio νur 0.15 - 
Cohesion c 0.0 kN/m2

Friction angle ϕ 32 ° 
Dilatancy angle ψ 0.0 ° 
Coeffient of lateral stress K0

nc 0.61 - 
Permeability kx , ky 0.0001 m/day 

 
Modelling of the triaxial test is as described in Section 10.1. However, here, the real 
dimension of the test set-up is simulated (17.5 x 17.5 mm2), Figure 10.19. The specimen 
surfaces (top and right hand side in Figure 10.19) are assumed drained whereas the other 
boundaries are assumed closed.  
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In addition to isotropic loading, prescribed displacements are also applied. Both types of 
loading are simulated using the Staged construction option. During isotropic loading, 
horizontal and vertical loads (both System A) are applied. The calculation phases for 
isotropic loading consist of undrained plastic and consolidation analyses.  

After the isotropic loading phases, the displacements are reset to zero. The vertical load 
is deactivated and the prescribed displacement is activated. Rate of loading is simulated 
by applying prescribed displacements at different velocities. As such a total of 12% 
axial strain (2.1 mm) is applied in 8.865 days (0.00094%/minute), 0.0556 days 
(0.15%/minute) and 0.00758 days (1.10%/minute) respectively. Each of the prescribed 
displacement loading phase starts from the end of the isotropic loading phase. The 
calculation scheme is listed in Table 10.5. 

 

Figure 10.19 Modelling of triaxial test on Haney clay. Left, Initial configuration. Right, 
configuration for phase 9 - 11 

Table 10.5  Loading scheme for triaxial tests at different loading rates 

Phase Calculation  
Applied 
Load  
[kPa] 

Applied 
displacement  
[mm] 

Time 
increment 
[day] 

1 Plastic 65 Inactive 0.00 
2 Consolidation 65 Inactive 0.01 
3 Plastic 130 Inactive 0.00 
4 Consolidation 130 Inactive 0.01 
5 Plastic 260 Inactive 0.00 
6 Consolidation 260 Inactive 0.01 
7 Plastic 520 Inactive 0.00 
8 Consolidation 520 Inactive 0.01 
9 Plastic 520 0.0021 8.865 
10 (start from 8) Plastic 520 0.0021 0.0556 
11 (start from 8) Plastic 520 0.0021 0.00758 
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The computational results are presented in Figure 10.20 and Figure 10.21. Figure 10.20 
shows the stress-strain curves of the prescribed displacement loading phases. It can be 
seen that the shear strength highly depends on the strain rate; the higher strain rate the 
higher the shear strength.  

Figure 10.21 shows the p-q stress paths from the prescribed displacement loading 
phases. For higher strain rates there is a smaller reduction of the mean effective stress, 
which allows for a larger ultimate deviatoric stress. It should be noted that the stress 
state is not homogeneous at all, because of the inhomogeneous (excess) pore pressure 
distribution. This is due to the fact that points close to draining boundaries consolidate 
faster than points at a larger distance. 

 

Figure 10.20  Average deviatoric stress versus axial strain for different rates of straining 

 

Figure 10.21 p-q stress paths for different rates of straining for a point at position 
(0.01 , 0.01) 
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10.5 SSC MODEL: RESPONSE IN ONE-DIMENSIONAL COMPRESSION 
TEST 

In this section the behaviour of the Soft Soil Creep model is illustrated on the basis of a 
one-dimensional compression test on clay. Two types of analysis are performed. First, 
the test is simulated assuming drained conditions in order to demonstrate the logarithmic 
stress-strain relationship and the logarithmic time-settlement behaviour on the long term 
(secondary compression). Second, the test is simulated more realistically by including 
undrained conditions and consolidation. Since the consolidation process depends on the 
drainage length, it is important to use actual dimensions of the test set-up. In this case an 
axisymmetric configuration with specimen height of 0.01 m, Figure 10.22, is used. The 
material parameters are shown in Table 10.6. The parameter values are selected 
arbitrarily, but they are realistic for normally consolidated clay. The vertical 
preconsolidation stress is fixed at 50 kPa (POP = 50 kPa). 

 

Figure 10.22  One-dimensional compression test 

Table 10.6  Soft-Soil-Creep model parameters for one-dimensional compression test 

Parameter Symbol Value Unit 

Unit weight γ 19 kN/m3

Permeability kx, ky 0.0001 m/day 
Modified compression index λ* 0.10 - 
Modified swelling index κ* 0.02 - 
Secondary compression index μ* 0.005 - 
Poisson's ratio νur 0.15 - 

kN/m2Cohesion  c 1.0 
Friction angle ϕ 30 ° 
Dilatancy angle ψ 0.0 ° 
Coeffient of lateral stress K0

nc 0.5 - 
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Drained analysis 
In the first analysis successive plastic loading steps are applied using drained conditions. 
The load is doubled in every step using Staged construction with time increments of 1 
day. After the last loading step an additional creep period of 100 days is applied. The 
calculation scheme is listed in Table 10.7. All calculations are performed with a 
tolerance of 1%. 

Table 10.7  Calculation scheme for the drained case 

Phase Calculation 
type 

Load input: 
Staged construction 
[kPa]  

Time 
increment 
[day] 

End time 
[day] 

1 Plastic 10 1 1 
2 Plastic 20 1 2 
3 Plastic 40 1 3 
4 Plastic 80 1 4 
5 Plastic 160 1 5 
6 Plastic 320 1 6 
7 Plastic 640 1 7 
8 Plastic 640 100 107 

 

Undrained analysis 
In the second analysis the loading steps are instantaneously applied using undrained 
conditions. After each loading step a consolidation of 1 day is applied to let the excess 
pore pressures fully dissipate. After the last loading step, an additional creep period of 
100 days is again introduced. The calculation scheme for this analysis is listed in Table 
10.8. All calculations are performed with a reduced tolerance of 1%. 

Figure 10.23 shows the load-settlement curves of both analyses. It can be seen that, after 
consolidation, the results of the undrained test match those of the drained test. The 
influence of the preconsolidation stress can clearly be seen, although the transition 
between reloading and primary loading is not as sharp as when using the Soft Soil 
model. In fact, the results presented here are more realistic. The transition is indeed 
around 50 kPa. 

From the slope of the primary loading line one can back-calculate the modified 
compression index λ* = Δε1 / ln((σ1 + Δσ1)/σ1) ≈ 0.10. Note that 1 mm settlement 
corresponds to ε1 = 10%. For an axial strain of 30% one would normally use an Updated 
Mesh analysis, which has not been done in this simple analysis. If, however, the Soft 
Soil Creep model would have been used in an Updated Mesh analysis with axial strains 
over 15% one would observe a stiffening effect as indicated by line C in Figure 10.23. 

