CE-307 :DESIGN OF,STRUCTURES - I
 SLOT- 2
 MONDAY 9.30 am
 TUESDAY 11.30 am
 WEDNESDAY 8.30 am
 www.civil.ittb.ac.in/ ~abl献it/ce307.htm

CE-315: DESIGN OF STRUCTURES - I LAB
 MONDAY 2.00 pm

www.civil.iitb.ac.in/ ~abhijit/ce315.htm
©Prof. A. Mukherjee, Civil Engineering,

Contents

- Introduction
- Concrete
- Design by working stress method
- Design by Limit state method

Structural Analysis

- To determine the response of the structure under the action of loads.
- Response may be displacement, internal forces like axial force, bending moment, shear force etc.
- Structure geometry and material properties are known.

Methods of Analysis

1. Manual computation methods

Slope - Deflection Method
Strain Energy Method Moment Distribution Method Kani's Method
2. Computer Methods

Matrix Methods
Finite Element Method
Finite Difference Method

Design Process

Structural Design

- Structural design is an art and science of creation, with economy and elegance, a safe, servicable and durable structure.
- Besides knowledge of structural engineering it requires knowledge of practical aspects, such as relevant codes and bye laws backed up by ample experience, intuition and judgment.

Optimum Design

©Prof. A. Mukherjee, Civil Engineering,

IITB

Concrete

©Prof. A. Mukherjee, Civil Engineering,

IITB

A closer look

Coliseum of Rome

©Prof. A. Mukherjee,
Civil Engineering,
IITB

History of concrete

3000 BC	The Egyptians began to use mud mixed with straw to bind dried bricks. They also used gypsum mortars and mortars of lime in the building of the pyramids
800 BC	The Greeks used lime mortars that were much harder than later Roman mortars. This material was also in evidence in Crete and Cyprus at this time.
300 BC	The Babylonians and Assyrians used bitumen to bind stones and bricks together
299 BC - 476 AD	The Romans used pozzolana cement from Pozzuoli, Italy near Mt. Vesuvius to build the Roman Baths of Caracalla, the Basilica of Maxentius, the Coliseum and Pantheon in Rome. They used broken brick aggregate embedded in a mixture of lime putty with brick dust or volcanic ash by the Romans.

History of concrete contd...

$1200-1500$	The quality of cementing materials deteriorated and even the use of concrete died out during The Middle Ages as the art of using burning lime and pozzolan (admixture) was lost, but it was later reintroduced in the 1300s
1414	Fra Giocondo used pozzolanic mortar in the pier of the Pont de Notre Dame in Paris. It is the first acknowledged use of concrete in modern times
1744	John Smeaton discovered that combining quicklime with other materials created an extremely hard material that could be used to bind together other materials.
1793	John Smeaton found that the calcination of limestone containing clay produced a lime that hardened under water (hydraulic lime). He used hydraulic lime to rebuild Eddystone Lighthouse in Cornwall, England.
A. Mukherjee, ITTB	

Eddystone Lighthouse

History of concrete contd...

$\qquad$$1813-$ 1813 Louis Vicat of France prepared artificial hydraulic lime by calcining synthetic mixtures of limestone and clay. 1816 The world's first unreinforced concrete bridge was built at Souillac, France. 1824 Joseph Aspdin, a British bricklayer, produced and patented the first Portland cement, made by burning finely pulverized lime and clay at high temperatures in kilns. The sintered product was then ground and he called it Portland cement since it looked like the high quality building stones quarried at Portland, England 1828 I. K. Brunel is credited with the first engineering application of Portland cement, which was used to fill a breach in the Thames Tunnel ©Prof. A. Muknerjee, Civil Engineering, ITTB

History of concrete contd...

| 1887 | Henri le Chatelier of France established oxide ratios to
 prepare the proper amount of lime to produce Portland
 cement |
| :--- | :--- | :--- |
| 1894 | Anatole de Baudot designs and builds the Church of St. Jean
 de Montmarte with slender concrete columns and vaults and
 enclosed by thin reinforced concrete walls |
| 1900 | Basic cement tests were standardized. |
| 1903 | The first concrete high rise was built in Cincinnati, Ohio. |
| 1916 | The Portland Cement Association was formed in Chicago. |

©Prof. A. Muknerjee,
Civil Engineering,
IITB

Hoover dam (first concrete dam)

History of concrete contd...

\qquad1917 The National Bureau of Standards (now the National Bureau of standards and Technology) and the American Society for Testing Materials established a standard formula for Portland cement. 1936 The first major concrete dams, Hoover Dam and Grand Coulee Dam, were built 1948 Pre-stressed concrete was introduced and first used in airport pavements. 1970 Fiber reinforcement in concrete was introduced. 1973 The Opera House in Sydney, Australia was opened. Its distinctive concrete peaks quickly became a symbol for the city. ©Prof. A. Multerie, Civil Engineering, ITTB

Opera house (Sydney)

©Prof. A. Mukherjee, Civil Engineering,
 IITB

History of concrete contd...

1980	Superplasticizers were introduced as admixtures
1985	Silica fume was introduced as a pozzolanic additive.
1992	The tallest reinforced concrete building in the world was constructed at 311 South Wacker Drive in Chicago, Illinois. This was later surpassed by the Petronas Tower, Kualalumpur.
1993	The J. F. K. Museum in Boston, Massachusetts was completed. The dramatic concrete and glass structure was designed by renowned architect I. M. Pei.

Petronas Tower

Concrete
 (various strength up to grade 0) $160,000 \mathrm{cu} \mathrm{m}$ in the superstructure

Concrete Mix Design

> The process of selecting suitable ingredients of concrete and determining their relative quantities with the object of producing as economically as possible concrete of certain minimum properties, notably consistence, strength, and durability.

Basic factors in the process of Mix Design

Basic definitions

- Mean strength: This is the average strength obtained by dividing the sum of strength of all the cubes by the number of cubes.

$$
\bar{x}=\frac{\sum x}{n}
$$

$$
\text { where } \begin{aligned}
\bar{x} & =\text { mean strength } \\
x & =\text { sum of strengths of cubes } \\
n & =\text { number of cubes }
\end{aligned}
$$

Gaussian distribution curves for concretes with a minimum strength of 20.6 Mpa

Percentage of Specimens having a strength lower than (Mean - $k x$ Standard deviation)

Degree of
 control

k	Percentage of specimen having a strength below than $(\mathrm{x}-\mathrm{k} \sigma)$
1.00	15.9
1.50	6.7
1.96	2.5
2.33	1.0
2.50	0.6
3.09	0.1

Water / Cement ratio

Relation between Compressive strength and Water/Cement Ratio for OPC of late 1950's

©Prof. A. Mukherjee, Civil Engineering,

Relationship between Water/cement ratio and Compressive strength for OPC of late 1970's

©Prof. A. Mukherjee,
Civil Engineering,
IITB

Road Note No. 4 type grading curves for 19.05 mm aggregate

Civil Engineering,
IITB

Road Note No. 4 type grading curves for 38.1 mm aggregate.

©Prof. A. Mukherjee, Civil Engineering,

IITB

McIntosh and Erntroy's type grading curves for 9.52 mm aggregate

©Prof. A. Mukherjee, Civil Engineering,

Aggregate/Cement Ratio (by weight) with different Gradings of 38.1mm Irregular Aggregate

Degree of Workability		Very low				Low				Medium				High			
Grading curve No. on Fig. 3.17		1	2	3	4	1	2	3	4		2	3	4	1	2	3	4
Water/cement ratio by weight	0.35	4.0	3.9	3.5	3.2	3.4	3.3	3.2	2.9	2.9	2.8	2.6	2.5	2.7	2.5	2.3	2.3
	0.40	5.3	5.3	4.7	4.3	4.5	4.5	4.2	3.8	3.8	3.8	3.7	3.4	3.5	3.5	3.3	3.1
	0.45	6.5	6.5	5.9	5.3	5.6	5.6	5.3	4.8	4.6	4.7	4.6	4.3	4.1	4.4	4.3	4
	0.50	7.7	7.7	7.1	6.3	6.7	6.6	6.3	5.7	5.4	5.7	5.5	5.1	4.8	5.2	5.1	4.8
	0.55	-	-	8.1	7.3	7.6	7.6	7.2	6.6	6.2	6.5	6.3	5.8	x	5.9	6	5.5
	0.60			-	-	-	-	-	7.4	7.0	7.3	7.1	6.6	x	x	6.7	6.2
	0.65								8.1	7.8	8.1	7.8	7.2	x	x	7.3	6.9
	0.70								-				7.9	x	x	-	7.4
	0.75												-	x	x	-	8
	0.80													x	x	-	-

- Indicates that the mix was outside the range tested.
©Prof. \mathbf{x}_{A} Indicates. that the mix would segregate.
Civil Enesieqerrimgrtions are based on specific gravities of approximately 2.5 for the coarse aggregate and 26.6 .50
th \mathbf{H} fiBe aggregate.

Example

Mix design for road slab

- Minimum compressive strength (at 28 Days) $=28 \mathrm{MPa}$
- Method of compaction - Needle vibration
- Quality control - Good
- Workability - Very low
- Cement used - Ordinary Portland cement
- Aggregate shape - Irregular

Estimated relation between Minimum and Mean Compressive Strengths of Site Cubes with Additional Data on Coefficient of Variation

Degree of Control	Conditions	Minimum strength as a percentage of mean strength	Coefficient of Variation for the probability of a cube strength below the minimum occurring	
			once in 100	once in 200
Very Good	Weigh-batching; use of graded aggregates, moisture determinations on aggregates, etc. Constant supervision	75	10.7	9.7
Fair	Weigh -batching; use of two sizes of aggregate only; water content left to mixer-driver's judgenment. Occasional supervision	610	17.2	15.5
Poor	Inaccurate volume batching of all-in aggregate. No supervision	40	25.8	23.3

Steps in Mix design

- Minimum strength $=30 \mathrm{MPa}$
- Calculation of Mean strength mean strength $=$ minimum strength $/ 0.75$ (slide \# 33)
mean strength $=30 / 0.75=40 \mathrm{MPa}$
- Determination of Water/Cement ratio water/cement ratio $=0.48$ (slide \# 26)
- Determination of Aggregate cement ratio
workability is very low and using water/cement ratio as 0.48 from slide \# 31 we get, aggregate cement ratio $=7.2$
- Proportion
fine : 19.0-4.75:38.1-19.0 aggregates =1:0.94:2.59
©Prof. A. Mukherjee, Civil Engineering,

IITB

Steps in Mix design contd....

- Since the aggregate /cement ratio is 7.2 , therefore the proportion of cement and aggregates is $1: 1.59: 1.50: 4.11$
- Determination of cement content

Materials	Sp. gravity
water	1.0
Cement	3.15
Coarse aggregate	2.50
Fine aggregate	2.60

Steps in Mix design contd....

Expression for calculation of cement content

where $\frac{\mathrm{V}}{1000}+\frac{\mathrm{C}}{1000 \times 3.15}+\frac{\mathrm{A}_{1}}{1000 \times 2.60}+\frac{\mathrm{A}_{2}}{1000 \times 2.50}=1$ aggregate, and coarse aggregate respectively

$$
\begin{aligned}
& \frac{0.46 \times \mathrm{c}}{1000}+\frac{\mathrm{C}}{1000 \times 3.15}+\frac{1.59 \times \mathrm{c}}{1000 \times 2.60}+\frac{(1.50+4.11) \times \mathrm{c}}{1000 \times 2.50}=1 \\
& \text { Cement } \\
& =273.75 \mathrm{~kg} \text { and hence, } \\
& \text { Water } \\
& \text { Fine aggregates } \\
& =0.48 \times 273.75=131.4 \mathrm{~kg} \\
& 19.0-4.75 \text { aggregates }=1.50 \times 273.75=435.26 \mathrm{~kg} \\
& 38.1-19.0 \text { aggregates }=4.11 \times 273.75=410.63 \mathrm{~kg} \\
& \quad \text { Total } \frac{1125.11 \mathrm{~kg}}{=2376.15 \mathrm{~kg}}
\end{aligned}
$$

Material graphs

$$
\sigma_{\text {call } .}=\frac{f_{c k}}{F . S .}
$$

Structural Members

Flexural Member

Subjected to transverse loading and resists internal moments and shears.

F.B.D. showing internal moments and shears

F.B.D. showing internal moments as C -T couple

Assumptions

- Length of the member remains same during bending; i.e. deformation is very small in comparison to the length.

Assumptions...

- Plane sections remain plane during the process of bending (i.e. shear deformation is neglected)

Assumptions...

- All tensile stresses are taken by steel and none by concrete.

- No slippage between concrete and steel
- The stress-strain relationship of steel and concrete, under working loads, is a straight line.

$$
\begin{aligned}
\sigma_{\text {sall }} & =\frac{f_{y}}{F . S .} \\
\sigma_{\text {call }} & =\frac{f_{c k}}{F . S .}
\end{aligned}
$$

©Prof. A. Mukherjee, Civil Engineering,

RCC Flexural Member

Modular ratio

$$
m=\frac{E_{s}}{E_{c}}=\frac{280}{3 \sigma_{c . a l l}}
$$

- The modular ratio m has the value $280 /\left(3 \sigma_{\text {c.all }}\right)$ where $\sigma_{\text {c.all }}$ is the allowable compressive stress ($\mathrm{N} / \mathrm{mm}^{2}$) in concrete due to bending.

Compatibility Relationship:

$$
\begin{aligned}
& \frac{\varepsilon_{c \max }}{x}=\frac{\varepsilon_{s \max }}{d-x} \\
& \varepsilon_{s \max }=\frac{(d-x)}{x} \varepsilon_{c \max }
\end{aligned}
$$

Strain diagram

Constitutive Relationship :

$$
\begin{aligned}
& \sigma_{c}=E_{c} \varepsilon_{c} \quad \& \quad \sigma_{s}=E_{s} \varepsilon_{s} \\
& \text { Modular Ratio }=m=\frac{E_{s}}{E_{c}}
\end{aligned}
$$

$$
\sigma_{s}=m E_{c} \varepsilon_{c}
$$

IITB

Equilibrium Equations :

1. $F_{s}=F_{c}$

$F_{s}=\sigma_{s} A_{s}$
(Since the bar dia is small, we can take average stress σ_{s}.)

$$
\begin{aligned}
& \frac{1}{2} \sigma_{c \max } x b=\sigma_{s} A_{s} \\
& \frac{1}{2} E_{c} \varepsilon_{c \max } x b=m E_{c} \varepsilon_{s \max } A_{s} \\
& \varepsilon_{c \max } x b=2 m \varepsilon_{s \max } A_{s} \\
& \varepsilon_{c \max } x b=2 m \frac{(d-x)}{x} \varepsilon_{c \max } A_{s}
\end{aligned}
$$

$$
x b=2 m \frac{(d-x)}{x} A_{s}
$$

$$
x^{2} b=2 m d A_{s}-2 m x A_{s}
$$

$$
x^{2} b+2 m x A_{s}-2 m d A_{s}=0
$$

Therefore, $\quad x=\frac{-2 m A_{s} \pm \sqrt{\left(2 m A_{s}\right)^{2}+8 m b d A_{s}}}{2 b}, \quad \mathrm{x}<\mathrm{d}$
This is a property of cross section and materials. Civil Engineering,

IITB

Equilibrium eqns.

2. Taking moment about reinforcing steel,

$$
M=F_{c} j d=F_{s} j d \quad M=\frac{1}{2} \sigma_{c \max } x b\left(d-\frac{x}{3}\right)
$$

©Prof. A. Mukherjee, Civil Engineering,

$$
M=A_{s} \sigma_{s}\left(d-\frac{x}{3}\right)
$$

Balanced Section

- Both steel and concrete fail simultaneously

Balanced section contd...

$$
\begin{aligned}
& \frac{\varepsilon_{c}}{x}=\frac{\varepsilon_{s}}{d-x} \\
& \frac{d-x}{x}=\frac{\varepsilon_{s}}{\varepsilon_{c}}
\end{aligned}
$$

Strain diagram
Know,
$m=\frac{280}{3 * \sigma_{\text {call }}}$
$x_{b a l}=k d$
therefore,
$\begin{gathered}\text { ©Prof. A. Mukherjee, } \\ \text { Civil Engineering, }\end{gathered} \quad \frac{d-k d}{k d}=\frac{\sigma_{\text {sall }}}{m * \sigma_{\text {call }}}$

$$
\begin{aligned}
& \frac{\sigma_{\text {sall }}}{93.33}=\frac{1}{k}-1 \\
& \frac{\sigma_{\text {sall }}}{93.33}+1=\frac{1}{k}
\end{aligned}
$$

therefore,

$$
\mathrm{k}=\frac{93.33}{\sigma_{\text {sall }}+93.33}
$$

$$
\text { lever } \operatorname{arm}=j d=d-\frac{x}{3}
$$

$$
j=1-\frac{k}{3}
$$

k is the property of steel grade

j is the property of steel grade

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{all}}=\frac{1}{2} \sigma_{\text {call }} x b\left(d-\frac{x}{3}\right) \\
& \mathrm{M}_{\mathrm{all}}=\frac{1}{2} \sigma_{\text {call }} k d b\left(d-\frac{k d}{3}\right) \\
& \mathrm{M}_{\text {all }}=\frac{\left[\frac{k}{2}\left(1-\frac{k}{3}\right)\right]}{\uparrow} \frac{\sigma_{\text {call }} b d^{2}}{\uparrow} \\
& \text { Steel grade Concrete Cross } \\
& \text { grade section } \\
& \mathrm{R}=\text { Moment of resistance factor } \\
& \text { depends on material properties } \\
& \begin{array}{c}
\text { ©Prof. A. Mukherjee, } \\
\text { Civil Engineering, }
\end{array}=\sigma_{\text {sall }} A_{s}\left(d-\frac{k d}{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\mathrm{M}_{\mathrm{all}}}{b d^{2}}=R \\
& \text { Also, }
\end{aligned}
$$

$$
\mathrm{M}_{\mathrm{all}}=\sigma_{\text {sall }} A_{s}\left(d-\frac{k d}{3}\right)
$$

$$
A_{s}=\frac{M_{a l l}}{\sigma_{s} j d}
$$

$$
\frac{A_{s}}{b d}=\frac{M_{a l l}}{\sigma_{s} j b d^{2}}
$$

$$
p=\frac{1}{\sigma_{s} j} \frac{M_{a l l}}{b d^{2}}
$$

Relation between p and $\mathrm{M} / \mathrm{bd}^{2}$ is dependent on material only

Design constants for Balanced Section

Steel Concrete		Fe250				Fe415			
		$\sigma_{\text {sall }}=140 \mathrm{~N} / \mathrm{mm}^{2}$				$\sigma_{\text {sall }}=230 \mathrm{~N} / \mathrm{mm}^{2}$			
Grade	$\sigma_{\text {call }}$	k	j	R	pt	k	j	R	pt
M20	7.0	0.4	0.87	1.22	1.00	0.29	0.9	0.91	0.44
M25	8.5	0.4	0.87	1.48	1.21	0.29	0.9	1.11	0.54
M30	10.0	0.4	0.87	1.74	1.43	0.29	0.9	1.31	0.63

Design example

Given

- Moment (M) $=20 \mathrm{KN}-\mathrm{m}$
- Steel Grade is Fe415; $\sigma_{\text {sall }}=230 \mathrm{MPa}$ refer table 22
- Concrete Grade is M20; $\sigma_{\text {call }}=7 \mathrm{MPa}$ refer

To Find

- Effective depth 'd'
- Area of steel ${ }^{\prime} \mathrm{A}_{\mathrm{st}}{ }^{\prime}$

Solution

Assume $b=230 \mathrm{~mm}$
For Fe 415 grade steel and M20 grade concrete

$$
\mathrm{R}=0.91 ; \mathrm{pt}=0.44
$$

Now,

$$
\begin{aligned}
d & =V\left(M_{\text {all }} / R^{* b}\right) \\
& =\sqrt{ }\left(20^{*} 10^{6} / 0.91 * 230\right) \\
& =309.122 \simeq 310 \mathrm{~mm}
\end{aligned}
$$

$$
\mathrm{A}_{\mathrm{st}}=\mathrm{pt} * \mathrm{~b} * \mathrm{~d} / 100=0.44 * 230 * 310 / 100=313.72 \mathrm{~mm}^{2} .
$$

Reinforced Beam

©Prof. A. Mukherjee, Civil Engineering, IITB

Structural Members

Flexural Member

Subjected to transverse loading and resists internal moments and shears.

