Pavement Types and Design Factors

Historical Developments

- Prior to the early 1920s the thickness of pavement was based purely on experience
- Pavement design has gradually evolved, since then, from art to science
- Empiricism played an important role till recently in pavement design
- The methods of flexible pavement design can be classified into five categories:

Historical Developments – Flexible Pavements

- Empirical methods
 - Without soil strength test (GI method, 1929)
 - With soil strength test (CBR method, 1929)
- Limiting shear failure methods
 - Terzagi's (1943) bearing capacity formula was applied to determine the pavement thickness
- Limiting deflection methods
 - Pavement thickness was determined by limiting the surface deflection below an allowable value using Burmister's (1943) two layer theory
- Regression methods
 - based on pavement performance or road tests (AASHTO, 1961)
- Empirical mechanistic methods
 - This method of design is based on mechanics of materials that relates an input, such as a wheel load, to an out put or pavement response, such as stress or strain.
 - Shell method, 1977
 - Asphalt Institute method, 1981

Historical Developments – Rigid Pavements

- Contrary to flexible pavements, rigid pavements were designed from the beginning using analytical solutions
- Flexural stress in concrete has long been considered as a major, or even the only design factor
- Analytical Solutions
 - Goldbeck's (1919) Formula
 - Westergaard's (1926 to 1948) analysis based on liquid foundtations
 - Pickett's (1951) analysis based on solid foundations influence charts
- Numerical Solutions
 - Discrete–element method: Hudson and Matlock (1966) aplied this method assuming the subgrade to be a dense liquid
 - Finite element method: Huang (1974) applied FEM for the analysis of jointed slabs on liquid as well as solid foundtations
- Other developments include fatigue damage and pumping erosion

Pavement Types

- Flexible Pavements
 - Component layers : subgrade, drainage layer/sub-base, base course, binder course and surfacing course
- Rigid Pavements
 - Component layers : subgrade, drainage layer, sub-base (DLC), CC slab (PQC)
- Semi-rigid / Composite pavements

Layers in Flexible Pavement

50 mm

120 mm

Principle of Flexible Pavement Design

Basic concept

•Dispersion of load / compressive stresses through flexible pavement layers

•Dispersion of stresses (tensile and compressive) through flexible pavement layers with stiff bituminous layers

Stress Distribution Through Granular Layers

Fatigue Cracking and Rutting

Analysis and Design of Flexible Pavements

- Flexible pavements are analysed using layer theory which is derived from Boussinesq theory. Using this layer theory as a structural model, one can find the solutions for stresses, strains and deflections at any point in a layered system
- Present day flexible pavements are designed using empirical mechanistic methods, in which the allowable number of repetitions of axle loads for a given pavement configuration is determined based on the response of the pavement to the action of these axle loads

Types of Rigid Pavements

- Jointed Plain Concrete Pavement (JPCP)
 - No temperature steel
- Jointed Reinforced Concrete Pavement (JRCP)
 - Temperature steel placed at mid height and discontinued at the joints
- Continuously Reinforced Concrete Pavement
 (CRCP)
 - Not popular in India very costly
- Prestressed Concrete Pavement (PCP)
 - Not popular

Jointed CC Pavement

Cross Section of a Rigid Pavement

- Figure shows a typical cross-section of a rigid pavement
- The pavement can be placed directly on prepared subgrade or on a singular layer of granular or stabilized material
- The only layer of material under concrete and above subgrade is called base course or subbase

Components of Cement Concrete Pavement

Analysis of Rigid Pavement

Elastic plate resting on liquid/solid foundation characterised by its modulus of subgrade reaction, *k*

Rigid Pavement Design

- Joints are designed to take care of the environmental stresses
- Thickness of the CC pavement slab is decided based on the following two points:
 - The maximum bending tensile stress resulting out of maximum wheel load stress and critical environmental stress should be less than the flexural strength of concrete
 - The CC pavement should withstand the expected number of repetitions of axle loads during its design life