Figure 10.24 shows the time-settlement curves of the drained and the undrained 
analyses. From the last part of the curve one can back-calculate the secondary 
compression index μ* = Δε1 / ln(Δt/t0) ≈ 0.005  (with t0 = 1 day).  
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Table 10.8  Calculation scheme for second analysis 

Phase Calculation type 
Loading input: 
Staged construction 
[kPa] 

Time 
increment 
[day]  

End time 
[day] 

1 Plastic 10 0 0 
2 Consolidation 10 1 1 
3 Plastic 20 0 1 
4 Consolidation 20 1 2 
5 Plastic 40 0 2 
6 Consolidation 40 1 3 
7 Plastic 80 0 3 
8 Consolidation 80 1 4 
9 Plastic 160 0 4 
10 Consolidation 160 1 5 
11 Plastic 320 0 5 
12 Consolidation 320 1 6 
13 Plastic 640 0 6 
14 Consolidation 640 1 7 
15 Consolidation 640 100 107 

 

 

Figure 10.23 Load-settlement curve of oedometer test with Soft Soil Creep model. A) 
Transient loading with doubling of loading within one day. B) 
Instantaneous loading with doubling of load at the beginning of a new 
day. C) As 'A' using Updated Mesh calculation 
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Figure 10.24 Time-settlement curve of oedometer test with Soft Soil Creep model. A) 
Transient loading with doubling of loading within one day. B) 
Instantaneous loading with doubling of load at the beginning of a new day 

Another interesting phenomenon is the development of lateral stresses. During primary 
loading, the lateral stress is determined by K0

NC, appropriate for normally consolidated 
soil. During unloading, the lateral stress decreases much less than the vertical stress, so 
that the ratio σ′xx / σ′yy increases.  
To show these effects the calculation is continued after with a new drained unloading 
phase that starts from phase 7 (see Table 10.7) in which the vertical stress is reduced to -
80 kPa.  

 

Figure 10.25 Stress states at a vertical stress level of -80 kPa. Left, after primary 
loading σxx

’ ≈ -40 kPa. Right, after unloading from -640 kPa σxx
’ ≈ -220 

kPa 

Figure 10.25 shows the stress state for two different calculation phases, both at a vertical 
stress level of 80 kPa. The plot in the left hand side shows the stress state after primary 
loading. As expected the horizontal stress is found to be approximately -40 kPa 
(corresponding to K0

NC = 0.5). The plot in the right hand side shows the final situation 
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after unloading down to -80 kPa. In this case the horizontal stress is decreased from -320 
kPa to approximately -220 kPa, (Δσ′xx = 100 kPa), i.e, much less than the decrease of the 
vertical stress (Δσ′yy = 560 kPa). Thus, a situation where σ′xx is larger than σ′yy is 
obtained.  

During sudden unloading in a one-dimensional compression test, the behaviour is purely 
elastic. Hence, the ratio of the horizontal and vertical stress increments can be 
determined as: 

ν
ν

σ
σ

ur

ur

yy

xx

  -  1
 = 

’ 
’ 

Δ
Δ

           (10.2) 

It is easy to verify that the results correspond to Poisson's ratio νur = 0.15 as listed in 
Table 10.3. 

10.6 SS MODEL:  RESPONSE IN ISOTROPIC COMPRESSION TEST 

In this Section it will be demonstrated that the Soft Soil model obeys a logarithmic 
relationship between the volumetric strain and the mean stress in isotropic compression. 
For this purpose the test set up is simulated as that presented in Figure 10.1. The vertical 
load (A) and the horizontal load (B) are simultaneously applied to the same level so that 
a fully isotropic stress state occurs. The parameters of the Soft-Soil model are chosen 
arbitrarily, but the values are realistic for normally consolidated clay. The parameters 
are presented in Table 10.9. 

Table 10.9  SS Model parameters for isotropic compression test 
Modified compression index λ* 0.10 
Modified swelling index κ* 0.02 
Poisson's ratio νur 0.15 
Friction angle ϕ 30° 
Cohesion c 1.0 kPa 
Normally consolidated K0 K0

NC 0.5 
 
From a stress-free state, the model is isotropically loaded to a mean stress of p′ = 100 
kPa, after which the displacements are reset to zero. As a result, the material becomes 
'normally consolidated', i.e., the preconsolidation stress is equivalent to the current state-
of-stress. After that, the isotropic pressure is increased to p′ = 1000 kPa. This loading 
path is denoted as 'primary loading'. Then, the sample is isotropically 'unloaded' to p′ = 
100 kPa. Finally, the sample is loaded up to p′ = 10000 kPa. In the last loading path, the 
maximum preload of 1000 kPa is exceeded. and hence, it consists of two parts: the part 
of the loading path for which p′ < 1000 kPa is referred to as 'reloading', and the part of 
the loading path for p′ > 1000 kPa consists of further primary loading. The calculation 
phases are indicated in Table 10.10. 
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Table 10.10  Calculation phases for isotropic compression test on clay 

Stage  Initial stress Final stress 

 p0 = 100 kPa 0 Initial situation  

1 Primary loading p0 = 100 kPa p1 = 1000 kPa 

2 Unloading p1 = 1000 kPa p2 = 100 kPa 

3 Reloading p2 = 100 kPa p3 = 1000 kPa 

4 Primary loading p3 = 1000 kPa p4 = 10000 kPa 

 
The computational results are presented in Figure 10.26, which shows the relation 
between the vertical strain εyy and the vertical stress σ′yy.  
The latter quantity is plotted on a logarithmic scale. The plot shows two straight lines, 
which indicates that there is indeed a logarithmic relation for loading and unloading. 
The vertical strain is 1/3 of the volumetric strain, εv, and the vertical stress is equal to the 
mean stress, p′. The volumetric strains obtained from the calculation are given in Table 
10.11. 

Table 10.11  Volumetric strains from various calculation phases 

Phase Initial strain Final strain 

εv
0 = 0.000 0  

1 εv
0 = 0.000 εv

1 = - 0.235 

2 εv
1 = - 0.235 εv

2 = - 0.188 

3 εv
2 = - 0.188 εv

3 = - 0.235 

4 εv
3 = - 0.235 εv

4 = - 0.471 
 

 

Figure 10.26  Results of isotropic compression test 
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From these strains and corresponding stresses, the parameters λ* and κ* can be back-
calculated using Eqs. (7.1) and (7.2). 

Phase 1 ( ) ( ) 102.0
100/1000ln

235.0
/ln 01

01
=

−
−=  = 

pp
vv* εελ  

Phase 2 ( ) ( ) 020.0
1000/100ln

235.0188.0
/ln 12

12
=

−
=

−
−=

pp
vv* εεκ  

Phase 3 ( ) ( ) 020.0
100/1000ln
188.0235.0

/ln 23

23
=

−
=

−
−=

pp
vv* εεκ  

Phase 4 ( ) ( ) 102.0
1000/10000ln
235.0471.0

/ln 34

34
=

−
=

−
−=

pp
vv* εελ  

The back-calculated values correspond to the input values as given in Table 10.9.  

Note that the Soft Soil model does not include time effects such as in the secondary 
compression. Such behaviour is included in the Soft Soil Creep model. An example of 
an application with this model is described in Section 10.9. 

10.7 SUBMERGED CONSTRUCTION OF AN EXCAVATION WITH HS 
MODEL 

In this example a particular advantage of the Hardening Soil model is demonstrated, 
namely the distinction between loading and unloading stiffness. This feature becomes 
particularly important in quasi unloading problems like excavations and tunnels.  