F.B.D. showing internal moments and shears

F.B.D. showing internal moments as C -T couple

Assumptions

- Length of the member remains same during bending; i.e. deformation is very small in comparison to the length.

Assumptions...

- Plane sections remain plane during the process of bending (i.e. shear deformation is neglected)

Assumptions...

- All tensile stresses are taken by steel and none by concrete.

- No slippage between concrete and steel

RCC Flexural Member

- The stress-strain relationship of steel and concrete, under working loads, is a straight line.

$$
\begin{aligned}
\sigma_{\text {sall }} & =\frac{f_{y}}{F . S .} \\
\sigma_{\text {call }} & =\frac{f_{c k}}{F . S .}
\end{aligned}
$$

©Prof. A. Mukherjee, Civil Engineering,

Modular ratio

$$
m=\frac{E_{s}}{E_{c}}=\frac{280}{3 \sigma_{c . a l l}}
$$

- The modular ratio m has the value $280 /\left(3 \sigma_{\text {c.all }}\right)$ where $\sigma_{\text {c.all }}$ is the allowable compressive stress ($\mathrm{N} / \mathrm{mm}^{2}$) in concrete due to bending.

Compatibility Relationship:

$$
\begin{aligned}
& \frac{\varepsilon_{c \max }}{x}=\frac{\varepsilon_{s \max }}{d-x} \\
& \varepsilon_{s \max }=\frac{(d-x)}{x} \varepsilon_{c \max }
\end{aligned}
$$

Strain diagram

Constitutive Relationship :

$$
\sigma_{c}=E_{c} \varepsilon_{c} \quad \& \quad \sigma_{s}=E_{s} \varepsilon_{s}
$$

Equilibrium Equations :

1. $F_{s}=F_{c}$

$F_{s}=\sigma_{s} A_{s}$
(Since the bar dia is small, we can take average stress σ_{s}.)

$$
\begin{aligned}
& \frac{1}{2} \sigma_{c \max } x b=\sigma_{s} A_{s} \\
& \frac{1}{2} E_{c} \varepsilon_{c \max } x b=m E_{c} \varepsilon_{s \max } A_{s} \\
& \varepsilon_{c \max } x b=2 m \varepsilon_{s \max } A_{s} \\
& \varepsilon_{c \max } x b=2 m \frac{(d-x)}{x} \varepsilon_{c \max } A_{s}
\end{aligned}
$$

$$
x b=2 m \frac{(d-x)}{x} A_{s}
$$

$$
x^{2} b=2 m d A_{s}-2 m x A_{s}
$$

$$
x^{2} b+2 m x A_{s}-2 m d A_{s}=0
$$

Therefore, $\quad x=\frac{-2 m A_{s} \pm \sqrt{\left(2 m A_{s}\right)^{2}+8 m b d A_{s}}}{2 b}, \quad \mathrm{x}<\mathrm{d}$
This is a property of cross section and materials. Civil Engineering,

IITB
2. Taking moment about reinforcing steel,

$$
\mathrm{M}=\mathrm{F}_{\mathrm{c}} \mathrm{jd}=\mathrm{F}_{\mathrm{s}} \mathrm{jd} \quad M=\frac{1}{2} \sigma_{c \max } x b\left(d-\frac{x}{3}\right)
$$

$$
M=A_{s} \sigma_{s}\left(d-\frac{x}{3}\right)
$$

Balanced Section

- Both steel and concrete fail simultaneously

$$
\begin{aligned}
& \frac{\varepsilon_{c}}{x}=\frac{\varepsilon_{s}}{d-x} \\
& \frac{d-x}{x}=\frac{\varepsilon_{s}}{\varepsilon_{c}}
\end{aligned}
$$

Know,
$m=\frac{280}{3^{*} \sigma_{\text {call }}}$
$x_{b a l}=k d$
therefore,
$\begin{gathered}\begin{array}{c}\text { ©Prof. A. Mukherjee, } \\ \text { Civil Engineering, }\end{array}\end{gathered} \frac{d-k d}{k d}=\frac{\sigma_{\text {sall }}}{m^{*} \sigma_{\text {call }}}$

Strain diagram

$$
\begin{aligned}
& \frac{\sigma_{\text {sall }}}{93.33}=\frac{1}{k}-1 \\
& \frac{\sigma_{\text {sall }}}{93.33}+1=\frac{1}{k}
\end{aligned}
$$

therefore,

$$
\mathrm{k}=\frac{93.33}{\sigma_{\text {sall }}+93.33}
$$

$$
\text { lever } \operatorname{arm}=j d=d-\frac{x}{3}
$$

$$
j=1-\frac{k}{3}
$$

k is the property of steel grade

j is the property of steel grade

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{all}}=\frac{1}{2} \sigma_{\text {call }} \times b\left(d-\frac{x}{3}\right) \\
& \mathrm{M}_{\mathrm{all}}=\frac{1}{2} \sigma_{\text {call }} k d b\left(d-\frac{k d}{3}\right) \\
& \mathrm{M}_{\text {all }}=\frac{\left[\frac{k}{2}\left(1-\frac{k}{3}\right)\right]}{\uparrow} \frac{\sigma_{\text {call }} b d^{2}}{\uparrow} \\
& \text { Steel grade Concrete Cross } \\
& \text { grade section }
\end{aligned}
$$

$R=$ Moment of resistance factor
depends on material properties

$$
\underset{\text { kheriale, }}{\mathrm{M}_{\text {all }}}=\sigma_{\text {sall }} A_{s}\left(d-\frac{k d}{3}\right)
$$

Civil Engineering,

$$
\frac{\mathrm{M}_{\mathrm{all}}}{b d^{2}}=R
$$

Also,

$$
\begin{aligned}
\mathrm{M}_{\mathrm{all}} & =\sigma_{\text {sall }} A_{s}\left(d-\frac{k d}{3}\right) \\
A_{s} & =\frac{M_{\text {all }}}{\sigma_{s} j d} \\
\frac{A_{s}}{b d} & =\frac{M_{\text {all }}}{\sigma_{s} j b d^{2}}
\end{aligned}
$$

©Prof. A. Mukherjee,

$$
p=\frac{1}{\sigma_{s} j} \frac{M_{\text {all }}}{b d^{2}}
$$ Civil Engineering,

Relation between p and $\mathrm{M} / \mathrm{bd}^{2}$ is dependent on material only

Design constants for Balanced Section

Steel Concrete		Fe250				Fe415			
		$\sigma_{\text {sall }}=140 \mathrm{~N} / \mathrm{mm}^{2}$				$\sigma_{\text {sall }}=230 \mathrm{~N} / \mathrm{mm}^{2}$			
Grade	$\sigma_{\text {call }}$	k	j	R	pt	k	j	R	pt
M20	7.0	0.4	0.87	1.22	1.00	0.29	0.9	0.91	0.44
M25	8.5	0.4	0.87	1.48	1.21	0.29	0.9	1.11	0.54
M30	10.0	0.4	0.87	1.74	1.43	0.29	0.9	1.31	0.63

Under Reinforced, Over Reinforced and Balanced Section

Reinforced Beam

©Prof. A. Mukherjee, Civil Engineering, IITB

Design of Section

Given

- Moment (M) = 20KN-m
- Steel Grade is Fe415; $\sigma_{\text {sall }}=230 \mathrm{MPa}$
- Concrete Grade is M20; $\sigma_{\text {call }}=7 \mathrm{MPa}$

To Find

- Effective depth 'd’
- Area of steel ' $\mathrm{A}_{\text {st }}{ }^{\prime}$

IS 456-2000
refer table 22
refer table 21

-Solution

Assume $\mathrm{b}=230 \mathrm{~mm}$

For Fe 415 grade steel and M20 grade concrete

$$
\mathrm{R}=0.91 ; \mathrm{pt}=0.44
$$

Now,

$$
\begin{aligned}
& \mathrm{d}=\sqrt{\mathrm{M}_{\text {all }} /(\mathrm{Rb})} \\
& \mathrm{d}=\sqrt{(20 * 106) /(0.91 * 230)} \\
& \mathrm{d}=309.122 \approx 310 \mathrm{~mm}
\end{aligned}
$$

$$
\mathrm{A}_{\text {st }}=\mathrm{pt} * \mathrm{~b} * \mathrm{~d} / 100=0.44 * 230 * 310 / 100=313.72 \mathrm{~mm}^{2} .
$$

Design of Beam 1

Material Grade:

Concrete M20 and Steel Fe415 Permissible stresses:

Concrete $=\sigma_{\text {call }}=7 \mathrm{~N} / \mathrm{mm}^{2}$, Table 21
Steel $=\sigma_{\text {sall }}=230 \mathrm{~N} / \mathrm{mm}^{2}$

IS - 456:2000

Table 22

Calculation of Depth:

 Assume $b=400 \mathrm{~mm}$ $\mathrm{M}=\mathrm{Rb} \mathrm{d}^{2}$Therefore,

$$
\begin{aligned}
& d_{\text {req }}=\sqrt{\frac{M}{R b}}=\sqrt{\frac{180 \times 10^{6}}{0.91 \times 400}} \\
& d_{\text {req }}=703 \mathrm{~mm} \quad \text { Say, } 710 \mathrm{~mm}
\end{aligned}
$$

Table 16
For moderate exposure
Clear cover $=30 \mathrm{~mm}$

Therefore, Overall depth $=\mathrm{D}=710+50=760 \mathrm{~mm}$

Calculation of $\mathrm{A}_{\text {st }}$

$$
\begin{aligned}
& \sigma_{\text {st }} A_{\text {st }} \mathrm{jd}=M \\
& 230 \times \mathrm{A}_{\text {st }} \times 0.9 \times 710=180 \times 10^{6}
\end{aligned}
$$

Therefore, $\mathrm{A}_{\text {streq }}=1224.74 \mathrm{~mm}^{2}$

Provide 4-20 ${ }^{\text {d }}$

$\mathrm{A}_{\text {st }}$ provided $=1256.63 \mathrm{~mm}^{2}$
©Prof. A. Mukherjee, Civil Engineering,

IITB

Curtailment of Reinforcement

We will curtail 2-20 dia bars.
Therefore, $A_{\text {st }}=628.32 \mathrm{~mm}^{2}$
Moment Resisting Capacity of 2-20 dia bars
To Determine the depth of N.A. Taking moment of effective areas about N.A.

$$
\begin{aligned}
& b \frac{x^{2}}{2}=m A_{s t}(d-x) \\
& m=\frac{280}{3 \sigma_{a 11}}=\frac{280}{3 \times 7}=13.33
\end{aligned}
$$

$$
\begin{aligned}
& 400 \frac{x^{2}}{2}=13.33 \times 628.32 \times(710-x) \\
& 200 x^{2}+8375.5056 x-5.946608976 \times 10^{6}=0 \\
& \text { Therefore, } x=152.76 \mathrm{~mm}
\end{aligned}
$$

Moment Resisting capacity of section

$$
\begin{aligned}
\mathrm{M}^{\prime} & =\sigma_{\mathrm{st}} \mathrm{~A}_{\mathrm{st}}(\mathrm{~d}-\mathrm{x} / 3) \\
& =230 \times 628.32 \times(710-152.76 / 3) \\
& =95.246 \mathrm{KN}-\mathrm{m}
\end{aligned}
$$

Theoretical point of curtailment (TPC) from Support

$$
\begin{gathered}
\mathrm{M}^{\prime}=60 y-W y^{2} / 2 \\
95.246=60 y-5 y^{2} \\
5 y^{2}-60 y+95.246=0
\end{gathered}
$$

Solving, $y=10.12 \mathrm{~m}$ and 1.88 m

Actual point of curtailment (APC) shall extend beyond the TPC by distance
12 * bar diameter $=240 \mathrm{~mm}$
Effective depth $=710 \mathrm{~mm}$

Design for Shear

Shear force at critical section $=52.9 \mathrm{KN}$
Clause 22.6.2.1 Percentage of tension reinforcement,

$$
\begin{aligned}
& \text { pt }=\frac{A_{s t}}{b d} \times 100 \\
& \text { pt }=\frac{628.32}{400 \times 710} \times 100=0.22 \\
& \quad \text { Therefore, } \tau_{c}=0.21 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

Table 23

Shear strength of concrete $=\tau_{c}$ bd

$$
\begin{aligned}
&= 0.21 \times 400 \times 710 \\
&= 59,640 \mathrm{~N} \\
&>52,900 \mathrm{~N}
\end{aligned}
$$

${ }^{\text {©Prof. A. Muk }}$ Hence, minimum shear reinforcement is required. Civil Enginet....,

Minimum of the following spacing shall be provided

1) $0.75 \mathrm{~d}=0.75 \times 710=532.5 \mathrm{~mm}$
2) 300 mm
3) $\frac{A_{s v}}{b s_{v}} \geq \frac{0.4}{0.87 f_{y}}$

Using 2-legged $8 \mathbb{\$}$ stirrups.

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{sv}}=100.53 \mathrm{~mm}^{2} \\
& S_{v}=\frac{0.87 f_{y} A_{s}}{0.4 b}=\frac{0.87 \times 415 \times 100.53}{0.4 \times 400} \\
& S_{v}=226.85 \mathrm{~mm}
\end{aligned}
$$

©Prof. A. Mukherjee,
Civil Engingerivfide 2 - legged 8 dia stirrups at $225 \mathrm{c} / \mathrm{c}$.
ITTB

Clause 26.5.1.5

Clause 26.5.1.6

Check for Deflection

$$
\begin{aligned}
& \text { span }=12 \mathrm{~m}>10 \mathrm{~m} \\
& \text { Basic Value }=20 \times 10 / 12=16.67
\end{aligned}
$$

Modification Factor = 1.3
(Depends on area and stress of steel in tension reinforcement)

Modified Basic Value $=16.67 \times 1.3=21.67$

$$
L / d=12 / 0.71=16.90<21.67
$$

Refer Fig. 4 of IS- 456:2000

Side Face Reinforcement

Since the depth of the beam exceeds 750 mm , side face reinforcement shall be provided.

Total area of side face reinforcement = 0.1% of the web area

$$
\begin{aligned}
\mathrm{A}_{\text {side }} & =0.1 \times 760 \times 400 / 100 \\
& =304 \mathrm{~mm}^{2}
\end{aligned}
$$

Provide 4-10 dia. bars.
Above reinforcement shall be provided equally on two faces at a spacing not exceeding 300 mm .

Reinforcement Details

Design of Beams 2

Design a fixed beam with concrete grade M20 and steel Fe415.
Effective span of beam $=10 \mathrm{~m}$
Superimposed Load $=80 \mathrm{KN} / \mathrm{m}$ (including finishing load)
Width of beam $=500 \mathrm{~mm}$ (say)

Solution

Assume overall depth of beam=1500 mm (To calculate self wt of beam)
If required depth is more than assumed then revise the calculations.