 

Figure 10.27  Geometry model of submerged excavation 
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In the submerged excavation example, presented in the Tutorial Manual, the heave at the 
bottom of the excavation is unrealistically large. In order to show that the results can be 
improved by using the Hardening Soil model, a similar example is used here again.  

The geometry model is similar to the one used in Lesson 2, Figure 10.27 but slightly 
simplified. The two soil layers are modelled here with the Hardening Soil model instead 
of the Mohr-Coulomb model. The model parameters are listed in Table 10.12. 

Table 10.12  HS model parameters for the two layers in the excavation project 
 
Parameter 

 
Clay layer 

 
Sand layer 

 
Unit  

Unit weight above/below 
phreatic level 

 
16 / 18 

 
17 / 20 

 
kN/m3

E50
ref    (pref  = 100 kPa) 8000 30000 kN/m2

Eur
ref    (pref  = 100 kPa) 24000 90000 kN/m2

Eoed
ref  (pref  = 100 kPa) 4000 30000 kN/m2

Cohesion c 5.0 1.0 kN/m2

Friction angle ϕ 25 32 ° 
Dilatancy angleψ 0 2 ° 
Poisson's ratio νur 0.2 0.2 - 
Power m 0.8 0.5 - 
K0

nc 0.5 0.47 - 
kN/m2Tensile strength 0.0 0.0 

Failure ratio 0.9 0.9 - 
 
After the generation of the initial pore pressures and effective stresses, the excavation is 
executed in two phases. The results of the excavation are shown in Figure 10.28. 

 

Figure 10.28  Deformed mesh after excavation 
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The deformed mesh clearly shows that there is a limited heave at the bottom of the 
excavation. Most of the deformation is caused by the horizontal movement of the 
diaphragm wall, which pushes the soil up. The vertical heave at the bottom further away 
from the wall is very low as compared to the results presented in the Tutorial Manual.  

The difference can be explained by the fact that, in contrast to the Mohr-Coulomb 
model, the Hardening Soil model distinguishes between loading and unloading stiffness. 
The unloading stiffness is set here as three times higher than the loading stiffness, which 
is the default setting in PLAXIS. 

10.8 HS AND HSSMALL: EXCAVATION IN BERLIN SAND 

In the previous example, the advantage of the Hardening Soil model’s distinct loading 
and unloading stiffness was highlighted. With those, the calculated excavation heave 
could be reduced to a more realistic, but in most cases still too high value. In the Berlin 
excavation example, now the further advantage of considering small-strain stiffness in 
the analysis is demonstrated. 

The working group 1.6 Numerical methods in Geotechnics of the German Geotechnical 
Society (DGGT) has organized several comparative finite element studies (benchmarks). 
One of these benchmark examples is the installation of a triple anchored deep 
excavation wall in Berlin sand. The reference solution by Schweiger [56] is used here as 
the starting point for the next validation example: Both, the mesh shown in Figure 
10.29, and the soil parameters given in Table 10.13 are taken from this reference 
solution. However, the bottom soil layer 3 defined by Schweiger is assigned the 
parameters of layer 2 in the HSsmall analysis. In the reference solution this layer’s only 
purpose is the simulation of small-strain stiffness due to a lack of small-strain stiffness 
constitutive models back then. 

 

Figure 10.29 Excavation in Berlin sand: plane strain mesh (left) and geometry detail 
(right). 
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Table 10.13  HS and HSsmall model parameters for the three sand layers in the 
excavation project 
 
Parameter 

 
Layer 1 

 
Layer 2 

 
Layer 3 

 
Unit  

Unit weight above/below 
phreatic level 

 
19 / 20 

 
19 / 20 

 
19 / 20 

 
kN/m3

E50
ref    (pref  = 100 kPa) 45000 75000 105000 kN/m2

Eur
ref    (pref  = 100 kPa) 45000 75000 105000 kN/m2

Eoed
ref  (pref  = 100 kPa) 180000 300000 315000 kN/m2

G0
ref  (pref  = 100 kPa) 168750 281250 NA kN/m2

Shear strain γ0.7 0.0002 0.0002 NA - 
Cohesion c 1.0 1.0 1.0 kN/m2

Friction angle ϕ 35 38 38 ° 
Dilatancy angleψ 5.0 6.0 6.0 ° 
Poisson's ratio νur 0.2 0.2 0.2 - 
Power m 0.55 0.55 0.55 - 
K0

nc 0.43 0.38 0.38 - 
Tensile strength 0.0 0.0 0.0 kN/m2

Failure ratio 0.9 0.9 0.9 - 
 

 

Figure 10.30 HS and HS-Small model predictions versus measured displacements after 
the final excavation step. Left: Surface settlement trough. Right: Lateral 
wall deflection. 

Figure 10.30 shows results from the finite element calculation using the original HS and 
the HSsmall model. The small-strain stiffness formulation in the HSsmall model 
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accumulates more settlements right next to the wall, whereas the settlement trough is 
smaller. The triple anchored retaining wall is deflected less when using the HSsmall 
model, almost fitting the measured deflection. Calculated excavation heave at the end of 
excavation is shown in Figure 10.31. Compared to the HS results, the heave which is 
due to elastic unloading, is roughly halved when using the HSsmall model. 

 

Figure 10.31 Vertical displacements in the excavation pit at a distance of 10 m from the 
retaining wall (Section A-A). 

10.9 ROAD EMBANKMENT CONSTRUCTION WITH THE SSC MODEL 

This example demonstrates some of the features of the Soft Soil Creep model in 
simulating soils for engineering problems. One of these features is the reduction of the 
mean effective stress during undrained loading due to compaction of the soil. This 
feature becomes particularly important in embankment construction projects, since it 
highly influences the stability of the embankment during construction. For example, in 
the first part of Lesson 5 of the Tutorial Manual (construction of a road embankment) 
the safety factor was relatively low during construction.  

When using the Soft Soil Creep model for the clay layer with effective strength 
properties similar to those of the Mohr-Coulomb model, the safety factor will become 
even lower. To illustrate these effects, the embankment in Lesson 5, Figure 10.32, is 
reanalysed here. 

In this section a similar geometry model as that of Lesson 5 is used, however, the clay 
layer is simulated by means of the Soft Soil Creep model. The model parameters for this 
layer are listed in Table 10.14. The peat layer and the sand embankment are simulated 
by means of Mohr-Coulomb using the same parameters as given in Lesson 5 of the 
Tutorial Manual. 
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BA 

Figure 10.32  Geometry model of road embankment project 

Table 10.14  Soft Soil Creep model parameters for undrained clay layer 

Parameter Clay layer Unit 
 
Unit soil weight above phreatic level γunsat

 
15 

 
kN/m3

Unit soil weight below phreatic level γsat 18 kN/m3

Horizontal permeability  kx 1 ·10-4 m/day 
Vertical permeability  ky 1 ·10-4 m/day 
Modified compression index  λ* 0.035 - 
Modified swelling index  κ* 0.007 - 
Secondary compression index  μ* 0.002 - 
Poisson's ratio  νur 0.15 - 
Cohesion  c 2 kN/m2

Friction angle  ϕ 24 ° 
Dilatancy angle  ψ 0 ° 
Coeffient of lateral stress  K0

NC  0.59 - 
OCR 1.4 - 

 
The calculation phases are shown in Table 10.15. The first three phases are conducted 
using Staged construction. The fourth phase is conducted using the Minimum pore 
pressure loading input and the Safety analysis phase is conducted using the Incremental 
multipliers loading input. 