Loading:
Superimposed Load $=80 \mathrm{KN} / \mathrm{m}$
Self weight $=25 \times 0.5 \times 1.5=18.75 \mathrm{KN} / \mathrm{m}$
©Prof. A. Mukherjee, Civil Engineering,

IITB

©Prof. A. Mukherjee, Civil Engineering,

Material Grade:
Concrete M20 and Steel Fe415
Permissible stresses:
Concrete $=\sigma_{\text {call }}=7 \mathrm{~N} / \mathrm{mm}^{2}$
Steel $=\sigma_{\text {sall }}=230 \mathrm{~N} / \mathrm{mm}^{2}$

> IS - 456:2000

Design Constants:

$$
\begin{array}{ll}
\mathrm{R} & =0.91 \\
\mathrm{Pt}_{\text {bal }} & =0.44
\end{array}
$$

Calculation of Depth:

$$
\begin{aligned}
& \mathrm{b}=500 \mathrm{~mm} \\
& \mathrm{M}=\mathrm{R} \mathrm{~b}^{2}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& d_{r e q}=\sqrt{\frac{M}{R b}}=\sqrt{\frac{833.33 \times 10^{6}}{0.91 \times 500}} \\
& d_{r e q}=1353 \mathrm{~mm}
\end{aligned}
$$

Say, 1360 mm
Assuming effective cover $=80 \mathrm{~mm}$

Table 16
For moderate exposure
Clear cover=30 mm

Therefore, Overall depth $=\mathrm{D}=1360+80=1440 \mathrm{~mm}$

Calculation of $A_{\text {st }}$ at support $\mathrm{M}=833.34 \mathrm{KNm}$.

$$
\begin{aligned}
& \sigma_{s t} A_{s t} j d=M \\
& 230 \times A_{s t} \times 0.9 \times 1360=833.34 \times 10^{6}
\end{aligned}
$$

Therefore, $\mathrm{A}_{\text {streq }}=2960.14 \mathrm{~mm}^{2}$
Provide 4-25 ब and 4-20 \$
i.e. Area of steel $=4 * 491+4 * 314$
$=3220 \mathrm{~mm}^{2}$

Calculation of $\mathrm{A}_{\text {st }}$ at midspan $M=416.6 \mathrm{KNm}$.

$$
\begin{aligned}
& \sigma_{\text {st }} A_{\text {st }} j d=M \\
& 230 \times A_{\text {st }} \times 0.9 \times 1360=416.6 \times 10^{6}
\end{aligned}
$$

Therefore, $A_{\text {streq }}=1480 \mathrm{~mm}^{2}$

$$
\begin{aligned}
& \text { Provide 5-20 } \\
& \begin{array}{c}
\text { T. }
\end{array} \\
& \text { i.e. Area of steel }=5^{*} 314 \\
&=1570 \mathrm{~mm}^{2}
\end{aligned}
$$ Civil Engineering,

IITB

Curtailment of midspan Reinforcement

We will curtail 2-20 dia bars.
Therefore, $A_{\text {st }}=628.32 \mathrm{~mm}^{2}$
Moment Resisting Capacity of 3-20 dia bars
To Determine the depth of N.A. Taking moment of effective areas about N.A.

$$
\begin{aligned}
& b \frac{x^{2}}{2}=m A_{s t}(d-x) \\
& m=\frac{280}{3 \sigma_{a 11}}=\frac{280}{3 \times 7}=13.33
\end{aligned}
$$

$$
\begin{aligned}
& 500 \frac{x^{2}}{2}=13.33 \times 3 \times 314 \times(1360-x) \\
& 250 x^{2}+12556.86 x-17.077329 \times 10^{6}=0 \\
& \text { Therefore, } x=237.4506 \mathrm{~mm}
\end{aligned}
$$

Moment Resistance capacity of section

$$
\begin{aligned}
\mathrm{M}^{\prime} & =\sigma_{\text {st }} \mathrm{A}_{\mathrm{st}}(\mathrm{~d}-\mathrm{x} / 3) \\
& =230 \times 628.32 \times(1360-237.45 / 3) \\
& =185.10 \mathrm{KN}-\mathrm{m}
\end{aligned}
$$

Theoretical point of curtailment (TPC) from Support

$$
\begin{aligned}
& \mathrm{M}^{\prime}=500 \mathrm{y}-100 \mathrm{y}^{2} / 2-833.33 \\
& 1018.43=500 \mathrm{y}-50 \mathrm{y}^{2} \\
& 50 \mathrm{y}^{2}-500 \mathrm{y}+1018.43=0
\end{aligned}
$$

Solving, $\mathrm{y}=2.8 \mathrm{~m}$ and 7.2 m
Actual point of curtailment (APC) shall extend beyond the TPC by distance
12 x bar diameter $=300 \mathrm{~mm}$
Effective depth $=1360 \mathrm{~mm}$

Design for Shear

Shear force at critical section $=364 \mathrm{KN}$
Clause 22.6.2.1 Percentage of tension reinforcement,

$$
\begin{aligned}
p t & =\frac{A_{s t}}{b d} \times 100 \\
p t & =\frac{3220}{500 \times 1360} \times 100=0.47
\end{aligned}
$$

Therefore, $\tau_{\mathrm{c}}=0.29 \mathrm{~N} / \mathrm{mm}^{2}$
Table 23

Shear strength of concrete $=\tau_{c}$ bd

$$
\begin{aligned}
\mathrm{Vc} & =0.29 \times 500 \times 1360 \\
& =197.2 \mathrm{KN} \\
& <364 \mathrm{KN}
\end{aligned}
$$

©Prof. A. Mukherifence shear reinforcement is required. Civil Engineering,

Design shear Vs $=\mathrm{V}-\mathrm{Vc}$
 $$
=364-197.2
$$
 $$
=166.8 \mathrm{KN}
$$

Assuming 2 Legged $8 \mathbb{\$}$ stirrups

$$
\begin{aligned}
& S_{v}=\frac{\sigma_{s v} A_{s v} d}{V_{s}}=\frac{230 \times 100 \times 1360}{166.8 \times 10^{3}} \\
& S_{v}=187.5 \mathrm{~mm}
\end{aligned}
$$

1) $0.75 \mathrm{~d}=0.75 \times 1360=1020.0 \mathrm{~mm}$ 2) 300 mm
 $$
s_{v}=\frac{0.87 \times 415 \times 100}{0.4 \times 500}=180.5 \mathrm{~mm}
$$

Therefore, provide 8 \$ 2-Legged Stirrups @ $180 \mathrm{c} / \mathrm{c}$.

As shear force goes on reducing towards centre, we can increase the spacing of stirrups in the middle zone.
We will provide 2 legged $8 \mathbb{\$}$ stirrups @ $300 \mathrm{c} / \mathrm{c}$. Shear carrying capacity of nominal stirrups,

$$
\begin{aligned}
& V_{n}=\frac{230 \times 100 \times 1360}{300} \\
& V_{n}=104.26 \mathrm{KN}
\end{aligned}
$$

Area of tension reinforcement in mid span $=1570 \mathrm{~mm}^{2}$

$$
\begin{aligned}
& P_{t}=\frac{A_{s t}}{b d} \times 100 \\
& P_{t}=\frac{1570}{500 \times 1360} \times 100=0.23 \%
\end{aligned}
$$

©Prof. A. Mukherjee, Civil Engineering, IITB

Shear carrying capacity of section,

$$
\begin{aligned}
& =V_{n}+V_{c} \\
& =\tau_{c} b d+V_{n} \\
& =0.212 \times 500 \times 1360+104260 \\
& =247 \mathrm{KN}
\end{aligned}
$$

Distance from centre where this SF will be reached $=247 / 100=2.47 \mathrm{~m}$
We will provide 2 Legged 8 § stirrups @ $300 \mathrm{c} / \mathrm{c}$ in middle 4 m zone.
Side Face Reinforcement
Total area of side face reinforcement =

$$
0.1 \text { \% of the web area }
$$

$$
\begin{aligned}
\mathrm{A}_{\text {side }} & =0.1 \times 1440 \times 500 / 100 \\
& =720 \mathrm{~mm} 2
\end{aligned}
$$

Provide 6-12 dia. bars.

Reintorcement Details

Uncertainties in Design

- Loads
- Materials
- We have so far limited the maximum stress in the materials to take care
 of both
- Not a justifiable approach

Working Stress Method

- Concrete and steel assumed to behave elastically.

The allowable stresses are obtained by dividing the limiting stresses of material by factor of safety.

Typical Stress strain curve for concrete

Limitations of Working Stress Method

- Ignores uncertainties in different types of load.
- Does not use the full range of strains in the material.
- Therefore, disregards the nonlinear part of the material curve.
- Considers failure as a function of stress while it is a function of strain.
- Stress as a measure of safety does not give true margin of safety against failure. A stress factor of safety 3 for concrete does not mean that the member will fail at a load three times the working load.
- The structure must carry loads safely. It is logical to use the method based on load causing failure.
- The additional load carrying capacity of the structure due to redistribution of moment can not be accounted for.
- Produces conservative designs.
© Prof. A. Mukherjee,
Civil Engineering,
IITB

Ultimate Load Method

- The loads are enhanced by load factor-
- Design load $=\mathrm{LF} *$ service load
- The method uses total stress-strain curves of the material.
- Strain based failure.
- LF=3 means the structure has 3 times more capacity
- Since the method considers the plastic region of the stress-strain curve also, it utilizes the reserve capacity of the member.
- Uncertainty in load only is considered. Uncertainty in material is ignored.
©Prof. A. Mukherjee, Civil Engineering,

IITB

Ultimate Load Method

Utilization of large reserve strength in plastic region and of the ultimate strength of the members results in slender section lead to excessive deformation and cracking.

Limit State Method

Combines the concept of ultimate load method and working stress method. Partial factor of safety on materials and load factor on loads.

- Uncertainties of both materials and loads can be considered realistically
- Different limit states are considered - collapse, servicability and durability.

Methods of Design

1. Working Stress Method (WSM) - factor on material properties

2. Ultimate Load Method (ULM) - factor on loads Design load $=$ LF * expected load
3. Limit State Method (LSM) - partial factors on both

Stress-strain curves for Concrete

STRAIN

Limit States

The structure must be fit to perform its function satisfactorily during its service life span. The condition or the state at which the structure, or part of a structure becomes unfit for its use is called Limit State.

Three types of Limit States:

- Limit States of Collapse
i. Flexure ii. Compression
iii. Shear iv. Torsion
- Limit States of Serviceability
i. Deflection ii. Cracking
- Limit States of Durability - time dependent ©prof. A. Mukherje, deteriorations- creep, fatigue, diffusion Civil Engineering,

IITB

Partial Safety Factors γ_{f} for Loads

Table 18 - IS 456 :2000

Combinations	Limit State of Collapse			Limit State of Serviceability		
	DL	IL	WL	DL	IL	WL
DL + IL	1.5	1.5	-	1.0	1.0	-
DL + WL	1.5 or 0.9*	-	1.5	1.0	-	1.0
DL + IL + WL	1.2	1.2	1.2	1.0	0.8	0.8

Notes:

1. While considering earthquake effects, substitute EL for WL.
2. For the limit states of serviceability, the values of γ_{f} given in this table are applicable for short term effects. While assessing the long term effects due to creep the dead load and that part of the live load likely to be permanent may only be considered.
©Prof. A. Mukherjefhis value to be considered when stability against overturning or stress Civil Engineering, reversal is critical.

Partial Safety Factor γ_{m} for Material Strength

- Accounts for construction faults, workmanship and supervision.
- When assessing the strength of a structure or structural member for the limit state of collapse, the values of partial safety factor, γ_{m} should be taken as 1.5 for concrete and 1.15 for steel.
- When assessing the deflection, the material properties such as modulus of elasticity should be taken as those associated with the characteristic strength of the material.

Limit State of Collapse: Flexure

Assumptions

1. Plane sections normal to the axis of the member remain plane during bending. This means that the strain at any point on the cross section is directly proportional to the distance from the neutral axis.
2. The maximum strain in concrete at the outermost compression fibre is 0.0035 .
3. The tensile strength of concrete is ignored.

Assumptions contd....

The strain in the tension reinforcement is to be not less than

$$
\frac{0.87 f_{y}}{E_{s}}+0.002
$$

This assumption is intended to ensure ductile failure, that is, the tensile reinforcement has to undergo a certain degree of inelastic deformation before the concrete fails in compression.

Idealized Stress-Strain Curve for Concrete

©Prof. A. Mukherjee, Civil Engineering,

Stress- strain curve for Mild Steel

Stress -strain curve for Deformed Bars

Stress Block Parameters

©Prof. A. Mukherjee, Civil Engineering,

Stress Block Parameters contd....

Area of the stress block = Area of rectangle ABCD

$$
\begin{aligned}
& \quad+\text { Area of parabola OAD } \\
= & 0.191 \mathrm{f}_{\mathrm{ck}} \mathrm{x}_{\mathrm{umax}}+0.169 \mathrm{f}_{\mathrm{ck}} \mathrm{x}_{\mathrm{umax}} \\
= & 0.36 \mathrm{f}_{\mathrm{ck}} \mathrm{x}_{\mathrm{umax}}
\end{aligned}
$$

$$
\begin{aligned}
& \bar{x}=\frac{0.191 f_{c k} x_{u \max } \times 0.214 x_{u \max }+0.169 f_{c k} x_{u \max } \times 0.643 x_{u \max }}{0.36 f_{c k} x_{u \max }} \\
& =0.42 x_{u \max }
\end{aligned}
$$

Idealized Stress Diagram

Maximum Depth of Neutral Axis

Singly Reinforced Rectangular Section

Limiting moment of resistance and reinforcement index for singly reinforced rectangular sections

$\mathrm{f}_{\mathrm{y}} \mathrm{N} / \mathrm{mm}^{2}$	250	415	500
$\frac{\mathrm{M}_{\mathrm{u}, \text { im }}}{\mathrm{f}_{\mathrm{ck}} \mathrm{bd}^{2}}$	0.149	0.138	0.133
$\frac{\mathrm{p}_{\mathrm{Lim}} \mathrm{f}_{\mathrm{y}}}{\mathrm{f}_{\mathrm{ck}}}$	21.97	19.82	18.87

Limiting moment of resistance factor $M_{u, \text { lim }} / \mathrm{bd}^{2}$, for singly reinforced rectangular sections

fck, N/mm²	fy, $\mathrm{N} / \mathrm{mm}^{2}$		
	$\mathbf{2 5 0}$	$\mathbf{4 1 5}$	$\mathbf{5 0 0}$
$\mathbf{1 5}$	2.24	2.07	2.00
$\mathbf{2 0}$	2.98	2.76	2.66
$\mathbf{2 5}$	3.73	3.45	3.33
$\mathbf{3 0}$	4.47	4.14	3.99

Maximum percentage of tensile reinforcement $p_{t, \text { lim }}$ for singly reinforced rectangular sections

fck, N/mm ${ }^{2}$	fy, N/mm ${ }^{2}$		
	$\mathbf{2 5 0}$	$\mathbf{4 1 5}$	$\mathbf{5 0 0}$
$\mathbf{1 5}$	1.32	0.72	0.57
$\mathbf{2 0}$	1.76	0.96	0.76
$\mathbf{2 5}$	2.20	1.19	0.94
$\mathbf{3 0}$	2.64	1.43	1.13

Singly Reinforced Section

Under Reinforced Section

- $\mathrm{pt}_{\mathrm{t}}<\mathrm{p}_{\mathrm{t}, \text { lim }}$
- Steel yields before the concrete crushes in compression
- Since $A_{s t}<A_{s t, \max }, x_{u}<x_{u, \max }$
- Failure is characterized by substantial deflection and excessive cracking giving ample warning of impending failure.

Under Reinforced, Over Reinforced and Balanced Section

Analysis Problem

Given: Material Properties ($f_{c k}$ and f_{y}) Cross section properties and $\mathrm{A}_{\text {st }}$

To Find: Moment of Resistance M_{ur} or Allowable load

Find out $P_{t . l i m}$ and P_{t}

Example 1:

- A RC beam of rectangular section 230 mm wide and 400 mm deep is reinforced with 4 bars of 12 mm diameter provided with an clear cover of 25 mm . Calculate the ultimate moment of resistance of the section and the maximum uniformly distributed super-imposed load this beam can carry if it is simply supported over a span of 3.5 m . The material used are concrete grade M20 and steel grade Fe415.

Example 1: conta....

Given:

$\mathrm{f}_{\mathrm{ck}}=20 \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{f}_{\mathrm{v}}=415 \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{~b}=230 \mathrm{~mm}, \mathrm{D}=400 \mathrm{~mm}, \quad$ Ast=4-
$\# 12=4 \times 113=452 \mathrm{~mm}^{2}, \mathrm{~L}=3.5 \mathrm{~m}$
Effective depth $=\mathrm{d}=\mathrm{D}-\mathrm{d}^{\prime}=400-31=369 \mathrm{~mm}$
$\mathrm{Pt}=452 \mathrm{X} 100 /(230 \mathrm{X} 369)=0.532<0.96$, under-reinforced
$\mathrm{T}_{\mathrm{u}}=0.87 \mathrm{fy}$ Ast
$=0.87 \times 415 \times 452=163194.6 \mathrm{~N}$
$X_{u . \max }=0.479 \times 369=176.5 \mathrm{~mm}$
Assume, $\mathrm{x}_{\mathrm{u}}=100 \mathrm{~mm}$

$$
\begin{aligned}
\varepsilon_{\mathrm{c}} & =0.0038 \times 100 / 269 \\
& =0.001414
\end{aligned}
$$

Since, $\varepsilon_{c}<0.002$, Stress block is parabolic.
Stress corresponding to strain 0.001414

Example 1:

contd.....

Since, $\varepsilon_{c}<0.002$, Stress block is parabolic.
Stress corresponding to strain 0.00189

$$
=8.9066 \mathrm{~N} / \mathrm{mm} 2
$$

Example 1:

contd.....
Area of Stress Block

$$
\begin{aligned}
= & 708.51 \times 230 \\
C_{u} & =162957.3 \mathrm{~N} \sim \mathrm{~T}_{\mathrm{u}} \\
\text { Lever arm } & =77+246.5 \\
& =323.5 \mathrm{~mm}
\end{aligned}
$$

Moment of Resistance,

$$
\begin{aligned}
\text { Mur } & =C_{u} \times \text { Lever arm } \\
& =162957.3 \times 323.5 \\
& =52.72 \mathrm{kN}-\mathrm{m}
\end{aligned}
$$

For Simply Supported Beam, $\mathrm{M}_{\mathrm{u}}=\mathrm{w}_{\mathrm{u}} \mathrm{L}^{2} / 8$

$$
\text { 52. } 72=w_{u}(3.5)^{2} / 8, \quad w_{u}=34.43 \mathrm{kN} / \mathrm{m}
$$

Safe load, $\mathrm{w}_{\text {safe }}=\mathrm{w}_{\mathrm{u}} / 1.5=22.95 \mathrm{kN} / \mathrm{m}$ Allowable superimposed Load $=w_{\text {safe }}-w_{\text {dead }}$

$$
=22.95-25 \times 0.23 \times 0.4=20.65 \mathrm{kN} / \mathrm{m}
$$

Analysis Problem (Simplified Approach)

1.Depth of Neutral Axis

Equilibrium of Internal Forces; $C_{u}=T_{u}$

$$
\begin{aligned}
& 0.36 f_{c k} b x_{u}=0.87 f_{y} A_{s t} \\
& x_{u}=\frac{0.87 f_{y} A_{s t}}{0.36 f_{c k} b} \\
& \frac{x_{u}}{d}=\frac{0.87 f_{y}}{0.36 f_{c k}}\left(\frac{A_{s t}}{b d}\right)=\frac{0.87 f_{y}}{0.36 f_{c k}}\left(\frac{p_{t}}{100}\right) \text { If } \mathrm{x}_{\mathrm{u}}>\mathrm{x}_{\mathrm{u}, \text { lim }} \text {, then take } \mathrm{x}_{\mathrm{u}}=\mathrm{x}_{\mathrm{u}, \text { lim }}
\end{aligned}
$$

2.Ultimate Moment of Resistance

Mur $=C_{u} \times$ Lever arm $=$ Tu x Lever arm
Lever arm $=d-0.42 x_{u}$
Therefore, Mur $=0.36 \mathrm{f}_{\mathrm{ck}} \mathrm{b} \mathrm{x}_{\mathrm{u}}\left(\mathrm{d}-0.42 \mathrm{x}_{\mathrm{u}}\right)$
©Prof. A. Mukherjee, Civil Engineering,

Or $\quad=0.87 \mathrm{f}_{\mathrm{y}} \mathrm{A}_{\text {st }}\left(\mathrm{d}-0.42 \mathrm{x}_{\mathrm{u}}\right)$

Example 1: (Using Simplified Approach)

Given:

$$
\mathrm{f}_{\mathrm{ck}}=20 \mathrm{~N} / \mathrm{mm}^{2}, \quad \mathrm{f}_{\mathrm{y}}=415 \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{~b}=230 \mathrm{~mm}, \mathrm{D}=400 \mathrm{~mm},
$$

$$
\text { Ast }=4-\# 12=4 \times 113=452 \mathrm{~mm}^{2}, \mathrm{~L}=3.5 \mathrm{~m}
$$

Effective depth $=\mathrm{d}=\mathrm{D}-\mathrm{d}^{\prime}=400-31=369 \mathrm{~mm}$
Depth of Neutral Axis $=\mathrm{x}_{\mathrm{u}}=\frac{0.87 f_{y} A_{s t}}{0.36 f_{c k} b}=\frac{0.87 \times 415 \times 452}{0.36 \times 20 \times 230}=98.54 \mathrm{~mm}$
Balanced depth of N.A. $=x_{u, \max }=0.479 \mathrm{~d}=0.479 \times 369=176.7 \mathrm{~mm}$
Since $x_{u}<x_{u, \text { max }}$, section is under-reinforced.

$$
\begin{aligned}
M_{u r} & =0.87 \text { fy Ast }\left(d-0.42 \mathrm{x}_{\mathrm{u}}\right) \\
& =0.87 \times 415 \times 452(369-0.42 \times 98.54)
\end{aligned}
$$

Example 1: (Using Simplified Approach)

For a simply supported beam,

$$
\begin{aligned}
& M_{u}=w_{u} L^{2} / 8 \\
& 53.46=w_{u}(3.5)^{2} / 8
\end{aligned}
$$

Therefore,

$$
\mathrm{w}_{\mathrm{u}}=34.91 \mathrm{kN}-\mathrm{m}
$$

Safe Load, $w=w_{u} / 1.5$

$$
=23.27 \mathrm{kN}-\mathrm{m}
$$

Dead load $=0.23 \times 0.4 \times 25=2.3 \mathrm{kN}-\mathrm{m}$
Allowable superimposed load $=23.27-2.3$

$$
=20.97 \mathrm{kN}-\mathrm{m}
$$

Example 2:

A rectangular beam simply supported at its ends carries a uniformly distributed superimposed load of $25 \mathrm{kN} / \mathrm{m}$ over a simply supported span of 6 m . The width of beam is 300 mm . The characteristic strength of concrete is $20 \mathrm{~N} / \mathrm{mm} 2$ and that of steel is $500 \mathrm{~N} / \mathrm{mm}^{2}$. Design smallest section of the beam. (By LSM)

Assume overall depth of beam $=\mathrm{L} / 10=6000 / 10=600 \mathrm{~mm}$.
Dead Load $=0.6 \times 0.3 \times 25=4.5 \mathrm{kN} / \mathrm{m}$
Superimposed Load $\quad=25 \mathrm{kN} / \mathrm{m}$

$$
\text { Total }=29.5 \text { kN/m }
$$

Example 2:

Mmax $=w L^{2} / 8=29.5 \times 6^{2} / 8=132.75 \mathrm{kN}-\mathrm{m}$
Factored moment $\mathrm{M}_{\mathrm{u}}=1.5 \times 132.75=199.125 \mathrm{kN}-\mathrm{m}$

Example 2:

For M20 and Fe500,
$\mathrm{Mu}, \mathrm{lim} / \mathrm{bd} 2=2.66$
$d_{\text {req }}=\sqrt{\frac{M_{u, \text { lim }}}{R b}}$
$d_{\text {req }}=\sqrt{\frac{199.125 \times 10^{6}}{2.66 \times 300}}$
$d_{\text {req }}=500 \mathrm{~mm}$

$$
P_{t, \text { lim }}=0.76
$$

$$
A_{s t}=0.76 \times 300 \times 500 / 100=1140 \mathrm{~mm}^{2}
$$

Provide 3 \# 20 Tor and 2 \# 12 Tor bars.

Example 2:

Flanged Sections (T and L beams)

-Slab acts along with the beam in resisting compressive forces.

- Flange provides the compressive resistance and the web provides shear resistance and stiffness.

Requirements for T-beams and L-beams (Clause 23.1.1)
a) The slab shall be cast integrally with the web, or the web and the slab shall be effectively bonded together in any other manner; and
b) If the main reinforcement of the slab is parallel to the beam, transverse reinforcement shall be provided as shown in fig. below. Such reinforcement shall not be less than 60 percent of the main reinforcement at mid span of slab.

©Prof. A. Mukherjee, Civil Engineering,

IITB

Effective width of flange: (Clause 23.1.2)

Properties of Flanged Section

Depending upon depth of N.A. $\left(x_{u}\right)$ in relation to depth of flange thickness $\left(D_{f}\right)$ following cases arise.

Case 1
$\mathrm{x}_{\mathrm{u}}<\mathrm{D}_{\mathrm{f}}$
(N.A. lies inside the flange.)

Case 2
$\mathrm{x}_{\mathrm{u}}<\mathrm{D}_{\mathrm{f}}$
(N.A. lies outside the flange.)

Case 1: Neutral axis lying inside the flange ie $X_{u}<D_{f}$
In this case flanged beam can be considered as a rectangular beam of width $b=b_{f}$ and expression for $X_{u}, M_{u r}$ and $A_{s t}$ for singly reinforced beam can be used by replacing b by b_{f}.

From equilibrium condition, $\mathrm{C}_{\mathrm{u}}=\mathrm{T}_{\mathrm{u}}$

$$
\mathrm{x}_{\mathrm{u}}=\frac{0.87 f_{y} A_{s t}}{0.36 f_{c k} b_{f}}
$$

Moment of Resistance (M_{ur}):

$$
\begin{aligned}
& M_{u r}=0.36 f_{c k} b_{f} x_{u}\left(d-0.42 x_{u}\right) \quad \text { OR } \\
& M_{u r}=0.87 f_{y} A_{s t}\left(d-0.42 x_{u}\right)
\end{aligned}
$$

Case 2: N.A. lying in the web ie $X_{u}>D_{f}$

Case 2a: $3 \mathrm{X}_{\mathrm{u}} / 7>\mathrm{D}_{\mathrm{f}}$

Depth of N.A. $\left(X_{u}\right)$:
For equilibrium, $\mathrm{C}_{\mathrm{u}}=\mathrm{T}_{\mathrm{u}}$

$$
0.36 f_{c k} b_{w} x_{u}+0.446 f_{c k}\left(b_{f}-b_{w}\right) D_{f}=0.87 f_{y} A_{s t}
$$

$$
x_{u}=\frac{0.87 f_{y} A_{s t}-0.446 f_{c k}\left(b_{f}-b_{w}\right) D_{f}}{0.36 f_{c k} b_{w}}
$$

Moment of Resistance $\left(M_{u r}\right): M_{u, \text { web }}+M_{u, f l a n g e}$

$$
M_{u r}=0.36 f_{c k} b_{w} x_{u}\left(d-0.42 x_{u}\right)+0.446 f_{c k}\left(b_{f}-b_{w}\right) D_{f}\left(d-\frac{D_{f}}{2}\right)
$$

©Prof. A. Mukherjee, Civil Engineering,

Case 2b: $3 \mathrm{X}_{\mathrm{U}} / 7<\mathrm{D}_{\mathrm{f}}$
Depth of N.A. (X_{u}) :
For equilibrium, $C_{u}=T_{u}$

$$
\begin{array}{r}
0.36 f_{c k} b_{w} x_{u}+0.446 f_{c k}\left(b_{f}-b_{w}\right) y_{f}=0.87 f_{y} A_{s t} \\
\text { where, } y_{f}=0.15 x_{u}+0.65 D_{f} \leq D_{f}
\end{array}
$$

$$
x_{u}=\frac{0.87 f_{y} A_{s t}-0.446 \times 0.65 f_{c k} D_{f}\left(b_{f}-b_{w}\right)}{0.36 f_{c k} b_{w}+0.446 \times 0.15 f_{c k}\left(b_{f}-b_{w}\right)}
$$

Moment of Resistance (Mur) : $\mathrm{M}_{\mathrm{u}, \mathrm{web}}+\mathrm{M}_{\mathrm{u}, \text { flange }}$

$$
M_{u r}=0.36 f_{c k} b_{w} x_{u}\left(d-0.42 x_{u}\right)+0.446 f_{c k}\left(b_{f}-b_{w}\right) y_{f}\left(d-\frac{y_{f}}{2}\right)
$$

©Prof. A. Mukherjee, Civil Engineering,

Design Example

- Beam Span : 10m (15-R/10)
- Beam end conditions: Fixed
- Beam width : 500mm (your choice)
- Spacing of Beams : 5m c/c
- Slab thickness
: 150mm
- Concrete grade
: M20 (Your grade)
- Reinforcements
: Fe415
- Imposed Load on Slab
: $12.5 \mathrm{kN} / \mathrm{sqm}(10 \mathrm{kN} / \mathrm{sqm})$
©Prof. A. Mukherjee, Civil Engineering,

IITB

©Prof. A. Mukherjee, Civil Engineering,

Imposed load on slab $=12.5 \mathrm{kN} / \mathrm{m}^{2}$

Slab thickness $=0.15 \mathrm{~m}$
Load from slab $=(12+0.15 * 25) \mathrm{kN} / \mathrm{m}^{2}$

$$
=16.35 \mathrm{kN} / \mathrm{m}^{2}
$$

Load on beam $=16.35 * 5=81.75 \mathrm{kN} / \mathrm{m}$

Assumed beam depth 1200 mm

Self weight of beam web $=$ (1.2-
$0.15) * 0.5 * 25$

$$
=13.125
$$

kN/m
Total load $=(81.75+13.125) \mathrm{kN} / \mathrm{m}$
$=94.875 \mathrm{kN} / \mathrm{m}$
Factored load $=1.5 * 94.875=142.3$ kN/m
Maximum sagging moment at span $\left(M_{u}\right)=593 \mathrm{kN}-\mathrm{m}$
For T beams, from

$$
b_{f}=L_{0} / 6+b_{w}+6 D_{f}
$$

Cl 23.1.2(a) page-37
©Prof. A. Mukherjee, Civil Engineering,

IITB

$$
b_{f}=L_{0} / 6+b w+6 D_{f}
$$

$L_{0}=$ Distance between points of zero moments=5.78 m
$b_{w}=500 \mathrm{~mm}$
$\mathrm{D}_{\mathrm{f}}=150 \mathrm{~mm}$
$b_{f}=5.78 / 6+500+6^{*} 150=2360 \mathrm{~mm}$

Let 50 mm be clear cover, Effective depth $=1150 \mathrm{~mm}$

- $M_{u \text { res }}=0.36 * D_{f} *\left(d-0.42 * D_{f}\right) * b_{f} * f_{c k}$

$=2770.546 \mathrm{kNm}$

Since $M_{u \text { res }}>M_{u \text { load }}$
Hence, $x_{u}<D_{f}$. Therefore, neutral axis in flange, Hence Beam acts as a Rectangular Beam and not as a Tee Beam.

$$
\begin{aligned}
& A_{s t, \text { req }}=\frac{0.5 \times f_{c k}}{f_{y}}\left(1-\sqrt{1-\frac{4.6 \times M_{u}}{f_{c k} b d^{2}}}\right) b d \\
& A_{s t, r \text { req }}=\frac{0.5 \times 20}{415}\left(1-\sqrt{1-\frac{4.6 \times 594 \times 10^{6}}{20 \times 23601150^{2}}}\right) 2360 \times 1150 \\
& A_{s t, r \text { req }}=1447.34 \mathrm{~mm}^{2}
\end{aligned}
$$

©Prof. A. Mukherjee, Civil Engineering,

IITB

Provide 4\# 25
 $\mathrm{A}_{\text {st }}$ provided $=1570 \mathrm{~mm}^{2}>1447.3 \mathrm{~mm}^{2}$

Compression
 Douny Reinforceatsectan steel

Tension

Doubly Reinforced Section is required under the following circumstances

> Sectional dimensions are restricted by headroom considerations and strength of singly reinforced section is inadequate.
> If high bending moment exists over a relatively short length of the beam only (e.g. over supports of a continuous beam.)
> To increase the stiffness of the section
> For member subjected to reversal of stresses

Properties of Doubly Reinforced Section

Depth of N.A. $\left(X_{u}\right)$

Equating total compression (in concrete and compression steel) with total tension (in steel), $C_{u}=T_{u}$
$\underbrace{0.36 f_{c k} b x_{u}}_{C_{u 1}}+\underbrace{\left(f_{s c}-f_{c c}\right) A_{s c}}_{C_{u 2}}=\underbrace{0.87 f_{y} A_{s t}}_{T_{u}}$

$\mathrm{f}_{\mathrm{cc}}=$ compressive stress in concrete at the level of compression steel (for simplification f_{cc} may be ignored or may be taken as $0.45 \mathrm{f}_{\mathrm{ck}}$)
fsc $=$ stress in the compression steel corresponding to $\varepsilon_{\mathrm{sc}}$. It can obtained from the strain diagram, and is given by : $\varepsilon_{\mathrm{sc}}=0.0035\left(1-\mathrm{d}_{\mathrm{c}} / \mathrm{x}_{\mathrm{u}}\right)$

For mild steel (Fe250), $\mathrm{f}_{\mathrm{sc}}=\varepsilon_{\mathrm{sc}} \mathrm{E}_{\mathrm{s}}=<0.87 \mathrm{f}_{\mathrm{y}}$
For HYSD bars, the values of $f_{s c}$ are obtained from stress-strain diagram of HYSD Bars corresponding to values of $\varepsilon_{\mathrm{sc}}$ for different ratios $\mathrm{d}_{\mathrm{c}} / \mathrm{d}$.
©Prof. A. Mukherjee, Civil Engineering,

Stress in compression reinforcement $\mathrm{f}_{\mathrm{cc}} \mathrm{N} / \mathrm{mm}^{2}$ in doubly reinforced section with HYSD Bars				
	$\mathrm{~d}_{\mathrm{d}} \mathrm{d}$			
	$\mathbf{0 . 0 5}$	$\mathbf{0 . 1 0}$	$\mathbf{0 . 1 5}$	$\mathbf{0 . 2 0}$
	355	353	342	329
	424	412	395	370

Properties of Doubly Reinforced Section

Moment of Resistance (Mur):

The ultimate moment of resistance is obtained by taking moments of Cu1 (concrete) and Cu2 (compression steel) about centroid of tension steel.

Note: In design, the section is kept balanced to make full utilization of moment of resistance of concerte. Therefore, $M_{u}=M_{u r}=M_{u 1}+M_{u 2}$ where, $M_{u 1}=M_{u r, \max }$ (ie $M_{u, \text { lim }}$) of a singly reinforced balanced section
©Prof. A. Mukherjee, Civil Engineering, and $\quad M_{u 2}=M_{u}-M_{u, \text { max }}$, this moment will be resisted by

Properties of Doubly Reinforced Section

1.Area of tension steel $\mathbf{A}_{\text {st }}$:

$M_{u}=M_{u r}=M u_{1}+M u_{2}$
For section I resisting moment Mu1,
$M_{u 1}=0.87 f_{y} A_{s t 1}\left(d-0.42 X_{u}\right)$
In design problem, the section is kept balanced to make full utilization of concrete.

$$
\text { Hence, } M_{u 1}=M_{u, l i m}
$$

$$
\mathrm{A}_{\mathrm{st1}}=\frac{\mathrm{M}_{\mathrm{u}, \lim }}{0.87 \mathrm{f}} \underset{\mathrm{y}}{ }\left(\mathrm{~d}^{2}-0.42 \mathrm{x} \quad \mathrm{u}, \lim \right)
$$

For section II resisting moment $\mathrm{M}_{\mathrm{u} 2}$,
$M_{u 2}=M_{u}-M_{u 1}=0.87 f_{y} A_{\text {st2 }}\left(d-d_{c}\right)$

$$
\mathrm{A}_{\mathrm{st} 2}=\frac{\mathrm{M}_{\mathrm{u} 2}}{0.87 \mathrm{fy}\left(\mathrm{~d}-\mathrm{d}_{\mathrm{c}}\right)}
$$

Total tension steel $\mathbf{A}_{\text {st }}=\mathbf{A}_{\text {st1 }}+\mathbf{A}_{\text {st2 }}$
©Prof. A. Mukherjee, Civil Engineering, IITB

2.Area of compression steel $\mathbf{A}_{\text {sc }}$

Section Subjected to
moment M_{u} Subjected to
moment M_{u}
 By equilibrium, $\quad \mathrm{C}_{\mathrm{u} 2}=\mathrm{T}_{\mathrm{u} 2}$

$$
A_{s c}=\frac{\left(f_{s c}-f_{c c}\right) A_{s c}=0.87 f_{y} A_{s t 2}}{\left(f_{s c}-f_{c c}\right)} \cong \frac{0.87 f_{y} A_{s t 2}}{f_{s c}}
$$

Design Example

Design a fixed beam with concrete grade M20 and steel Fe415.
Effective span of beam= 10 m
Live Load $=85 \mathrm{kN} / \mathrm{m}$
Take width of beam $=450 \mathrm{~mm}$,
Thickness of slab $=120 \mathrm{~mm}$,
c / c distance between beams $=3000 \mathrm{~mm}$

Solution

Assume overall depth of beam $=800 \mathrm{~mm}$ (To calculate self wt of beam)

```
Loading:
Superimposed Load \(=85 \mathrm{kN} / \mathrm{m}\)
\[
\text { Slab Load }=25 \times 0.12 \times 3.0 \quad=9 \mathrm{kN} / \mathrm{m}
\]
\[
\text { Beam load= } 25 \times(0.8-0.12) \times .450=7.65 \mathrm{kN} / \mathrm{m}
\]
\[
\text { Total } 101.65 \mathrm{kN} / \mathrm{m} \sim 102 \mathrm{kN} / \mathrm{m}
\]
```

Factored load $=1.5^{*} 101.65=152.5 \mathrm{kN} / \mathrm{m} \sim 153 \mathrm{kN} / \mathrm{m}$

Material Grade:

Concrete M20 and Steel Fe415
Maximum B.M. at support $=\mathrm{WL}^{2} / 12=153$ x $10^{2} / 12$

$$
=1275 \mathrm{kN}-\mathrm{m}
$$

Maximum B.M. (at midspan) $=\mathrm{WL}^{2} / 24$ $=153 \times 10^{2} / 24$
$=637.5 \mathrm{kN}-\mathrm{m}$

We will design centre section as T-beam and support section as doubly reinforced beam.