It is worth mentioning here that if a Safety factor analysis is required, the Updated mesh 
option should not be used. This is attributed to the fact that with this option the phi-c 
reduction analysis will produce an infinite safety. Please note that if for some reason a 
normal calculation phase (such as Staged construction or phi-c reduction) is needed 
after an Updated mesh phase, the displacement must be reset to zero. 
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Table 10.15  Overview of calculation phases 

Phase Start 
from Type Loading input: Time 

interval 

1 0 Consolidation,  
Staged construction 1st embankment part 5 day 

2 1 Consolidation, 
Staged construction 

Desired maximum 50, 
First time incr. = 1 day 200 days 

3 2 Consolidation, 
Staged construction 2nd embankment part 5 days 

4 3 
Consolidation, 
Minimum pore pressure 

Desired maximum 30, 
First time incr. = 1 day  

5 1 Safety analysis Msf = 0.1  
 
Figure 10.33 shows the results of the Safety factor analysis after the construction of the 
first layer of the embankment (after 5 days). Also, the figure shows the results of the 
Safety factor analysis when using the Mohr-Coulomb model (see the Tutorial Manual). 
It can be seen that the safety factor produced by the Soft Soil Creep model is 1.01, while 
by the Mohr-Coulomb model is 1.11. This difference is due to the reduction of the mean 
effective stress as a result of the accumulation of the irreversible compaction (volume 
creep strain) in the SSC model. Apparently due to this low safety factor, the calculation 
of the other phases is not possible because the structure has already reached to its failure 
state.  
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Figure 10.33  Safety factor analysis using MC model and SSC model.  

In order to study the influence of the SSC model on the response of the embankment, an 
updated mesh analysis is conducted. The results are compared with those obtained by 
using Mohr-Coulomb model. Figure 10.34 shows the vertical displacements at point A 
and Figure 10.35 shows the horizontal displacements at point B, (see Figure 10.32). It 
can be seen that the SSC model exhibits little differences in the vertical displacement 
but much larger differences in the horizontal displacement. The later can be attributed to 
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the fact that the material here is close to failure due to the creep effect. Figure 10.36 
shows the tendency towards failure after the construction of the second layer. 
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Figure 10.34  SSC model vs. MC model - vertical displacements at A 
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Figure 10.35  SSC model vs. MC model -  horizontal displacements at B. 
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Figure 10.36 Tendency towards failure mechanism after the construction of second part 
of the embankment 

Conclusion 
The reduction of mean effective stress during undrained loading is a known 
phenomenon in soil engineering. This phenomenon has a negative influence on the 
strength and stability of the soil structure. When using simple soil models, like the 
Mohr-Coulomb model, this effect is not taken into account and leads to an over 
prediction of the stability when using effective strength properties. In such cases it is 
better to use undrained strength properties in the Mohr-Coulomb model (c = cu and 
ϕ = 0). 
The Soft Soil Creep model does include the effect of reducing mean effective stress 
during undrained loading. This model gives a more realistic prediction of soft-soil 
behaviour, including time-dependent behaviour (secondary compression and 
consolidation). The disadvantage of this model, however, stems from the fact that no 
undrained strength properties can be specified (only c' and ϕ') and that the numerical 
procedure becomes more complicated (less robust) when soil failure is approached. 
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11 USER-DEFINED SOIL MODELS 

11.1 INTRODUCTION 

PLAXIS Version 8 has a facility for user-defined (UD) soil models. This facility allows 
users to implement a wide range of constitutive soil models (stress-strain-time 
relationship) in PLAXIS. Such models must be programmed in FORTRAN (or another 
programming language), then compiled as a Dynamic Link Library (DLL) and then 
added to the PLAXIS program directory.  

In principle the user provides information about the current stresses and state variables 
and PLAXIS provides information about the previous ones and also the strain and time 
increments. In the material data base of the PLAXIS input program, the required model 
parameters can be entered in the material data sets.  

tttt

ij

Δ+Δ+

κσ ,  current stresses and state variables 
t

ij

t κσ ,  previous stresses and state variables 

tij ΔΔ ,ε  strain and time increments 

As an example, a UD subroutine based on the Drucker-Prager material model is 
provided in the user-defined soil models directory, which is included in the program 
CD. In this section, a step-by-step description on how a user-defined soil model can be 
formed and utilised in PLAXIS is presented. 

 
Hint: Please note that the PLAXIS organization cannot be held responsible for any 

malfunctioning or wrong results due to the implementation and/or use of user-
defined soil models. 

 

11.2 IMPLEMENTATION OF UD MODELS IN CALCULATIONS 
PROGRAM 

The PLAXIS calculations program has been designed to allow for user-defined soil 
models. There are mainly four tasks (functionalities) to be performed in the calculations 
program: 

• Initialisation of state variables  

• Calculation of constitutive stresses (stresses computed from the material model at 
certain step) 

• Creation of effective material stiffness matrix 

• Creation of elastic material stiffness matrix 

11-1 



MATERIAL MODELS MANUAL 

11-2 PLAXIS Version 8 

These main tasks (and other tasks) have to be defined by the user in a subroutine called 
'User_Mod'. In this subroutine more than one UD soil model can be defined. If a UD 
soil model is used in an application, the calculation program calls the corresponding task 
from the subroutine User_Mod. To create a UD soil model, the User_Mod subroutine 
must have the following structure: 

Subroutine User_Mod (IDTask, iMod, IsUndr, iStep, iTer, Iel, 
Int, X, Y, Z, Time0, dTime, Props, Sig0, 
Swp0, StVar0, dEps, D, Bulk_W, Sig, Swp, 
StVar, ipl, nStat, NonSym, iStrsDep, 
iTimeDep, iTang, iPrjDir, iPrjLen, 
iAbort) 

where: 

IDTask   = Identification of the task (1 = Initialise state variables; 2 = 
Calculate constitutive stresses; 3 = Create effective material 
stiffness matrix; 4 = Return the number of state variables; 5 = 
Return matrix attributes (NonSym, iStrsDep, iTimeDep); 6 = 
Create elastic material stiffness matrix) 

iMod     = User-defined soil model number (This option allows for more 
than one UD model.) 

IsUndr   = Drained condition (IsUndr = 0) or undrained condition 
(IsUndr = 1) 

iStep    =  Current calculation step number 

iter     =  Current iteration number 

Iel      =  Current element number 

Int      = Current local stress point number (1..3 for 6-noded elements, 
or 1..12 for 15-noded elements) 

X,Y,Z    =  Global coordinates of current stress point 

Time0    =  Time at the start of the current step 

dTime    =  Time increment of current step 

Props    = Array(1..50) with User-defined model parameters for the 
current stress point 

Sig0     = Array(1..6) with previous (= at the start of the current step) 
effective stress components of the current stress point (σ'xx

0, 
σ'yy

0, σ'zz
0, σ'xy

0, σ'yz
0, σ'zx

0). 

In 2D calculations σyz and σzx should be zero. 

Swp0     =  Previous excess pore pressure of the current stress point 

StVar0   = Array(1..nStat) with previous values of state variables of the 
current stress point 
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dEps     = Array(1..6) with strain increments of the current stress point 
in the current step (Δεxx, Δεyy, Δεzz, Δγxy, Δγyz, Δγzx) 

D        = Effective material stiffness matrix of the current stress point 
(1..6, 1..6) 

Bulk_W   = Bulk modulus of water for the current stress point (for 
undrained calculations and consolidation) 

Sig      = Array (1..6) with resulting constitutive stresses of the current 
stress point (σ'xx, σ'yy, σ'zz, σ'xy, σ'yz, σ'zx) 

Swp      =  Resulting excess pore pressure of the current stress point 

StVar    = Array(1..nStat) with resulting values of state variables for the 
current stress point 

ipl      = Plasticity indicator:  
0 = no plasticity,  

1 = Mohr-Coulomb (failure) point;  

2 = Tension cut-off point, 

3 = Cap hardening point, 

4 = Cap friction point,  

5 = Friction hardening point. 

nStat    =  Number of state variables (unlimited) 

NonSym   = Parameter indicating whether the material stiffness matrix is 
non-symmetric (NonSym = 1) or not (NonSym = 0) (required 
for matrix storage and solution). 

iStrsDep = Parameter indicating whether the material stiffness matrix is 
stress-dependent (iStrsDep = 1) or not (iStrsDep = 0).  

iTimeDep = Parameter indicating whether the material stiffness matrix is 
time-dependent (iTimeDep = 1) or not (iTimeDep = 0).  

iTang    =  Parameter indicating whether the material stiffness matrix is 
a tangent stiffness matrix, to be used in a full Newton-
Raphson iteration process (iTang = 1) or not (iTang = 0). 

iPrjDir  =  Project directory (for debugging purposes) 

iPrjLen  =  Length of project directory name (for debugging purposes) 

iAbort   =  Parameter forcing the calculation to stop (iAbort = 1). 

In the above, 'increment' means 'the total contribution within the current step' and not per 
iteration. 'Previous' means 'at the start of the current step', which is equal to the value at 
the end of the previous step.  
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In the terminology of the above parameters it is assumed that the standard type of 
parameters is used, i.e. parameters beginning with the characters A-H and O-Z are 
double (8-byte) floating point values and the remaining parameters are 4-byte integer 
values. 

The parameters IDTask to dEps and iPrjDir and iPrjLen are input parameters; The 
values of these parameters are provided by PLAXIS and can be used within the 
subroutine. These input parameters should not be modified (except for StVar0 in case 
IDTask = 1). The parameters D to iTang and iAbort are output parameters. The 
values of these parameters are to be determined by the user. In case IDTask = 1, 
StVar0 becomes output parameter. 

The user subroutine should contain program code for listing the tasks and output 
parameters (IDTask = 1 to 6). After the declaration of variables, the User_Mod 
subroutine must have the following structure (here specified in pseudo code): 

Case IDTask of 

  1  Begin 

       { Initialise state variables StVar0 } 

     End 

  2  Begin 

       { Calculate constitutive stresses Sig (and Swp) } 

     End 

  3  Begin 

       { Create effective material stiffness matrix D } 

     End 

  4  Begin 

       { Return the number of state variables nStat } 

     End 

  5  Begin 

       { Return matrix attributes NonSym, iStrsDep, 

    iTimeDep} 

     End 

  6  Begin 

       { Create elastic material stiffness matrix De } 

     End 

End Case 

If more than one UD model is considered, distinction should be made between different 
models, indicated by the UD model number iMod. 

Initialise state variables (IDTask = 1) 
State variables (also called the hardening parameters) are, for example, used in 
hardening models to indicate the current position of the yield loci. The update of state 
variables is considered in the calculation of constitutive stresses based on the previous 
value of the state variables and the new stress state. Hence, it is necessary to know about 
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the initial value of the state variables, i.e. the value at the beginning of the calculation 
step. Within a continuous calculation phase, state variables are automatically transferred 
from one calculation step to another. The resulting value of the state variable in the 
previous step, StVar, is stored in the output files and automatically used as the initial 
value in the current step, StVar0. When starting a new calculation phase, the initial value 
of the state variables is read from the output file of the previous calculation step and put 
in the StVar0 array. In this case it is not necessary to modify the StVar0 array.  

However, if the previous calculation step does not contain information on the state 
variables (for example in the very first calculation step), the StVar0 array would contain 
zeros. For this case the initial value has to be calculated based on the actual conditions 
(actual stress state) at the beginning of the step. Consider, for example, the situation 
where the first state variable is the minimum mean effective stress, p' (considering that 
compression is negative). If the initial stresses have been generated using the K0-
procedure, then the initial effective stresses are non-zero, but the initial value of the state 
variable is zero, because the initialization of this user-defined variable is not considered 
in the K0-procedure. In this case, part 1 of the user subroutine may look like: 

1  Begin 

     { Initialise state variables StVar0} 

 p = (Sig0[1] + Sig0[2] + Sig0[3]) / 3.0 

 StVar0[1] = Min(StVar0[1],p) 

   End 

Calculate constitutive stresses (IDTask = 2) 
This task constitutes the main part of the user subroutine in which the stress integration 
and correction are performed according to the user-defined soil model formulation. Let 
us consider a simple example using a linear elastic D-matrix as created under 
IDTask = 3.  

In this case the stress components, Sig, can directly be calculated from the initial 
stresses, Sig0, the material stiffness matrix, D, and the strain increments, dEps:   
Sig[i] = Sig0[i] + ∑(D[i, j]*dEps[j]). In this case, part 2 of the user subroutine may look 
like: 
2  Begin 

{ Calculate constitutive stresses Sig (and Swp) } 

For i=1 to 6 do 

  Sig[i] = Sig0[i] 

  For j=1 to 6 do 

    Sig[i] = Sig[i] + D[i,j]*dEps[j] 

  End for {j} 

End for   {i} 

   End 
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Create effective material stiffness matrix (IDTask = 3) 
The material stiffness matrix, D, may be a matrix containing only the elastic components 
of the stress-strain relationship (as it is the case for the existing soil models in PLAXIS), 
or the full elastoplastic material stiffness matrix (tangent stiffness matrix). Let us 
consider the very simple example of Hooke's law of isotropic linear elasticity. There are 
only two model parameters involved: Young's modulus, E, and Poisson's ratio, ν. These 
parameters are stored, respectively, in position 1 and 2 of the model parameters array, 
Props(1..50). In this case, part 3 of the user subroutine may look like: 

3  Begin 

{ Create effective material stiffness matrix D } 

E      = Props[1] 

v      = Props[2] 

G      = 0.5*E/(1.0+v) 

Fac    = 2*G/(1.0-2*v) { make sure that v < 0.5 !! } 

Term1  = Fac*(1-v) 

Term2  = Fac*v 

D[1,1] = Term1 

D[1,2] = Term2 

D[1,3] = Term2 

D[2,1] = Term2 

D[2,2] = Term1 

D[2,3] = Term2 

D[3,1] = Term2 

D[3,2] = Term2 

D[3,3] = Term1 

D[4,4] = G 

D[5,5] = G 

D[6,6] = G 

   End 

(By default, D will be initialized to zero, so the remaining terms are still zero; however, 
it is a good habit to explicitly define zero terms as well.) 