Design of T-beam (at centre): $M_{u}=637.5 \mathrm{kN}-\mathrm{m}$ Effective flange width $b_{f}=L_{0} / 6+b w+6 D_{f}$
$\mathrm{L}_{0}=$ Distance between points of zero moments $=5.78 \mathrm{~m}$
$\mathrm{b}_{\mathrm{w}}=450 \mathrm{~mm}$
$\mathrm{D}_{\mathrm{f}}=120 \mathrm{~mm}$

$$
b_{f}=5.78 / 6+450+6^{*} 120=2133 \mathrm{~mm}<b=3000 \mathrm{~mm}
$$

Assuming 25 mm dia bars.
Effective cover d' $=30+10+12.5=52.5 \mathrm{~mm}$
Effective depth $\mathrm{d}=800-52.5=747.5 \mathrm{~mm}$

Provide 6 \# 25 dia bars.
$\mathrm{A}_{\text {st,prov }}=2940 \mathrm{~mm}^{2}$

Design of doubly reinforced section (at support) : $M_{u}=1275 \mathrm{kN}-\mathrm{m}$

$$
\text { For M20 and Fe415, } R_{u}=2.76 \text { and } P_{t}=0.96
$$

$$
D=800 \mathrm{~mm}, \mathrm{~b}=450 \mathrm{~mm}
$$

As we need doubly reinforced section, higher effective cover will be assumed. Say d' $=80 \mathrm{~mm}$

Effective depth d=800-80=720 mm

$$
M u, \lim =R_{u} b d^{2}=2.76 \times 450 \times 720^{2}=643.82 k N-m<M_{u}
$$

The beam must be doubly reinforced
Calculation of tension steel $A_{\text {st }}$:
Total tension steel $A_{s t}=A_{s t 1}+A_{\text {st2 }}$

$$
A_{s t 1}=\frac{M_{u . \lim }}{0.87 \times f_{y} \times\left(d-0.42 x_{u . \lim }\right)}
$$

$$
A_{s t 1}=\frac{643.82 \times 10^{6}}{0.87 \times 415(720-0.42 \times 344.88)} \quad \begin{array}{ll}
\text { For Fe415 } \\
\mathrm{X}_{\mathrm{u}, \text { lim }}=0.479 \mathrm{~d}
\end{array}
$$

$$
A_{s t 1}=3100.4 \mathrm{~mm}^{2}
$$

$$
\begin{aligned}
& A_{s t 2}=\frac{M_{u}-M_{u, \text { lim }}}{0.87 \times f_{y}\left(d-d_{c}\right)} \quad \begin{array}{l}
\mathrm{d}_{c}=\text { effective cover to compression } \\
\text { reinforcement }
\end{array} \\
& A_{s t 2}=\frac{631.18 \times 10^{6}}{0.87 \times 415(720-50)} \\
& A_{s t 2}=2609.2 \mathrm{~mm}^{2}
\end{aligned}
$$

Total tension steel $A_{\text {st }}=A_{\text {st1 }}+A_{\text {st2 }}$

$$
=3100.4+2609.2=5709.6 \mathrm{~mm}^{2}
$$

Provide 12\# 25 dia bar. $A_{\text {stprov }}=5880 \mathrm{~mm}^{2}$

Calculation of compression steel A_{sc} :

$$
A_{s c}=\frac{0.87 f_{y} A_{s t 2}}{f_{s c}}
$$

$\mathrm{f}_{\mathrm{sc}}=$ stress in compression steel which can be calculated from ($\mathrm{d}_{\mathrm{d}} / \mathrm{d}$)

$$
\begin{gathered}
\mathrm{d}_{\mathrm{c}} / \mathrm{d}=50 / 720=0.0694 \longrightarrow \mathrm{f}_{\mathrm{sc}}=354 \mathrm{~N} / \mathrm{mm}^{2} \\
A_{s c}=\frac{0.87 \times 415 \times 2609}{354} \\
A_{s c, \text { req }}=2661 \mathrm{~mm}^{2}
\end{gathered}
$$

Provide 6 \# 25 dia Bars.
$A s_{\mathrm{t}, \text { provd }}=2940 \mathrm{~mm}^{2}$

Curtailment of Support Reinforcement

As per Clause 26.2.3.4,
At least one-third of the total reinforcement provided for negative moment at the support shall extend beyond the point inflection for a distance not less than the effective depth of the member or 12Ф or one-sixteenth of the clear span whichever is greater.

Therefore, $\mathrm{A}_{\text {st }}$ required to extend $=5880 / 3=1960 \mathrm{~mm}^{2}$
We will curtail 8\# 25 dia bars. $A_{\text {st,avaliable }}=1960 \mathrm{~mm}^{2}$
Required to extend by distance,
Effective depth $\mathrm{d}=745 \mathrm{~mm}$
$12 \Phi=12 \times 25=300 \mathrm{~mm}$
Clear span/16 $=(10,000-400) / 16=600 \mathrm{~mm}$

Whichever is greater (assuming support width $=400 \mathrm{~mm}$)

Design for Shear
Factored Shear force at critical section $\mathrm{V}_{\mathrm{u}}=656 \mathrm{kN}$ $\zeta_{c \max }=\mathrm{V}_{\mathrm{u}} / \mathrm{bd}=2.023 \mathrm{~N} / \mathrm{mm}^{2}<2.8 \mathrm{~N} / \mathrm{mm}^{2}$

Percentage of tension reinforcement,

$$
\begin{aligned}
& P_{t}=\frac{A_{s t}}{b \times d} \times 100=\frac{5880}{450 \times 720} \times 100 \\
& P_{t}=1.8 \%
\end{aligned}
$$

$$
\text { Therefore, } \tau_{\mathrm{c}}=0.758 \mathrm{~N} / \mathrm{mm}^{2}
$$

Shear strength of concrete $=\tau_{c}$ bd

$$
\begin{aligned}
V_{c}= & 0.758 \times 450 \times 720 \\
= & 245.6 \mathrm{KN} \\
& <655.5 \mathrm{KN}
\end{aligned}
$$

Clause 22.6.2.1
Clause 40.2.3

$$
\begin{aligned}
\text { Design shear } \mathrm{V}_{\mathrm{s}} & =\mathrm{V}_{\mathrm{u}}-\mathrm{V}_{\mathrm{c}} \\
& =655.5-245.6 \\
& =409.9 \mathrm{KN}
\end{aligned}
$$

Provide 2- legged 12 § stirrups.

$$
S_{v}=\frac{0.87 f_{y} A_{s v} d}{V_{s}}=\frac{0.87 \times 415 \times 226 \times 720}{409.9 \times 10^{3}}=143.32 \mathrm{~mm}
$$

Clause 40.4 a)

Therefore, provide 12 \$ 2-Legged Stirrups @ 140 c/c.

Minimum spacing requirement for shear reinforcement

1) $0.75 \mathrm{~d}=0.75 \times 720=540 \mathrm{~mm}$
2) 300 mm
3) $\frac{A_{s v}}{b s_{v}} \geq \frac{0.4}{0.87 f_{y}}$

Clause 26.5.1.5

Using 2-legged $12 \mathbb{\$}$ stirrups.

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{sv}}=226 \mathrm{~mm}^{2} \\
& S_{v}=\frac{0.87 f_{y} A_{s v}}{0.4 b}=\frac{0.87 \times 415 \times 226}{0.4 \times 450} \\
& S_{v}=453 \mathrm{~mm}
\end{aligned}
$$

As shear force goes on reducing towards the centre, we can increase the spacing of stirrups in the middle zone.
We will provide 2 legged $12 \mathbb{\$}$ stirrups @ $300 \mathrm{c} / \mathrm{c}$.

Provision 26.5.1.6 need not be complied with when the maximum shear stress calculated is less than half the permissible value and in members of minor structural importance such as lintels.
Percentage of tension steel in midspan,

$$
\begin{gathered}
P_{t}=\frac{A_{s t}}{b_{w} d} \times 100=\frac{2940}{450 \times 745.5} \times 100=0.87 \% \\
\tau_{\mathrm{c}}=0.589 \mathrm{~N} / \mathrm{mm}^{2}
\end{gathered}
$$

Table 19
Shear resisting capacity of section $=\tau_{c} \mathrm{~b}$ d
©Prof. A. Mukherjee, Civil Engineering, IITB
$=0.589 \times 450 \times 745.5$
$\mathrm{V}_{\mathrm{u}}^{\prime}=197.59 \mathrm{kN}$

Distance corresponding to shear force $\mathrm{V}_{\mathrm{u}}{ }^{\prime} / 2$ (ie 98.79 kN)

$$
\begin{array}{r}
98.79=1.5 \times(510-102 y) \\
y=4.35 \mathrm{~m}
\end{array}
$$

We will provide 2 Legged 12 \$ stirrups @ $300 \mathrm{c} / \mathrm{c}$ in middle 1.3 m zone.

No Side face reinforcement is required as depth of web in a beam is less than 750 mm .
(Depth of web $=800-120=680 \mathrm{~mm})$

Check for Deflection

$$
\text { span = } 10 \mathrm{~m}
$$

Basic Value $=26$
Modification Factor $=1.1$
(Depends on area and stress of steel in tension reinforcement)
Reduction Factor $=0.8$
(Depends on ratio of b_{w} / b_{f}) Modified Basic Value $=26 \times 1.1 \times 0.8=22.88$

$$
L / d=10 / 0.745=13.42<22.88
$$

Reintorcement Details

Slabs

- Slab is a planer member supporting a transverse load.
- Slabs transfer the load to the supporting beams in one or two directions.
- Slabs behave primarily as flexural members and the design is similar to that of beam.
- In slab, the shear stresses are usually low and hence shear reinforcement is rarely required.
- The depth of slab is governed by the deflection criteria.

Distribution of loads

$$
\begin{aligned}
& \mathrm{P}=2 \mathrm{P}_{\mathrm{x}}+2 \mathrm{P}_{\mathrm{y}} \\
& \\
& \quad \delta=\frac{P_{x} L_{x}^{3}}{24 E I}=\frac{P_{y} L_{y}^{3}}{24 E I} \\
& L_{x}<L_{y} \longrightarrow P_{x} \gg P_{y} \\
& \frac{L_{y}}{L_{x}}=2 \longrightarrow \frac{P_{x}}{P_{y}}=8
\end{aligned}
$$

For a slab supported on four edges the shorter span carries higher load

The direction with higher stiffness carries higher load

Classification of Slabs

$L_{v} / L_{x}>2$ (One way action)
Maih Reinforcement is in one direction.

Two way Slab
$L_{y} / L_{x}<2$ (Two way action)
Reinforcement is in two orthogonal directions

2. When the slab is supported on two opposite parallel edges then it spans only in one direction.

©Prof. A. Mukherjee, Civil Engineering,

Slab-beam arrangement.
Width of beam $=300 \mathrm{~mm}$,
Live load $=5 \mathrm{kN} / \mathrm{m}^{2}$, Floor finish Load $=1 \mathrm{kN} / \mathrm{m}^{2}$
©Prof. A. Mukherjee,
Civil Engineering,' Design slab and show reinforcement details.
$L_{x}=5000 \mathrm{~mm}$ (Shorter dimension of slab)
$y=12000 \mathrm{~mm}$ (Longer dimension of slab)
$L_{\gamma} / L_{x}=12000 / 5000=2.4>2.0$, Hence one way slab.
Trial depth (From deflection criteria):
Basic ($\mathrm{L}_{\mathrm{x}} / \mathrm{d}$) ratio $=26$
Assuming modification factor $=1.25$
Allowable $\left(L_{x} / d\right)$ ratio $=26 \times 1.25=32.5$
Therefore, $\mathrm{d}=5000 / 32.5=153 \mathrm{~mm}$
Assuming effective cover $=25 \mathrm{~mm}$
Overall depth $D=153+25=178 \mathrm{~mm}$ Say 175 mm

Calculation of Loads:
Dead Load $=25 \times 0.175=4.375 \mathrm{kN} / \mathrm{m}^{2}$
Finish Load $=1 \mathrm{kN} / \mathrm{m}^{2}$
Total Dead Load $=5.5 \mathrm{kN} / \mathrm{m}^{2}$
Live Load $=5=5.0 \mathrm{kN} / \mathrm{m}^{2}$
Factored dead load $=\mathrm{W}_{\mathrm{ud}}=1.5 \times 5.375=8.1 \mathrm{kN} / \mathrm{m}^{2}$
Factored live load $=\mathrm{W}_{\mathrm{uL}}=1.5 \times 5.0=7.5 \mathrm{kN} / \mathrm{m}^{2}$

Influence lines for continuous beams

BM at Penultimate Support

BM at end span

Imposed loads for maxm. BM

Calculation of B.M. (Refer Table $=12$, clause 22.5.1)

Calculation of S.F. \quad (Refer Table $=13$, Clause 22.5 .1 and 22.5.2)

Type of Load	At End Support	At support next to end support		At all other interior support
		Outer Side	Inner Side	
D.L. $=8.1 \mathrm{kN} / \mathrm{m}^{2}$	$\begin{gathered} 0.4 \times 8.1 \times 5.0 \\ =16.2 \mathrm{kN} / \mathrm{m} \end{gathered}$	$\begin{gathered} 0.6 \times 8.1 \times 5.0 \\ =24.3 \mathrm{kN} / \mathrm{m} \end{gathered}$	$\begin{gathered} 0.55 \times 8.1 \times 5.0 \\ =22.28 \mathrm{kN} / \mathrm{m} \end{gathered}$	$\begin{gathered} 0.5 \times 8.1 \times 5.0 \\ =20.25 \mathrm{kN} / \mathrm{m} \end{gathered}$
$\mathrm{L} . \mathrm{L}=7.5 \mathrm{kN} / \mathrm{m}^{2}$	$\begin{gathered} 0.45 \times 7.5 \times 5.0 \\ =16.88 \mathrm{kN} / \mathrm{m} \end{gathered}$	$\begin{gathered} 0.6 \times 7.5 \times 5.0 \\ =22.5 \mathrm{kN} / \mathrm{m} \end{gathered}$	$\begin{gathered} 0.6 \times 7.5 \times 5.0 \\ =22.5 \mathrm{kN} / \mathrm{m} \end{gathered}$	$\begin{gathered} 0.6 \times 7.5 \times 5.0 \\ =22.5 \mathrm{kN} / \mathrm{m} \end{gathered}$
Total ${ }^{\prime} \mathrm{V}_{\mathrm{u}}{ }^{\prime}$	33.08 kN/m	46.8 kN/m	$44.78 \mathrm{kN} / \mathrm{m}$	$42.75 \mathrm{kN} / \mathrm{m}$
$\zeta_{v}=V_{u} / \mathrm{d}$	$0.22 \mathrm{~N} / \mathrm{mm}^{2}$	$0.31 \mathrm{~N} / \mathrm{mm}^{2}$	$0.30 \mathrm{~N} / \mathrm{mm}^{2}$	$0.29 \mathrm{~N} / \mathrm{mm}^{2}$
P_{t}	*0.25 \%	0.58 \%	0.58\%	0.53\%
ζ_{c} (Table 19)	$0.36 \mathrm{~N} / \mathrm{mm}^{2}$	$0.50 \mathrm{~N} / \mathrm{mm}^{2}$	$0.50 \mathrm{~N} / \mathrm{mm}^{2}$	$0.49 \mathrm{~N} / \mathrm{mm}^{2}$
$\begin{gathered} \zeta_{c} k \\ \text { (Clause 40.2.1.1) } \end{gathered}$	$\begin{gathered} 1.25 \times 0.36 \\ =0.45 \mathrm{~N} / \mathrm{mm}^{2} \\ >\zeta_{\mathrm{N}} \end{gathered}$	$\begin{gathered} 1.25 \times 0.50 \\ =0.625 \mathrm{~N} / \mathrm{mm}^{2} \\ >\zeta_{v} \end{gathered}$	$\begin{gathered} 1.25 \times 0.50 \\ =0.625 \mathrm{~N} / \mathrm{mm}^{2} \\ >\zeta_{v} \\ \hline \end{gathered}$	$\begin{gathered} 1.25 \times 0.49 \\ =0.62 \mathrm{~N} / \mathrm{mm}^{2} \\ >\zeta_{\mathrm{N}} \\ \hline \end{gathered}$

©Prof. A. Multheeßece, Shear reinforcement is not required. Civil Engineering,

Distribution Steel: (Clause 26.5.2.1)

For deformed bars 0.12% (of total C/S area) reinforcement shall be provided.
$A_{s t}=0.12 \times 1000 \times 175 / 100=210 \mathrm{~mm}^{2}$

Using 8 § bars (area $=50 \mathrm{~mm}^{2}$)
Spacing $=1000 \times 50 / 210=238 \mathrm{~mm}(<5 d$ or 450 mm$)$
Clause 26.3.3 b)
Provide 8Φ bars @ 230 c/c.

Check for Deflection

span $=5 \mathrm{~m}$
Basic Value $=26$
Modification Factor $=1.25$
(Depends on area and stress of steel

Modified Basic Value $=26 \times 1.25=32.5$

$$
L / d=5000 / 150=33.3 \sim 32.5
$$

Two Way Slabs (Annexure D, is 456:2000)

$$
L_{y} / L_{x}<2
$$

Restrained Slabs
(Corners of a slab are prevented from lifting)

Simply Supported Slabs

(Corners of a slab are not prevented from lifting)

Restrained Two Way Slabs (D-1 , is 456:2000)

D-1-1 The maximum bending moments per unit width in a slab are given by the following equations:

$$
M_{x}=\alpha_{x} w L_{x}^{2} \text { and } M y=\alpha_{y} w L_{x}^{2}
$$

Where,

$$
\begin{aligned}
& M_{x}, M_{y}=\text { moments on strips of unit width spanning } L_{x} \\
& \text { and } L_{y} \text { respectively. }
\end{aligned}
$$

$\mathrm{w}=$ total design load per unit area.
$L x$ and $L y=$ Lengths of the shorter span and longer span respectively.
α_{x} and α_{y} are coefficients given in table 26 (IS 456:2000)

Restrained Two Way Slabs

Provision of Reinforcement:

- Slabs are divided in each direction into middle strips and edge strips. The middle strip being three-quarters of the width and each edge strip oneeight of the width.

- Maximum moments calculated as per clause D-1-1 apply only to ©Prc the middle strips and no redistribution shall be made.
Civı tngıneerıng,
IITB

Restrained Two Way Slabs

Provision of Reinforcement

- Tension reinforcement provided at mid-span in the middle strip shall extend in the lower part of the slab to within 0.25 L of a continuous edge, or 0.15 L of a discontinuous edge.
- Over the continuous edges of a middle strip, the tension reinforcement shall extend in the upper part of the slab a distance of 0.15 L from the support, and at least 50 percent shall extend a distance of 0.3 L .
- At a discontinuous edge, negative moments may arise. They depend on the degree of fixity at the edge of the slab but, in general, tension reinforcement equal to 50 percent of that provided at mid-span extending 0.1 L into the span will be sufficient.
- Reinforcement in edge strip, parallel to that edge, shall comply with the minimum given in clause 26.5.2.1 and requirements for torsion given in i to iii.
©Prof. A. Mukherjee, Civil Engineering,

IITB

Restrained Two Way Slabs

Provision of Reinforcement

i. Torsion reinforcement shall be provided at any corner where the slab is simply supported on both edges meeting at that corner. It shall consist of top and bottom reinforcement, each with layers of bars placed parallel to the sides of the slab and extending from the edges a minimum distance of one-fifth of the shorter span. The area of reinforcement in each of these four layers shall be three-quarters of the area required for the maximum mid-span moment in the slab.
ii. Torsion reinforcement equal to half that described above shall be provided at a corner contained by edges over only one of which the slab is continuous.
iii. Torsion reinforcements need not be provided at any corner contained by edges over both of which the slab is continuous.

Reinforcement Detailing for restrained two way slab Annexure D, D-1.22 to D-1.10, IS 456:2000

Simply supported Two Way Slabs (D-2, Is 456:2000)

- When simply supported slabs do not have adequate provision to resist torsion at corners and to prevent the corners from lifting, the maximum moments per unit width are given by the following equation:

$$
\begin{gathered}
M_{x}=\alpha_{x} w L_{x}^{2} \text { and } M y=\alpha_{y} w L_{x}^{2} \\
\alpha_{x} \text { and } \alpha_{y} \text { are coefficients given in table } 27 \text { (IS 456:2000) }
\end{gathered}
$$

- At least 50 percent of the tension reinforcement provided at mid-span should extend to the supports. The remaining 50 percent should extend to within $0.1 \mathrm{~L}_{x}$ or $0.1 \mathrm{~L}_{y}$ of the support, as appropriate.

Design Example

Design a R.C. slab for a room measuring $6.5 \mathrm{~m} \times 5 \mathrm{~m}$. The slab is to be cast monolithically over the beams with corners held down. The width of the supporting beams is 200 mm . The slab carries superimposed load of $3 \mathrm{kN} / \mathrm{m}^{2}$. Use M20 grade of concrete and Fe415 steel.

Effective span, $L_{x}=5000+200 / 2+200 / 2=5200 \mathrm{~mm}$

$$
L_{y}^{\hat{y}}=6500+200 / 2+200 / 2=6700 \mathrm{~mm}
$$

Note: Effective span $=\mathrm{c} / \mathrm{c}$ distance between support or clear span +d , whichever is smaller. (Clause 22.2 a)
Here effective span is taken as c/c distance between support.
$\mathrm{L}_{\mathrm{x}}=5200 \mathrm{~mm}$ (Shorter dimension of slab)
$\mathrm{L}_{\mathrm{y}}=6700 \mathrm{~mm}$ (Longer dimension of slab)
$L_{y} / L_{x}=6700 / 5200=1.29<2.0$, Hence two way slab.
Trial depth (From deflection criteria):
Basic ($\mathrm{L}_{\mathrm{x}} / \mathrm{d}$) ratio $=20$
Assuming modification factor $=1.25$
Allowable (Lx/d) ratio $=20 \times 1.25=25$
Therefore, $\mathrm{d}=5200 / 25=208 \mathrm{~mm}$
Assuming effective cover $=25 \mathrm{~mm}$
Overall depth $\mathrm{D}=208+25=233 \mathrm{~mm}$ Say 225 mm
Therefore, effective depth ' $\mathrm{d}^{\prime}=200 \mathrm{~mm}$
©Prof. A. Mukherjee, Civil Engineering,

IITB

Calculation of Loads:

Consider 1 m width of slab ie $\mathrm{b}=1000 \mathrm{~mm}$
Dead Load $=25 \times 0.225=5.625 \mathrm{kN} / \mathrm{m}$
Live Load $=3 \times 1=3.0 \mathrm{kN} / \mathrm{m}$
Total Load $=8.625 \mathrm{kN} / \mathrm{m}$

Ultimate load $=W_{u}=1.5 \times 8.625=12.94 \mathrm{kN} / \mathrm{m}$

Ly / Lx = 1.29 , Four edges discontinuous

(Refer table 26 , IS 456:2000)

Span	α	M	${ }^{\prime} d^{\prime}$ from BM consideration	$\mathrm{A}_{\text {st }}$
Short span	$\alpha_{x}=0.0783$	$M_{u x}=\alpha_{x} w_{u} L_{x}{ }^{2}$ $=27.40 \mathrm{kN}-\mathrm{m}$	99.63 mm $<200 \mathrm{~mm}$	8 dia @ $130 \mathrm{c} / \mathrm{c}$
Long Span	$\alpha_{y}=0.056$	$M_{u y}=\alpha_{y} w_{u} L_{x}{ }^{2}$ $=19.6 \mathrm{kN}-\mathrm{m}$	-	8 dia @ $180 \mathrm{c} / \mathrm{c}$

©Prof. A. Mukherjee, Civil Engineering,

Distribution Steel: (Clause 26.5.2.1)

For deformed bars 0.12% (of total C/S area) reinforcement shall be provided.

$$
A_{s t}=0.12 \times 1000 \times 225 / 100=270 \mathrm{~mm}^{2}
$$

Using 8 bars (area $=50 \mathrm{~mm}^{2}$)
Spacing $=1000 \times 50 / 270=185 \mathrm{~mm}(<5 d$ or 450 mm$)$

Provide 8 dia. bars @ 180 c/c.

Check for Shear:

(a) Long discontinuous edge

$$
\begin{aligned}
V_{u, \max } & =w_{u} L_{x}[\beta /(2 \beta+1)] \quad \text { where } \beta=L_{y} / L_{x}=1.29 \\
& =24.25 \mathrm{kN}
\end{aligned}
$$

$\zeta_{u}=0.12 \mathrm{~N} / \mathrm{mm}^{2}$
Area of tension steel $=385 \mathrm{~mm}^{2}$

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{t}}=0.1925 \% \\
& \zeta_{\mathrm{c}} \text { perm }=0.32 \mathrm{~N} / \mathrm{mm}^{2}>\zeta_{\mathrm{u}}
\end{aligned}
$$

Hence shear reinforcement is not required.
(b) Short discontinuous edge

$$
\begin{aligned}
\mathrm{V}_{\mathrm{u}, \max } & =\mathrm{w}_{\mathrm{u}} \mathrm{~L}_{\mathrm{x}} / 3 \\
& =22.43 \mathrm{kN} \\
\zeta_{\mathrm{u}} & =0.112 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

Area of tension steel $=278 \mathrm{~mm}^{2}$

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{t}}=0.12 \% \\
& \zeta_{c, \text { perm }}=0.28 \mathrm{~N} / \mathrm{mm}^{2}>\zeta_{\mathrm{u}}
\end{aligned}
$$

Hence shear reinforcement is not required.

Check for Deflection

span $L_{x}=5.2 \mathrm{~m}$
Basic Value $=20$
Modification Factor $=1.4$
(Depends on area and stress of steel in tension reinforcement , $P_{t}=0.1925$)

Modified Basic Value $=20 \times 1.4=28$

$$
L / d=5200 / 200=26<28
$$

Torsion Steel:

All the edges are discontinuous edges.
Area of steel @ midspan=A $\mathrm{A}_{\text {stx }}=385 \mathrm{~mm}^{2}$ Torsion reinforcement $=0.75 \mathrm{~A}_{\text {stx }}$
$=289 \mathrm{~mm}^{2}$
This reinforcement shall be provided in the form of grid and should be extended from the edges for a distance $L_{x} / 5=1040 \mathrm{~mm}$

Using 8 dia bars.
Spacing $=50 \times 1000 / 289=173 \mathrm{~mm}$
Provide 8 dia bars at $170 \mathrm{c} / \mathrm{c}$.

Reinforcement Detailing

Design of Compression members

- Structural element subjected to axial compressive forces (almost every time moment is also be present) is called compressive member. Like,
- Columns
- Struts
- Inclined members
- Shear walls

Definitions according to code

- Clause 25.1.1 - Column or strut is a compression member, effective length (explained later) of which exceeds three times the least lateral dimension.
- Clause 26.5.3.1 h - Pedestal is the compression member, the effective length of which does not exceed three times the least lateral dimension.

Capacity computation of short column under axial loading

- Under pure axial loading conditions, the design strength of a short column is obtainable as,

$$
\begin{aligned}
P_{0} & =C_{C}+C_{S} \\
& =f_{c c} A c+f_{s c} A_{s c} \\
=>P_{0} & =f_{c c} A_{g}+\left(f_{s c}-f_{c c}\right) A_{s c} \\
P_{0} & =f_{c c} A_{g}+\left(f_{s c}-f_{c c}\right) A_{s c}
\end{aligned}
$$

$$
\begin{aligned}
f_{s c}= & 0.870 \text { fy for Fe } 250 \\
& 0.790 \text { for for Fe } 415 \\
& 0.746 \text { for for Fe } 500
\end{aligned}
$$

Where,
$A_{q}=$ gross area of cross-section $=A_{c}+A_{s c}$
$\begin{aligned} & \text { ©Prof. A. Mukhergee } \\ & \text { Civil Engineensse }\end{aligned}=$ total area of longitudinal reinforcement $=\Sigma A_{s i}$
ІІтв $A=$ net area of concrete in the section $=A-A$

Lets take a column of 600 X 450 with the following reinforcement. Now compute its axial load carrying capacity.

Here $\mathrm{A}_{\mathrm{g}}=600 * 450 \mathrm{~mm}^{2}$ (steel neglected)
Now steel provided
$4-25 \phi$ at corners : $4 * 491=1964 \mathrm{~mm}^{2}$
$4-20 \phi$ additional : 4* $314=1256 \mathrm{~mm}^{2}$
Total longitudinal steel provided $=3220 \mathrm{~mm}^{2}$
Since $P_{o}=f_{c c} A_{g}+\left(f_{s c}-f_{c c}\right) A_{s c}$ $\left.P_{0}=\right) .446 * 20 * 600 * 450+(0.79 * 415-$ $0.446 * 20$) 3220 = 3435
KN
This is the factored capacity. Hence load carrying capacity of this column is 4260 KN .

Code requirements for reinforcement and detailing

Clause 26.5.3.1

- Longitudinal reinforcement shall not be less than 0.8% nor more than 6% (4% is actually recommended) of the gross sectional area of the column.
- Minimum number of longitudinal bars provided in a column shall be 4 in rectangular and 6 in circular columns (12 mm dia min. bar)

Code requirements for reinforcement and detailing (contd.)

- Spacing of longitudinal bars measured along the periphery of the column shall not exceed 300 mm
- In pedestals in which longitudinal reinforcement is not taken in account in strength calculations, nominal longitudinal reinforcement not less than 0.15 percent of the cross-sectional area shall be provided.

Transverse Reinforcement

Clause 26.5.3.2

- All longitudinal reinforcement in a compression member must be enclosed within transverse reinforcement, comprising either lateral ties (with internal angles 135°) or spirals.
- The pitch of transverse reinforcement shall not be more than the least of following:
i) The least lateral dimension
ii) Sixteen times the smallest diameter
of the longitudinal reinforcement bar to be tied.
iii) 300 mm

IITB

Transverse Reinforcement (contd.)

- The diameter lateral ties shall not be less than $1 / 4$ of diameter of largest longitudinal bar and in no case less than 6 mm . (In your code it is misprinted as 16 mm , please correct it)

Helical reinforcement

- Pitch - Helical reinforcement shall be regular formation with the turns of the helix spaced evenly and its ends shall be anchored properly by providing one and a half extra turns of the spiral bar.
- The diameter and pitch of the spiral may be computed as in last slide except when column is designed to carry a 5% overload, in which case,

Pitch < = \min (75 mm , core diamtere/6)
Pitch $=>\max (25 \mathrm{~mm}, 3$ * diameter of bar
©Prof. A. Mukherjee, Civil Engineering,

IITB forming the helix)

Classification - Based on loading

Uniaxial eccentric loading
Biaxial eccentric loadins.

Design of short columns under compression with uniaxial bending

Here the column is subjected to axial compression combined with uniaxial bending (bending in major or minor axis).
This is equivalent to axial load applied at
an eccentricity $e=M_{u} / P_{u}$ with respect

Strain Profiles

4. This refers to ultimate limit state wherein the yielding of the outermost steel on tension side and the attainment of maximum compressive strain in concrete (0.0035) at the highly compressed edge of the column occur simultaneously. ($e=e_{b}$)

1. The strain corresponding to $\mathrm{e}=0$ ($M_{u}=0$) is limited to $\varepsilon_{\mathrm{cu}}=0.002$ at the limit state of collapse in compression.
2. This is equivalent to pure flexure ($\mathrm{P}_{\mathrm{u}}=0$) and at the limit state of collapse the strains is specified as $\varepsilon_{\mathrm{cu}}=0.0035$.

Strain profile for within above limiting cases is non-uniform and assumed to be linearly varying across the section.
2. This occurs when the entire section is in compression and NA lies outside the section ($X_{u}>D$), the code limits the strain as $\varepsilon_{\mathrm{c}}==0.0035-0.75 \varepsilon_{\mathrm{c}^{\prime} \text { min }}$
3. This limiting condition occurs when the resultant neutral axis coincides with the edge farthest removed from the highly compressed edge, i.e. $X_{u}=D$, correspondingly $e=e_{D}$.

Axial-Load Moment Interaction

The design strength of uniaxial eccentrically loaded short Column depends on axial compression component ($P_{u r}$) and Corresponding moment Component ($\left.M_{u r}=P_{u r}{ }^{*} e\right)$.

$$
P_{u r}=C_{c}+C_{s} \text { and } M_{u r}=M_{c}+M_{s}
$$

Thus given an arbitrary value of e, it is possible to arrive at the design strength but only after first locating NA which can be achieved by considering moments of forces C_{c} and C_{s} about the eccentric line of action of P_{ur}, but the expression for C_{c} and C_{s} in terms of X_{u} are such that, in general, it will not be possible to obtain a closed-form solution in terms of e. The relation is

Interaction Envelope

Interaction curve is a complete graphical representations of the design strength of a uniaxially eccentrically loaded column of a given proportions. If load p is applied on a short column with an eccentricity e, and if this load is gradually increased till the ultimate limit state is defined, and the ultimate load at failure is given by P_{uR} and the corresponding moment M_{UR}, then the coordinates $M_{\mathrm{ur}}, P_{\mathrm{uR}}$ form the unique point on the interaction diagram. (Refer SP : 16 Chart 27-62)
©Prof. A. Mukherjee,
Civil Engineering,
IITB

Behavior under Combined Bending and Axial Loads

Interaction Diagram Between Axial Load and Moment
(Failure Envelope)

Concrete crushes before steel yields

Steel yields before concrete crushes

©ProNatarunheyce, Civil Engineering,

IITB

Analysis for design strength

Generalized expression for the resultant force in concrete $\left(C_{c}\right)$ as well as its moment $\left(M_{c}\right)$ with respect to the centroidal axis of bending may be derived as follows,

$$
\begin{aligned}
& C_{c}=a f_{c c} b D \\
& M_{c}=C_{c}(D / 2-x)
\end{aligned}
$$

Where,
a = stress block area factor
$\mathrm{x}=$ distance between highly compressed edge and the line of action of Cc (centriod of stress block area)

Analysis for design strength of rectangular section

$$
x_{U}<=D \quad x_{U}>D
$$

Centriodal axis
Highly compressed edge

By simple integration, it is possible to derive expression for a and x for case (a) $X_{u}<=D$ and for the case (b) $X_{u}>D$

$$
\begin{array}{rlrl}
a= & 0.362 x_{u} / D & & \text { for } x_{u}<=D \\
& 0.447(1-4 g / 21) & & \text { for } x_{u}>D \\
x= & 0.416 x_{u} & & \text { for } x_{u}<=D \\
= & (0.5-8 g / 49)\{D /(1-4 g / 21)\} & \text { for } x_{u}<=D \\
& g=16 /\left(7 x_{u} / D-3\right)^{2} & &
\end{array}
$$

©Prof. A. Mukherjee, Civil Engineering,

IITB

Similarly expression for the resultant force in the steel as well as its moment with respect to the centroidal axis of bending is easily obtained as
where,

$$
\begin{aligned}
& C_{s}=\sum_{i=1}^{n}\left(f_{s i}-f_{c i}\right) A_{s i} \\
& M_{s}=\sum_{i=1}^{n}\left(f_{s i}-f_{c i}\right) A_{s i} y_{i}
\end{aligned}
$$

$A_{s i}=$ area of steel in the $\mathrm{i}^{\text {th }}$ row (of n rows)
$y_{i}=$ distance of $\mathrm{i}^{\text {th }}$ row from the centroidal axis, measured positive in the direction towards the highly compressed edge
$f_{s i}=$ design stress in the $\mathrm{i}^{\text {th }}$ row
$\varepsilon_{s i}=$ strain in the $\mathrm{i}^{\text {th }}$ row obtainable from strain compatibility condition

$$
\begin{array}{ll}
f_{c i}=0 & \text { if } \varepsilon_{s i}<=0 \\
=0.447 f_{c k} & \text { if } \varepsilon_{\mathrm{si}}=>0.002 \\
=0.447 f_{c k}\left[2\left(\varepsilon_{\mathrm{s} i} / 0.002\right)-\left(\varepsilon_{\mathrm{s} i} / 0.002\right)^{2}\right] \text { otherwise }
\end{array}
$$

Also using similar triangle

$$
\begin{aligned}
\varepsilon_{\mathrm{si}} & =0.0035\left[\left(\mathrm{x}_{\mathrm{u}}-\mathrm{D} / 2+\mathrm{y}_{\mathrm{i}}\right) / \mathrm{x}_{\mathrm{u}}\right] \text { for } \mathrm{x}_{\mathrm{u}}<=\mathrm{D} \\
& =0.002 \frac{\mathrm{e} \text { é }}{\mathrm{e}}+\frac{y_{i}-D / 14 \mathrm{u} \text { ù }}{x_{u}-3 D / 7 \dot{\mathrm{a}}} \text { for } \mathrm{x}_{\mathrm{u}}>\mathrm{D}
\end{aligned}
$$

Example
 Computation of design strength

For the column section 500×300, Determine strength components corresponding to condition of balanced failure. Assume M25 concrete and FE 415 steel.
Consider loading capacity with respect to the major axis alone.