If undrained behaviour is considered (IsUndr = 1), then a bulk stiffness for water 
(Bulk_W) must be specified at the end of part 3. After calling the user subroutine with 
IDTask = 3 and IsUndr = 1, PLAXIS will automatically add the stiffness of the water to 
the material stiffness matrix D such that: D[i=1..3, j=1..3] = D[i, j]+ Bulk_W. If 
Bulk_W is not specified, PLAXIS will give it a default value of 100*Avg(D[i=1..3, 
j=1..3]). 

Return the number of state variables (IDTask = 4) 
This part of the user subroutine returns the parameter nStat, i.e. the number of state 
variables. In the case of just a single state parameter, the user subroutine should look 
like: 
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4  Begin 

{ Return the number of state variables nStat } 

nStat = 1 

   End 

Return matrix attributes (IDTask = 5) 
The material stiffness matrix may be stress-dependent (such as in the Hardening Soil 
model) or time-dependent (such as in the Soft Soil Creep model). When using a tangent 
stiffness matrix, the matrix may even be non-symmetric, for example in the case of non-
associated plasticity. The last part of the user subroutine is used to initialize the matrix 
attributes in order to update and store the global stiffness matrix properly during the 
calculation process. For the simple example of Hooke’s law, as described earlier, the 
matrix is symmetric and neither stress- nor time-dependent. In this case the user 
subroutine may be written as: 
5  Begin 

{ Return matrix attributes NonSym, iStrsDep, } 

{  iTimeDep, iTang                           } 

NonSym   = 0 

iStrsDep = 0 

iTimeDep = 0 

iTang    = 0 

   End 

For NonSym = 0 only half of the global stiffness matrix is stored using a profile 
structure, whereas for Nonsym = 1 the full matrix profile is stored. 

For iStrsDep = 1 the global stiffness matrix is created and decomposed at the beginning 
of each calculation step based on the actual stress state (modified Newton-Raphson 
procedure). 

For iTimeDep = 1 the global stiffness matrix is created and decomposed every time 
when the time step changes. 

For iTang = 1 the global stiffness matrix is created and decomposed at the beginning of 
each iteration based on the actual stress state (full Newton-Raphson procedure; to be 
used in combination with iStrsDep=1). 

Create elastic material stiffness matrix (IDTask = 6) 
The elastic material stiffness matrix, De, is the elastic part of the effective material 
stiffness matrix as described earlier. 

In the case that the effective material stiffness matrix was taken to be the elastic stiffness 
matrix, this matrix may just be adopted here. However in the case that an elastoplastic or 
tangent matrix was used for the effective stiffness matrix, then the matrix to be created 
here should only contain the elastic components.  
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The reason that an elastic material stiffness matrix is required is because PLAXIS 
calculates the current relative global stiffness of the finite element model as a whole 
(CSP = Current Stiffness Parameter). The CSP parameter is defined as: 

workTotal
workelasticTotal

 = CSP  

The elastic material stiffness matrix is required to calculate the total elastic work in the 
definition of the CSP. The CSP equals unity if all the material is elastic whereas it 
gradually reduces to zero when failure is approached. 

The CSP parameter is used in the calculation of the global error. The global error is 
defined as: 

loadactivatedpreviouslyCSPloadactivatedcurrently
forceunbalance

 = errorGlobal
⋅+

 

The unbalance force is the difference between the external forces and the internal 
reactions. The currently activated load is the load that is being activated in the current 
calculation phase, whereas the previously activated load is the load that has been 
activated in previous calculation phases and that is still active in the current phase.  

Using the above definition for the global error in combination with a fixed tolerated 
error results in an improved equilibrium situation when plasticity increases or failure is 
approached. The idea is that a small out-of-balance is not a problem when a situation is 
mostly elastic, but in order to accurately calculate failure state, safety factor or bearing 
capacity, a stricter equilibrium condition must be adopted. 

Part 6 of the user subroutine looks very similar to part 3, except that only elastic 
components are considered here. It should be noted that the same variable D is used to 
store the elastic material stiffness matrix, whereas in Part 3 this variable is used to store 
the effective material stiffness matrix.  

6  Begin 

{ Create elastic material stiffness matrix D } 

D[1,1] =  

D[1,2] =  

D[1,3] =  

..... 

D[6,6] =  

   End 

Using predefined subroutines from libraries 
In order to simplify the creation of user subroutines, a number of FORTRAN 
subroutines and functions for vector and matrix operations are available in PLAXIS in 
specific compiler libraries (LFUsrLib.lib or DFUsrLib.lib) and in the source code (to be 
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included in the file with the user subroutine). The available subroutines may be called in 
by User_Mod subroutine to shorten the code. An overview of the available subroutines 
is given in Appendix B. 

Definition of user-interface functions 
In addition to the user-defined model itself it is possible to define functions that will 
facilitate its use within the Plaxis user-interface. If available, Plaxis Input will retreive 
information about the model and its parameters using the procedures described 
hereafter.  

procedure GetModelCount(var C:longint) ;      

C = number of models (return parameter) 

This procedure retrieves the number of models that have been defined in the DLL. 
Plaxis assumes that model IDs are successive starting at model ID = 1. 

procedure GetModelName(var iModel : longint; 
var Name : shortstring) ;      

iModel = User-defined soil model number to retrieve the name for (input parameter) 

Name = model name (return parameter) 

This procedure retrieves the names of the models defined in the DLL. 

procedure GetParamCount(var iModel : longint; var C : longint) ;      

iModel = User-defined soil model number (input parameter) 

C  = number of parameters for the specified model (return parameter) 

This procedure retrieves the number of parameters of a specific model. 

procedure GetParamName(var iModel,iParam : longint;  
var Name : shortstring);  

iModel = User-defined soil model number (input parameter) 

iParam = Parameter number (input parameter) 

Name = parameter name (return parameter) 

This procedure retreives the parameter name of a specific parameter. 

Procedure GetParamUnit(var iModel,iParam : longint; 
var Units : shortstring) ; 

iModel = User-defined soil model number (input parameter) 

iParam = Parameter number (input parameter) 

Units = parameter units (return parameter) 
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This procedure retrieves the parameter units of a specific parameter. Since the chosen 
units are dependent on the units of length, force and time chosen by the user the 
following characters should be used for defining parameter units: 

‘L’ or ‘l’ for units of length 

‘F’ or ‘f’ for units of force 

‘T’ or ‘t’ for units of time. 

For model names, model parameter names and model parameter units special characters 
can be used for indicating subscript, superscript or symbol font (for instance for Greek 
characters). 

^ :  From here characters will be superscript  

_ :  From here characters will be subscript  

@ : From here characters will be in symbol font 

# : Ends the current superscript or subscript. Pairs of ‘^..#’ , ‘_…#’ and ‘@…#’ 
can be nested. 

For example:  

A UD model parameter uses the oedometer stiffness as parameter. The parameter name 
can be defined as ‘E_oed#’ and its units as ‘F/L^2#’. 

All procedures are defined in Pascal but equivalent procedures can be created, for 
instance in a Fortran programming language. Please make sure that the data format of 
the parameters in the subroutine headers is identical to those formulated before. For 
instance, the procedures mentioned above use a “shortstring” type; a “shortstring” is an 
array of 256 characters where the first character contains the actual length of the 
shortstring contents. Some programming languages only have null-terminated strings; in 
this case it may be necessary to use an array of 256 bytes representing the ASCII values 
of the characters to return names and units. An example of Fortran subroutines is 
included on the program CD. 

Compiling the user subroutine 
The user subroutine User_Mod has to be compiled into a DLL file using an appropriate 
compiler. Note that the compiler must have the option for compiling DLL files. Below 
are examples for two different FORTRAN compilers. It is supposed that the user 
subroutine User_Mod is contained in the file USRMOD.FOR. 

After creating the user subroutine User_Mod, a command must be included to export 
data to the DLL.  

The following statement has to be inserted in the subroutine just after the declaration of 
variables:   

• Using Lahey Fortran (LF90, LF95, ...):  DLL_Export User_Mod 

• Using Digital Visual Fortran:  !DEC$ ATTRIBUTES DLLExport :: User_Mod 
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In order to compile the USRMOD.FOR into a DLL file, the following command must 
be executed: 

• Using Lahey Fortran 90:  LF90 -win -dll USRMOD.FOR -lib LFUsrLib 

• Using Lahey Fortran 95:  LF95 -win -dll USRMOD.FOR -lib LFUsrLib -ml LF90 

• Using Digital Visual Fortran: DF /winapp USRMOD.FOR DFUsrLib.lib /dll 

In all cases USRMOD.DLL file will be created. This file should be placed in the PLAXIS 
program directory, thereafter it can be used together with the existing PLAXIS 
calculations program (PLASW.EXE). Once the UD model is used, PLAXIS will execute 
the commands as listed in the USRMOD.DLL file. 

Debugging possibilities 
When making computer programs, usually some time is spent to 'debug' earlier written 
source code. In order to be able to effectively debug the user subroutine, there should be 
a possibility for the user to write any kind of data to a file. Such a 'debug-file' is not 
automatically available and has to be created in the user subroutine.  

In Appendix C a suggestion on how this can be done is given. After the debug-file is 
created, data can be written to this file from within the user subroutine. This can be done 
by using, for example, the availably written subroutines (see Appendix B).  

11.3   INPUT OF UD MODEL PARAMETERS VIA USER-INTERFACE 

Input of the model parameters for user-defined soil models can be done using PLAXIS 
material data base. In fact, the procedure is very similar to the input of parameters for 
the existing PLAXIS models. 

When creating a new material data set for soil and interfaces in the material data base, a 
window appears with three tab sheets: General, Parameters, Interface, Figure 11.1. A 
user-defined model can be selected from the Material model combo box in the General 
tab sheet.  

After inputting general properties, the appropriate UD model can be chosen from the 
available models that have been found by Plaxis Input.  

The Parameters tab sheet shows two combo boxes at the top; the left combo box lists all 
the DLLs that contain valid UD models and the right combo box shows the models 
defined in the selected DLL. Each UD model has its own set of model parameters, 
defined in the same DLL that contains the model definition.  

When an available model is chosen Plaxis will automatically read its parameter names 
and units from the DLL and fill the parameter table below. 
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(a) 

 
(b) 

Figure 11.1.  Selection of user-defined soil models (a) and input of parameters (b) 
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Interfaces 
The Interfaces tab sheet, Figure 11.2, contains the material data for interfaces.  

 

Figure 11.2  Interface tab sheet 

Normally, this tab sheet contains the Rinter parameter and the selection of the type of 
interface regarding permeability. For user-defined soil models the interface tab sheet is 
slightly different and contains the interface oedometer modulus, , and the interface 
strength parameters c

ref
oedE

inter, ϕinter and ψinter. Hence, the interface shear strength is directly 
given in strength parameters instead of using a factor relating the interface shear strength 
to the soil shear strength, as it is the case in PLAXIS models. 

After having entered values for all parameters, the data sets can be assigned to the 
corresponding soil clusters, in a similar way as for the existing material models in 
PLAXIS. The user-defined parameters are transmitted to the calculation program and 
appear for the appropriate stress points as Props(1..50) in the User_Mod subroutine. 
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APPENDIX A - SYMBOLS 
c  : Cohesion 
csp  : Current stiffness parameter 
Cu , Su  : Undrained shear-strength 
De  : Elastic material matrix representing Hooke's law 
e  : Void ratio 
E  : Young's modulus 
Eoed  : Oedometer modulus 
f  : Yield function 
g  : Plastic potential function 
G  : Shear modulus 
K  : Bulk modulus 
K0  : Coefficient of lateral earth pressure 
m  : Power in stress-dependent stiffness relation 
M  : Slope of critical state line in p'-q space 
n  : Porosity 
OCR  : Overconsolidation ratio 
p  : Isotropic stress or mean stress,   

positive for pressure; negative for tension 
pp  : Isotropic preconsolidation stress, positive for pressure 
POP  : Pre overburden pressure 
q  : Equivalent shear stress or deviatoric stress 
Rf  : Failure ratio 
t  : Time 
u  : Vector with displacement components 
γ  : Volumetric weight 
α1  : Dip angle 
α2  : Dip direction 
Δ  : Increment 
ε  : Vector with Cartesian strain components, normal components 

positive for extension; negative for compression 
εv  : Volumetric strain,   

negative for compression; positive for extension 
κ  : Cam-Clay swelling index 
κ*  : Modified swelling index 
λ  : Plastic multiplier 
λ  : Cam-Clay compression index 
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λ*  : Modified compression index 
μ*  : Modified creep index 
ν  : Poisson's ratio 
σ  : Vector with Cartesian stress components, normal components 

positive for tension; negative for pressure 
σp  : Vertical preconsolidation stress, negative for pressure 
ϕ  : Friction angle 
ψ  : Dilatancy angle 
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APPENDIX B - FORTRAN SUBROUTINES FOR USER-DEFINED SOIL
 MODELS 
In this appendix, a listing is given of the subroutines and functions which are provided 
by PLAXIS in libraries and source cod in the user-defined soil models directory. These 
can be called by the User_Mod subroutine: 

Subroutines 
MZeroR( R, K ): 

To initialize K terms of double array R to zero 
MZeroI( I, K ): 

To initialize K terms of integer array I to zero 
SetRVal( R, K, V ): 

To initialize K terms of double array R to V 
SetIVal( I, K, IV ): 

To initialize K terms of integer array I to IV 
CopyIVec( I1, I2, K ): 

To copy K values from integer array I1 to I2 
CopyRVec( R1, R2, K ): 

To copy K values from double array R1 to R2 
MulVec( V, F, n ): 

To multiply a vector V by a factor F, n values 
MatVec( xMat, im, Vec, n, VecR ): 

Matrix (xMat)-vector(Vec) operation.  