IITB

$$
\begin{aligned}
& A_{s 1}=A_{s 2}=A_{s 3}=2 * 491=982 \mathrm{~mm}^{2} \\
& y_{1}=-189.5 \mathrm{~mm}, y_{2}=0 \mathrm{~mm} \text { and } \mathrm{y}_{3}=189.5 \mathrm{~mm}
\end{aligned}
$$

- Neutral axis depth - $\mathrm{x}_{\mathrm{u}, \mathrm{b}}$
$\varepsilon_{y}=0.87 * 415 / 2^{*} 10^{5}+0.002=0.003805$
By similar triangles,

$$
x_{u}, b=\frac{0.0035 *(500-60.5)}{0.0035+0.003805}=210.06 \mathrm{~mm}(<D / 2=250 \mathrm{~mm})
$$

- Strains in steel

$$
\begin{aligned}
& \varepsilon_{\mathrm{s} 1}=(-) \varepsilon_{y}=-0.003805 \text { (tensile) } \\
& \varepsilon_{\mathrm{s} 2}=-0.0035 *(250-210.3) / 210.6= 0.000655 \text { (tensile) } \\
& \varepsilon_{\mathrm{s} 3}=0.0035^{*}(210.6-60.5) / 210.6=0.002495 \text { (compression) } \\
&>0.002
\end{aligned}
$$

Similarly calculating stresses in steel:

$$
\begin{aligned}
& f_{s 1}=0.87 * f_{y}=-360.9 \mathrm{MPa} \\
& f_{s 2}=E_{s \varepsilon_{s 2}}=\left(2^{*} 10^{5}\right) *(-) 0.000581=-131 \mathrm{MPa} \\
& f_{53}=342.8+[(249.5-241) /(276-241)]^{*}(351.8- \\
& 342.8)=345 \mathrm{MPa}
\end{aligned}
$$

Design strength component in axial compression $P_{u b, x}$

$$
\begin{aligned}
C_{c} & =0.362 * 25 * 300 * 210.6=571779 \mathrm{~N} \\
C_{s} & =\Sigma C_{s i}=\Sigma\left(f_{s i}-f_{c i}\right) A_{s i} \\
& =[(-360.9)+(-131)+(345-0.447 * 25)] * 982=-
\end{aligned}
$$

$$
155.230 \mathrm{kN}
$$

Hence $P_{u b, x}=C_{c}+C_{s}=571.8-155.23=416.6 \mathrm{kN}$

Design strength component in flexure $M_{u b, x}$

$$
\begin{aligned}
& M_{u b, x}=M_{c}+M_{s} \\
& M_{c}= C_{c}\left(0.5 D-0.416 x_{\mathrm{u}}\right) \\
&= 571.8^{*}\left(250-.416^{*} 210.6\right)=92.85 \mathrm{kNm} \\
& M_{s}= \Sigma \mathrm{C}_{\mathrm{si}} y_{\mathrm{i}} \\
&=(-360.9) *(-189.5)+(-131) * 0+(345- \\
&0.447 * 25)(189.5)]^{*} 982=129.3 \mathrm{kNm} \\
& M_{u b, x}= M_{c}+M_{s} \\
&= 92.85+129.3=221.15 \mathrm{kNm}
\end{aligned}
$$

Example - Design Problem

Using the interaction diagram given in SP 16, design the longitudinal reinforcement in a rectangular reinforced concrete column of size 300*600 subjected to a factored load of 1400 kN and a factored moment of 280 kNm with respect to the major axis. Assume M 20 concrete and Fe 415 steel.

As $D=600 \mathrm{~mm}$, the spacing between the corner bars will exceed 300 mm , hence inner rows of bars have to be provided to satisfy detailing requirement. Assume equal reinforcement on all four sides.
(clause 26.5.3.1 g).

Assuming an effective cover $\mathrm{d}^{`}=60 \mathrm{~mm}$
Therefore $\mathrm{d}^{`} / \mathrm{D}=60 / 600=0.1$
$p_{u}=P_{u} / f_{c k} b D=\left(1400 * 10^{3}\right) /(20 * 300 * 600)=0.389$
$m_{u}=M_{u} / f_{c k} b^{2}=\left(280 * 10^{6}\right) /(20 * 300 * 600)^{2}=0.130$
Referring to chart 44 ($\mathrm{d}^{\prime} / \mathrm{D}=0.10$) of $\mathrm{SP}: 16$,
$P_{\text {reqd }}=0.11 * 20=2.2$
Hence,
$A_{\text {s,reqd }}=2.2 * 300 * 600 / 100=3960 \mathrm{~mm}^{2}$
©Prof. A. Mukherjee,
Civil Engineering,
IITB

Detailing of longitudinal reinforcement

The design chart used have equal reinforcement on all 4 sides.
Hence provide $2-28 \phi$ in outermost rows
and $4-22 \phi$ in two inner rows.
Total area provided $=1232 * 2+1520=3984 \mathrm{~mm}^{2}$
Thus area provided $>$ area reqd. - OK

Check: Bar diameter < thickness/8-OK $\begin{aligned} & \text { (clause } \\ & \text { 26.2.2) }\end{aligned}$
Assuming 8 mm ties,
 IITB

Detailing

Short columns under axial compression with biaxial bending

The factored moments $M_{u x}$ and $M_{u y}$ on a column can be resolved into a single moment M_{u}, which acts about an axis inclined to the two principal axes

$$
M_{u}=\sqrt{M^{2}{ }_{u x}+M_{u y}^{2}}
$$

The resultant eccentricity $\mathrm{e}=M_{\mathrm{u}} / P_{\mathrm{u}}$ may be obtained as

$$
e=\sqrt{e_{u x}^{2}+e_{u y}^{2}}
$$

Resultant moment

Interaction envelope for biaxially loaded column

The envelops is generated as the envelope of a number of design interactions curves for different axes of bending. The interaction diagram surface can be regarded as a failure surface within which the region is safe and any point ($P_{\psi \psi} M_{u x} M_{u y}$) that lies outside the surface is unsafe.

Interaction curve for Bi-axial Bending and Axial Load

Unaxial bending about y-axis

© Prof.
Civil Engineering,
IITB

Interaction between uniaxial moments:

$$
\left[\frac{M_{u x}}{M_{u x 1}}\right]^{\alpha_{n}}+\left[\frac{M_{u y}}{M_{u y 1}}\right]^{\alpha_{n}} \leq 1
$$

$M_{u x}$ and $M_{u y}$ denote the factored biaxial moments acting on the column, and Mux1 and Muy1 denote the uniaxial moment capacities with reference to major and minor axes respectively, under an accompanying axial load $P_{U}=P_{L R}$
α_{n} depends on the P_{u}. For low axial loads it is 1 and for high loads it is 2 . In between it is related as

$$
P_{u z}=0.45 f_{c k} A_{g}+\left(0.75 f_{y}-0.45 f_{c k}\right) A_{s c}
$$

where,
$P_{\mathrm{uz}}=P_{\mathrm{u}}$ normalized with the maximum axial load capacity

Design of biaxially loaded column

Example

A column of 400×400, in the ground floor of
a building is subjected to factored loads:
$P_{u}=1300 \mathrm{kN}, M_{u x}=190 \mathrm{kNm}$ and $M_{u y}=110 \mathrm{kNm}$
The unsupported length of the column is 3.5m.

Design the reinforcement in the column, assuming M25 concrete and Fe 415 steel.

Here,
$D_{x}=D_{y}=400 \mathrm{~mm}, ~=3500 \mathrm{~mm}, P_{u}=1300 \mathrm{kN}$,
$M_{u x}=190 \mathrm{kNm}, M_{u y}=110 \mathrm{kNm}$
Assuming an effective length factor $\mathrm{k}=0.85$ - (table 28)
Effective length can be calculated as,
$l_{e x}=l_{e y}=0.85 * 3500=2975 \mathrm{~mm}$
Eccentricity $=l_{e x} / D_{x}=l_{e y} / D_{y}$

$$
=2975 / 400=7.44<12
$$

(Clause 25.1.2)
Hence the column is a short column.

Checking for minimum eccentricities
$e_{X}=190000 / 1300=146 \mathrm{~mm}$
$e_{y}=110000 / 1300=84.6 \mathrm{~mm}$
Minimum eccentricity:

$$
\begin{aligned}
e_{x, \text { min }}=e_{y, \text { min }} & =3500 / 500+400 / 30 \\
& =20.3 \mathrm{~mm}>20 \mathrm{~mm}-\text { (Clause 25.4) }
\end{aligned}
$$

As the minimum eccentricities are less than the applied
©Prof. A. Mukherije, Civil Engineering,

IITB

Longitudinal reinforcement for trial section

Designing for uniaxial eccentricity with $P_{u}=13000 \mathrm{kN}$ and $M_{u}=1.15 \sqrt{M^{2}{ }_{u x}+M^{2}{ }_{u y}}$
We have considered a moment of 15% in excess of the resultant moment for a trial section. Assuming $\mathrm{d}^{`}=60 \mathrm{~mm}$, $\mathrm{d}^{\prime} / \mathrm{D}=60 / 400=0.15$

$$
\begin{aligned}
& \frac{P_{u}}{f_{c k} b D}=\frac{1300 * 1000}{25 * 400^{2}}=0.325 \\
& \frac{M_{u}}{f_{c k} b D^{2}}=\frac{252 * 10^{6}}{25 * 400^{3}}=0.157
\end{aligned}
$$

Refer to chart 45 (SP:16)
$p / f_{\text {ck }}=0.14$
hence, $p_{\text {reqd }}=0.14 * 25=3.5$ less than 4% OK (clause 26.5.3.1)
$\mathrm{A}_{s, \text { reqd }}=3.5^{*} * 400^{2} / 100=5600 \mathrm{~mm}^{2}$
Provide 12- 25ϕ thus, $A_{s, \text { provided }}=5892 \mathrm{~mm}^{2}$ 줍
$P_{\text {provided }}=3.68 \%=>p / f_{c k}=3.68 / 25=0.147$
Assuming a clear cover of 40 mm and 8 mm ties
$\mathrm{d}^{\prime}=40+8+25 / 2=60.5 \mathrm{~mm}$
$d^{\prime} / D=60.5 / 400=0.15$
Referring to chart $45, \quad \frac{M_{u x 1}}{f_{c k} b D^{2}}=0.165$
©Prof. A. Mukherjee,
Civil Engineering,
IITB

$$
M_{u x 1}=M_{u y 1}=0.165 * 25 * 400^{3}=264 \mathrm{kNm}
$$

which is greater than $\mathrm{M}_{\mathrm{ux}}=190 \mathrm{kNm} \& \mathrm{M}_{\mathrm{uy}}=110 \mathrm{kNm}$
Calculating $P_{u z}$ and α_{n},

$$
\begin{gathered}
P_{u z}=0.45 f_{c k} A_{g}+\left(0.75 f_{y}-0.45 f_{c k}\right) A_{s c} \\
P_{u z}=\left(0.45 * 25 * 400^{2}\right)+(0.75 * 415-0.45-25) * 5892=3568 \mathrm{kN} \\
\left.P_{\downarrow} / P_{u z}=1300 / 3568=0.364 \text { (lies between } 0.2 \text { and } 0.8\right) \\
\alpha_{n}=1+(0.364-0.2) /(0.8-0.6) * 1=1.273
\end{gathered}
$$

Check under biaxial loading

We need to check that

$$
\begin{aligned}
& \left(\frac{M_{u x}}{M_{u x 1}}\right)^{\alpha_{n}}+\left(\frac{M_{u y}}{M_{u y 1}}\right)^{\alpha_{n}} \leq 1 \\
& =\left(\frac{190}{264}\right)^{1.273}+\left(\frac{110}{264}\right)^{1.273} \\
& =0.658+0.328 \\
& =0.986<1.0
\end{aligned}
$$

Hence the trail section is safe under the applied Loading.

Transverse reinforcement

The minimum diameter ϕ_{t} and maximum spacing s_{t} of the lateral ties are given as
$\begin{aligned} & \phi_{t}=\text { maximum }(25 / 4 \mathrm{~mm}, 6 \mathrm{~mm})=8 \mathrm{~mm} \\ & s_{t}=\text { minimum }(\mathrm{D}=400 \mathrm{~mm}, 16 * 25 \mathrm{~mm}, 300 \\ &\mathrm{mm})\end{aligned}$
(Clause 26.5.3.2)
Hence provide 8ϕ ties @ $300 \mathrm{~mm} \mathrm{c} / \mathrm{c}$.

Detailing

©Prof. A. Mukherjee, Civil Engineering,

Euler buckling load

$$
\begin{aligned}
& P_{c r}=\frac{\pi^{2} E I}{L_{\mathrm{e}}^{2}} \\
& \sigma_{c r}=\frac{P_{c r}}{A}=\frac{\pi^{2} E I}{L_{e}^{2} A} \\
& \left.\sigma_{c r}=\frac{\pi^{2} E}{\left(L_{e} / r\right.}\right)^{2}
\end{aligned}
$$

Slenderness ratio

The factor L_{e} / r in denominator is defined as the slenderness ratio. This provides a measure of probability of column buckling.

Long columns fails in buckling under relatively low axial loads while short columns fail by crushing with the material reaching its ultimate strength.

Effective Length (clause 25.2)

(a) Pinned - pinned column	(b) Fixed - pinned columu	(c) Fixed - fixed columu	(d) Fixed - free columu

©Prof. A. Mukherjee, Civil Engineering,

Code recommendations for k factor for various boundary conditions (Annex E-3)

Column braced against side sway:
a) both end fixed rotationally $=0.65$
b) one end fixed and other pinned $=0.80$
c) both end free rotationally $=1.00$

Columns unbraced against sideway
a) both end fixed rotationally $=1.20$
b) one end fixed and other partially fixed = 1.5
c) one end fixed and the other free $=2.00$

How to determine whether column is braced or unbraced (Annex E-2)

- To determine whether a column is a no sway or a sway column, stability index Q may be computed as given below,

$$
\mathrm{Q}=\Sigma \mathrm{P}_{\mathrm{u}} \Delta_{\mathrm{u}} / \mathrm{H}_{\mathrm{u}} \mathrm{~h}_{\mathrm{s}}
$$

Where,
$\Sigma \mathrm{P}_{\mathrm{u}}=$ sum of axial loads on all column in the storey
$\Delta_{\mathrm{u}}=$ elastically computed first order lateral deflection
$\mathrm{H}_{\mathrm{u}}=$ total lateral force acting within the storey and
$\mathrm{H}_{\mathrm{s}}=$ height of the storey
If $\mathrm{Q}<=0.04$, then the column in the frame may be taken as no sway column, otherwise he column will be considered as sway column.

Code requirements on slenderness limits

- Clause 25.3.1 - The unsupported length between end restraints shall not exceed 60 times the lest lateral dimension of a column.
- Clause 25.3.2 - If, in any given plane, one end of a column is unrestrained, its unsupported length, I, shall not exceed, $100 \mathrm{~b}^{2} / \mathrm{D}$.

Code requirements on minimum eccentricities

Clause 25.4

All columns shall be designed for minimum eccentricity,

$$
\begin{aligned}
& \mathrm{e}_{\min \mathrm{x}}=\min (\mathrm{L} / 500+\mathrm{D} / 30,20) \mathrm{mm} \\
& \mathrm{e}_{\min y}=\min (\mathrm{L} / 500+\mathrm{b} / 30,20) \mathrm{mm}
\end{aligned}
$$

Design of short column under axial loading

- Under pure axial loading conditions, the design strength of a short column is obtainable as,

$$
\begin{gathered}
P_{o}=C_{C}+C_{S} \\
=f_{c c} A c+f_{s c} A_{s c} \\
=>P_{o}=f_{c c} A_{g}+\left(f_{s c}-f_{c c}\right) A_{s c} \\
P_{o}=f_{c A} A_{g}+\left(f_{s c} f_{c c} A_{s c}\right. \\
P_{\mathrm{u}}=0.447 f_{c k} A_{g}+\left(f_{s c}-0.447 f_{c k}\right) A_{s c} \\
f_{s c}=0.870 f_{y} \text { for } \mathrm{Fe} 250 \\
0.790 f_{y} \text { for } \mathrm{Fe} 415 \\
0.746 f_{y} \text { for } \mathrm{Fe} 500
\end{gathered}
$$

Where
$A_{g}=$ gross area of cross-section $=A_{c}+A_{s c}$
$\mathrm{A}_{\mathrm{sc}}=$ total area of longitudinal reinforcement $=\Sigma \mathrm{A}_{\mathrm{si}}$
©Prof. A. Mukharijee, net area of concrete in the section $=A_{g}-A_{s c}$
Civil Engineerifg,

- As explained earlier code requires all columns designed for "minimum eccentricities" in loading. When the minimum eccentricity as per clause 25.4 does not exceed 0.05 times the lateral dimension, the member may be designed by the following equation (clause 39.3):
${ }_{\text {erofof A Mukereito }}=0.4 f_{c k} A_{g}+\left(0.67 f_{y}-0.4 f_{c k}\right) A_{s c}$ Civil Engineering,

IITB

More about spiral columns

- In spiral column substantial ductility is achieved prior to the collapse of the column. The concrete in the core remains laterally confined by the helical reinforcement even after outer shell of concrete spalls off. Hence code permits 5 \% increase in the estimation of strength beyond $P_{\text {ео }}$ provided the following requirement is satisfied by the spiral reinforcement.

```
\rhos}\geqslant0.36(\mp@subsup{A}{g}{}/\mp@subsup{A}{core}{}-1)\mp@subsup{f}{ck}{}/\mp@subsup{f}{\mathrm{ sy }}{
```

$$
\rho_{s} \geqslant 0.36\left(A_{g} / A_{\text {core }}-1\right) f_{c k} / f_{\text {sy }}
$$

where,
$\rho_{S}=$ Volume of spiral reinforcement / Volume of core (per unit length of the column)
$\mathrm{A}_{\text {core }}=$ total area of concrete core, measured outer-to-outer of the spirals
$\mathrm{A}_{\mathrm{g}}=$ gross area of cross section;
$\mathrm{f}_{\mathrm{sy}}=$ characteristic (yield) strength of spiral

Design of short column under axial loading

Example:
Design the reinforcement in a column of size 450 mm X 600 mm , subjected to an axial load of 2000 kN under service dead and live loads. The column has an unsupported length of 3.0 m and is braced against sideway in both direction. Use M20 concrete
©Prof. A. Mukherjee,

Check for slenderness
$I_{x}=I_{y}=3000 \mathrm{~mm}$
$D_{y}=450 \mathrm{~mm}, D_{x}=600 \mathrm{~mm}$
Slenderness ratio ${ }_{x}=l_{e x} / D_{x}=k_{x} * 3000 / 600=5 k_{x}$
Slenderness ratio ${ }_{y}=l_{\text {ey }} / D_{y}=k_{y} * 3000 / 450=6.67 \mathrm{k}_{\mathrm{y}}$
Since the column is braced in both directions, k_{x} and k_{y} are less than unity, and hence the column is short column in both direction.