First dimension of matrix is im; resulting vector is VecR 
AddVec( Vec1, Vec2, R1, R2, n, VecR ): 

To add n terms of two vectors; result in VecR  

iii VecR2  +  VecR1 = VecR 21 ⋅⋅  

MatMat( xMat1, id1, xMat2, id2, nR1, nC2,  

nC1, xMatR, idR ): 

Matrix multiplication  2xMat    1xMat = xMatR kjikij ⋅  

id1, id2, idR : first dimension of matrices 

nR1 number of rows in xMat1 and resulting xMatR 

nC2 number of column in xMat2 and resulting xMatR 

nC1 number of columns in xMat2 =rows in xMat2 
MatMatSq( n, xMat1, xMat2, xMatR ): 

Matrix multiplication 2xMat   1xMat = xMatR kjikij ⋅  

B-1 
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Fully filled square matrices with dimensions n 
MatInvPiv( AOrig, B, n ): 

Matrix inversion of square matrices AOrig and B with dimensions n.  

AOrig is NOT destroyed, B contains inverse matrix of AOrig.  

Row-pivotting is used. 
WriVal( io, C, V ): 

To write a double value V to file unit io (when io > 0) 

The value is preceeded by the character string C. 
WriIVl( io, C, I ): 

As WriVal but for integer value I  
WriVec( io, C, V, n ): 

As WriVal but for n values of double array V 
WriIVc( io, C, iV, n ): 

As WriVal but for n values of integer array iV 
WriMat( io, C, V, nd, nr, nc ): 

As WriVal but for double matrix V.  
nd is first dimension of V, nr and nc are the number of rows and columns to 
print respectively. 

PrnSig( iOpt, S, xN1, xN2, xN3, S1, S2, S3, P, Q ): 

To determine principal stresses and (for iOpt=1) principal directions. 

iOpt = 0 to obtain principal stresses without directions 

iOpt = 1 to obtain principal stresses and directions 

S array containing 6 stress components (XX, YY, ZZ, XY, YZ, ZX) 

xN1, xN2, xN3 array containing 3 values of principal normalized directions 
only when iOpt=1. 

S1, S2, S3 sorted principal stresses ( S ≤  S2 ≤  S3 ) 
P isotropic stress (negative for compression) 

Q deviatoric stress 
CarSig( S1, S2, S3, xN1, xN2, xN3, SNew ): 

To calculate Cartesian stresses from principal stresses and principal directions. 

S1, S2, S3 principal stresses  

xN1, xN2, xN3 arrays containing principal directions (from PrnSig) 

SNew contains 6 stress components (XX, YY, ZZ, XY, YZ, ZX) 
CrossProd( xN1, xN2, xN3 ): 

Cross product of vectors xN1 and xN2 
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SetVecLen( xN, n, xL ): 

To multiply the n components of vector xN such that the length of xN becomes 
xL (for example to normalize vector xN to unit length. 

Functions 
Logical Function LEqual( A, B, Eps ): 

Returns TRUE when two values A and B are almost equal, FALSE otherwise. 

LEqual = |A-B| < Eps * ( |A| + |B| + Eps ) / 2 
Logical Function Is0Arr( A, n ): 

Returns TRUE when all n values of real (double) array A are zero, FALSE 
otherwise 
Logical Function Is0IArr( IArr, n ): 

Returns TRUE when all n values of integer array IArr are zero, FALSE 
otherwise 
Double Precision Function DInProd( A, B, n ): 

Returns the inproduct of two vectors with length n 
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APPENDIX C - CREATING A DEBUG-FILE FOR USER-DEFINED SOIL 
 MODELS 
A debug file is not automatically created and opened in PLAXIS. The user should do this 
by including the corresponding source code in the user subroutine. The debug file needs 
only be created and opened once. Since the user subroutine is used many times, it must 
be checked whether the file, i.e. the corresponding IO unit number, is already open.  

When writing a FORTRAN user subroutine and compiling it as a DLL, files are not 
shared with the main program. This means that any IO unit number can be used without 
conflicts between the debug file and existing files used by PLAXIS.  

Here suggestions are given on how the debug file can be created and opened: 

1: Inquire if a unit number is opened. If not, open it. 

Logical IsOpen 

Inquire( unit = 1, Opened = IsOpen) 

If (.Not. IsOpen) Then 

Open( Unit = 1, File = ' ... ' ) 

End If 

2: Use a DATA statement 

Logical IsOpen 

Data IsOpen /  .FALSE. / 

Save IsOpen 

If (.Not. IsOpen) Then 

Open( Unit = 1, File = ' ... ' ) 

IsOpen = .TRUE. 

End If 

The above suggestions assume that the debug file is located in the currently active 
directory, which is not necessarily the proper location. It is suggested that the debug file 
is stored in the DTA-directory of the corresponding PLAXIS project. Therefore it is 
necessary to include also the pathname in the File = ' ... '. The project 
directory is passed to the user subroutine by means of the parameters iPrjDir and 
iPrjLen. The iPrjDir array contains the ASCII numbers of the characters of the project 
directory string and iPrjLen is the length of the string (max. 255). This is to avoid 
character passing conflicts (Fortran - C conflicts). The project directory string will 
always end with character 92 (\). The user has to rebuild the character string and can 
directly add the actual name of the debug file.  

The example underneath shows how a debug file called 'usrdbg' can be created and 
opened in the current project directory for debugging purposes: 

Character fName*255   

Dimension iPrjDir(*) 

Logical IsOpen 
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Data IsOpen / .FALSE. / 

Save IsOpen 

If (.Not. IsOpen) Then 

fName = ' ' 

Do i=1, iPrjLen 

fName(i:i) = Char( iPrjDir(i) ) 

End Do 

fName = fName(:iPrjLen) // 'usrdbg' 

Open( Unit = 1, File = fName ) 

IsOpen = .TRUE. 

End If 

In the user subroutine, values can be written to IO unit 1, using for example the 
available writing subroutines in Appendix B. 

Debugging hints 
When developing and debugging a constitutive soil model in the user subroutine, it is 
very useful to start by testing it with a simple finite element model in which a 
homogeneous stress state should occur (for example an axisymmetric, 1 x 1 unit model 
of a one-dimensional compression test or a triaxial test with zero soil weight). The finite 
element model will still contain many stress points, but the stress state in each point 
should be the same.  

In any case, it is useful to write output for a limited number of stress points only (or for 
certain step numbers or iteration numbers), in order to avoid large debug files. Examples 
of writing useful but limited debug information are given below: 

io = 0 

If ( iEl .Eq. 1 .And. Int.Eq.1 .And. iStep.Gt.10 ) 

 io = 1 

... 

Call WriIVl( io, 'Step', iStep ) 

Call WriIVl( io, 'Iter', iTer ) 

Call WriVec( io, 'Sig0', Sig0, 6 ) 

Call WriVec( io, 'dEps', dEps, 6 ) 

Call WriMat( io, 'D', D, 6, 6, 6 ) 

... 

Call WriVec( io, 'Sig', Sig, 6 ) 

The available writing routines do not write when io is zero or negative.  

Alternatively:  

If ( io .Eq. 1 ) Then 

Write( 2, * ) 'StVar:',(StVar(j),j=1,2) 

End If 
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Note that here file 2 is used. This file must be opened before. When the file has not been 
opened before, Lahey Fortran will give a Run-Time Error (File not open). Digital 
Fortran on the other hand will open a file with the name FORT.2 in the current directory 
or checks the environment variable FORT2. 
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