- Check for minimum eccentricity

$$
\begin{aligned}
& \mathrm{e}_{x, \text { min }}=3000 / 500+600 / 30=26.0 \mathrm{~mm}(20.0 \mathrm{~mm}) \\
& \mathrm{e}_{y, \text { min }}=3000 / 500+450 / 30=21.0 \mathrm{~mm}(20.0 \mathrm{~mm})
\end{aligned}
$$

Now,

$$
0.05 \mathrm{Dx}=0.05 * 600=30.0 \mathrm{~mm}>e_{x \min }=26.0 \mathrm{~mm}
$$

$$
0.05 \mathrm{Dy}=0.05 * 450=22.5 \mathrm{~mm}>\mathrm{e}_{\mathrm{ymin}}=21.0 \mathrm{~mm}
$$ Hence, clause 39.3 can be used for short axially loaded members in compression.

Factored load $P_{\mathrm{U}}=2000 * 1.5=3000 \mathrm{kN}$
$P_{u}=0.4 f_{c k} A_{g}+\left(0.67 f_{v}-0.4 f_{c k}\right) A_{s c}$
$3000 * 1000=0.4 * 20 *(450 * 600)+(0.67 * 415-$
$0.4 * 20) \mathrm{A}_{\mathrm{sc}}$
$=>A_{\mathrm{sc}}=3111 \mathrm{~mm}^{2}$

Hence provide,
$4-25 \phi$ at corners : $4 * 491=1964 \mathrm{~mm}^{2}$
$4-20 \phi$ additional : 4* $314=1256 \mathrm{~mm}^{2}$
Total steel provided $=3220 \mathrm{~mm}^{2}$
=> $\mathrm{P}=$
$(100 * 3220) /(450 * 600)=1.192>0.8$ (minimum reinforcement)
©Prof. A. Mukherjee, Civil Engineering,

IITB

Lateral ties

Tie diameter $\phi_{t}>\max (25 / 4 \mathrm{~mm}, 6 \mathrm{~mm})$ Hence let us provide 8 mm diameter bar

Tie spacing $\mathrm{s}_{\mathrm{t}}=\min (450 \mathrm{~mm}, 16 * 20 \mathrm{~mm}, 300$ mm)
Hence provide 8ϕ ties @ $300 \mathrm{~mm} \mathrm{c} / \mathrm{c}$

Detailing of reinforcement in short axially loaded column.

Footings

Definition

Footings are structural members used to support columns and walls and to transmit and distribute their loads to the soil in such a way that the load bearing capacity of the soil is not exceeded, excessive settlement, differential settlement,or rotation are prevented and adequate safety against overturning or sliding is maintained.

Types of Footings

©Prof. A. Mukherjee, Civil Engineering,

Types of Footings

Types of Footings

Distribution of Soil Pressure

Soil pressure distribution in cohesionless soil.

Soil pressure distribution in cohesive soil.

Isolated Footings

Eccentric Loading

Design Considerations

Footings must be designed to carry the column loads and transmit them to the soil safely while satisfying code limitations.

1. The area of the footing based on the allowable soil bearing capacity
2. Two-way shear or punching shear.
3. One-way shear
4. Bending moment and steel reinforcement

Size of Footings

The area of footing can be determined from the actual external loads such that the allowable soil pressure is not exceeded.

$$
\text { Area of footing }=\frac{\text { Total load (including self weight })}{\text { allowable soil pressure }}
$$

Strength design requirements

$$
q_{\mathrm{u}}=\frac{P_{\mathrm{u}}}{\text { area of footing }}
$$

©Prof. A. Mukherjee, Civil Engineering,

IITB

Design of two-way shear

1. Assume d.
2. Determine b_{0}.

$$
\mathrm{b}_{0}=4(\mathrm{c}+\mathrm{d})
$$

for square columns where one side $=c$

$$
\mathrm{b}_{0}=2\left(\mathrm{c}_{1}+\mathrm{d}\right)+2\left(\mathrm{c}_{2}+\mathrm{d}\right)
$$

for rectangular columns of sides c_{1} and c_{2}.

Design of two-way shear

3. The shear force V_{u} acts at a section that has a length $\mathrm{b}_{0}=4(\mathrm{c}+\mathrm{d})$ or $2\left(\mathrm{c}_{1}+\mathrm{d}\right)+2\left(\mathrm{c}_{2}+\mathrm{d}\right)$ and a depth d ; the section is
 subjected to a vertical downward load P_{u} and vertical upward pressure q_{u}.
$V_{\mathrm{u}}=P_{\mathrm{u}}-q_{\mathrm{u}}(c+d)^{2}$ for square columns
$V_{\mathrm{u}}=P_{\mathrm{u}}-q_{\mathrm{u}}\left(c_{1}+d\right)\left(c_{2}+d\right)$ for rectangular columns

Design of one-way shear

The ultimate shearing force at section $\mathrm{m}-\mathrm{m}$ can be calculated

$$
V_{\mathrm{u}}=q_{\mathrm{u}} b\left(\frac{L}{2}-\frac{c}{2}-d\right)
$$

If no shear reinforcement is to be used, then d can be checked

Flexural Strength and Footing reinforcement

The reinforcement in one-way footings and two-way footings must be distributed across the entire width of the footing.
$\frac{\text { Reinforcement in band width }}{\text { Total reinforcement in short direction }}=\frac{2}{\beta+1}$
where

$$
\beta=\frac{\text { long side of footing }}{\text { short side of footing }}
$$

Eccentrically Loaded Footings

Tensile stress cannot be transmitted between soil and concrete.
For full compression, setting $p_{\text {min }}=0$,

$$
\frac{P}{A}=\frac{M c}{l}=\frac{P e c}{l} \quad \longrightarrow e=\frac{l}{A c}
$$

For rectangular footing of length h and width b,
©Prof. A. Mukherjee, Civil Engineering,

$$
e=\frac{l}{A c}=\frac{b h^{3} / 12}{b h(h / 2)}=\frac{h}{6}
$$

Large eccentricity of load $e>h / 6$

Centroid of soil pressure concurrent with applied load

$$
R=\frac{1}{2}(3 a b) p_{\max }=P \quad \longrightarrow \quad p_{\max }=\frac{2 P}{3 a b}
$$

$$
\text { where } a=h / 2-e
$$

©Prof. A. Mukherjee, Civil Engineering,

Wall Footings

Critical Section for Moment in Isolated Footings

©Prof. A. Mukherjee, Civil Engineering, IITB

Moment and Shear in Wall Footings

Required $L=\left(w_{\mathrm{DL}}+w_{\mathrm{LL}}\right) / q_{a}$
$q_{a}=$ Allowable soil pressure, $\mathrm{t} / \mathrm{m}^{2}$
Factored wall load $=w_{u} t / m$
Factored soil pressure, $q_{u}=\left(w_{u}\right) / L$

$$
\begin{aligned}
M_{u} & =\frac{1}{2} q_{u}\left(\frac{L-b}{2}\right)^{2}=\frac{1}{8} q_{u}(L-b)^{2} \\
V_{u} & =q_{u}\left(\frac{L-b}{2}-d\right)
\end{aligned}
$$

Min $t=15 \mathrm{~cm}$ for footing on soil, 30 cm for footing on piles
$\operatorname{Min} A_{s}=\left(14 / f_{y}\right)(100 \mathrm{~cm}) d$
©Prof. A. Mukherjee,
Civil Engineering,
IITB

Column Footings
 Weight of footing ป 4-8 \% of column load

Critical section for shear

(1) Punching shear
(2) Beam-shear short direction
(3) Beam-shear long direction

Critical section for moment

(1) Moment short direction
(2) Moment long direction
©Prof. A. Mukherjee, Civil Engineering,

Two-Way Action Shear (punching-shear)

On perimeter around column at distance $d / 2$ from face of column

©Prof. A. Mukherjee, Civil Engineering, IITB

Combined Footings Centroid of load resultant and footing must coinside

Centroid of Combined Footings

(1) Compute centroid C

$$
n=P_{1} s /\left(P_{1}+P_{2}\right)=P_{1} s / R
$$

(2) Footing area

$$
\begin{aligned}
& L=2(m+n) \\
& b=R /\left(q_{e} L\right) \\
& q_{e}=\text { allowable soil pressure }
\end{aligned}
$$

©Prof. A. Mukherjee,,
Civil Engineering,

Transverse Reinforcement

Section $B-B$

©Prof. A. Mukherjee,
Civil Engineering,

PROBLEM

Design and detail a square isolated R.C. footing of uniform thickness for 400 mm square R.C. column carrying an axial load of 2100 KN including self weight of column.
Take safe bearing capacity of soil $150 \mathrm{KN} / \mathrm{m} 2$ at 1.5 m below the existing ground level.
Use M20 grade concrete and Fe 415 steel for design.

1. CALCULATION OF FOOTING PLAN DIMENSION

Assuming self weight of footing @10\% of column load, Total load transferred to the soil $=1.1 \times 2100=3310 \mathrm{KN}$. Safe Bearing Capacity of soil $=150 \mathrm{KN} / \mathrm{m} 2$. Area of footing required $=(3310 / 150)=15.4 \mathrm{~m} 2$. Size of square footing required $=\sqrt{ } 15.4=3.9243 \mathrm{~m}$. Let us provide a Square footing of size $4 \mathrm{~m} \times 4 \mathrm{~m}$.

Net upward soil pressure on the base of footing $=2100 / 16=131.25 \mathrm{KN} / \mathrm{m} 2$ $<150 \mathrm{KN} / \mathrm{m} 2$ (Hence O.K.)
For 1 m width of the footing the net upward loading intensity of the footing base $(\mathrm{w})=131.25 \mathrm{KN} / \mathrm{m}=131.25 \mathrm{~N} / \mathrm{mm}$.

2. CALCULATION OF DEPTH FROM FLEXURAL CONSIDERATION.

Maximum moment at face of column $=\mathrm{M}=(131.25 \mathrm{X} 1.82) / 2$ $=212.625 \mathrm{KN}-\mathrm{m}$.
Ullimate moment $=\mathrm{Mu}=1.5 \times 212.625=318.9375 \mathrm{KN}-\mathrm{m}$.
Required depth $($ dreq $)=\sqrt{ }(318.9375 \times 106) /(2.76 \times 1000)=339.94 \mathrm{~mm}$ $\sim 340 \mathrm{~mm}$.

3. CALCULATION OF DEPTH FROM TWO WAY SHEAR CONSIDERATION.

Clause 36.6.3.1 (pg-58) of IS 456:2000
Allowable Shear Stress $=$ ta $=$ Ks tc , where $\mathrm{Ks}=(0.5+\beta \mathrm{c})$ or 1 whichever is less.
$\beta \mathrm{c}=$ (short side of column)/(long side of column)
$=400 / 400=1$.
$\mathrm{Ks}=0.5+1=1.5>1$. Therefore $\mathrm{Ks}=1$.
Ґc $=0.25 \sqrt{ }$ fck $=0.25 \sqrt{ } 20=1.118 \mathrm{Mpa}$.
Therefore $\mathrm{ta}=\mathrm{Ks} \mathrm{tc}=1 \mathrm{X} 1.118=1.118 \mathrm{Mpa}$.
©Prof. A. Mukherjee, Civil Engineering,

IITB

Critical Perimeter $=4(400+2 \times \mathrm{d} / 2)=4(400+\mathrm{d}) \mathrm{mm}$.
Critical Area $=4(400+\mathrm{d}) \mathrm{d} \mathrm{mm} 2$.
Allowable load in Punching or two way Shear $=4(400+d) d t a$
Load causing punching

$$
\begin{aligned}
& \quad=4.472(400+\mathrm{d}) \mathrm{d} . \\
& =[\mathrm{P}-(400+\mathrm{d}) 2 \mathrm{w}] \\
& =[40002-(400+\mathrm{d}) 2] \mathrm{w} \\
& =(4400+\mathrm{d})(3600-\mathrm{d}) \mathrm{w} \\
& =(4400+\mathrm{d})(3600-\mathrm{d}) \times 0.13125
\end{aligned}
$$

Equating Allowable load in punching with Load causing punching we get the value of " d " $=497.114 \mathrm{~mm} \sim 500 \mathrm{~mm}$.

Since depth required from Two way shear consideration > depth required from flexure consideration, hence Two way shear governs the design.
Overall depth required $=$ Dreq. $=500+50+20+10=580 \mathrm{~mm}$.
[Assuming 50 mm clear cover and $20 f$ tor bars for reinforcement in both top and bottom layer of reinforcement.]

To be on safer side so that footing does not fail in One way Shear check let us increase the depth of the footing by 10%.
Dreq. $=580+58=638 \mathrm{~mm}$.
Let us provide $D=650 \mathrm{~mm}$.
Effective depth provided for top layer of reinforcement

$$
=\mathrm{dt}=650-50-20-10=570 \mathrm{~mm} .
$$

Effective depth provided for bottom layer of reinforcement

$$
=\mathrm{db}=650-50-10=590 \mathrm{~mm} .
$$

4. CALCULATION OF REINFORCEMENT

A. For top layer
$\mathrm{Mu} /(\mathrm{bdt2})=(318.9375 \times 106) /(1000 \times 5702)=0.98$.
From Table-2, page 48 of SP16:1980 we can get,
Percentage of steel required $=\mathrm{Pt}=0.289$.
Area of Steel required Ast $=(0.289 \times 1000 \times 570) / 100=1647.3 \mathrm{~mm} 2$.
Spacing required for 20f tor bars $=(1000 \times 314) / 1647.3=190.6 \mathrm{~mm} \mathrm{c} / \mathrm{c}$.
Therefore let us provide 20 f tor bars $@ 175 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ in top layer of reinforcement.

$$
\text { Provided } \mathrm{Pt}=(100 \times 314) /(175 \times 570)=0.315 \% \text {. }
$$

B For bottom layer
$\mathrm{Mu} /(\mathrm{bdb} 2)=(318.9375 \times 106) /(1000 \times 5902)=0.92$.
From Table-2, page 48 of SP16:1980 we can get,
Percentage of steel required $=\mathrm{Pt}=0.2704$.
Area of Steel required Ast $=(0.2704 \times 1000 \times 590) / 100$
$=1595.36 \mathrm{~mm} 2$.
Spacing required for $20 f$ tor bars $=(1000 \times 314) / 1595.36$
$=196 \mathrm{~mm} \mathrm{c} / \mathrm{c}$.
Therefore let us provide 20 f tor bars @ $175 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ in bottom layer of reinforcement.
Provided $\mathrm{Pt}=(100 \times 314) /(175 \times 590)=0.304 \%$.

5. CHECK FOR ONE WAY SHEAR

The critical section for one way shear check is 570 mm (dt) away from the column face.

Pt provided as reinforcement in the top layer $=0.315 \%$.
From table 19 of IS 456:2000, page-73, by interpolation we get, Permissible Shear Stress $=$ tperm $=0.3912$ Mpa.

Shear at critical section $=(1800-570) \times 131.25=161437.5 \mathrm{~N}$.
Therefore Shear stress developed $=\operatorname{tdev}=(161437.5) /(1000 \times 570)$
$=0.283 \mathrm{Mpa}$.
Therefore tdev < tperm. Hence O.K.

6. CHECK FOR BEARING

From Clause-34.4, page-65 of IS 456:2000 we get, Allowable Bearing pressure $=0.45 \mathrm{fck} \sqrt{ }(\mathrm{A} 1 / \mathrm{A} 2)$ or $0.45 \mathrm{fck} \times 2$ whichever is lower.

$$
\begin{aligned}
\text { A1 } & =(400+d b)(400+d t) \\
& =(400+590)(400+570) \\
& =960300 \mathrm{~mm} 2 \\
\text { A2 } \quad & =400 \times 400=160000 \mathrm{~mm} 2 . \\
& \\
\sqrt{ }(\mathrm{A} 1 / \mathrm{A} 2) & =6.002>2 .
\end{aligned}
$$

Therefore Allowable Bearing pressure $=0.45 \times 20 \times 2=18 \mathrm{~N} / \mathrm{mm} 2$.

Actual Bearing Pressure developed at the junction of Column and Footing $=(2100 \times 1000) /(400 \times 400)=13.125 \mathrm{~N} / \mathrm{mm} 2<18 \mathrm{~N} / \mathrm{mm} 2$.

FINAL DESIGN

PLAN DIMENSION: 4m X 4m.
OVERALL DEPTH:
650 mm .
TOP LAYER REINFORCEMENT: 20 F TOR STEEL BARS @ 175mm C/C.

BOTTOM LAYER REINFORCEMENT: 20 F TOR STEEL BARS @ 175mm C/C.

CLEAR COVER TO REINFORCEMENT: 50mm.

REINFORCEMENT DETAILING

20 mm dia tor @ 175 mm c/c

PLAN

20 mm dia tor @ $175 \mathrm{~mm} \mathrm{c} / \mathrm{c}$

ELEVATION
©Prof. A. Mukherjee, Civil Engineering,

IITB

