§16.2 Comparison between Flexibility and Stiffness Methods
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Figure 16.1 Analysis by the flexibility method




§16.2 Comparison between Flexibility
and Stiffness Methods

@
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Structure kinematically indeterminate to first degree

Figure 16.2



§16.2 Comparison between Flexibility
and Stiffness Methods

[ Deflected position of
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Figure 16.2 (continued)




Example 16.2

The pin-connected bars in Figure 16.5a are connected at joint 1 to a
roller support. Determine the force in each bar and the magnitude of the
horizontal displacement A, of joint 1 produced by the 60-kip force. Area
of bar 1 = 3 in?, area of bar 2 = 2 in2, and E = 30,000 kips/in2.

L, =14.14'

60 kips =——> A,



Example 16.2 Solution

v\Fl Joint 1 displaced 1
* Compute AL,: in to the right and
attached to

imaginary support

AL, = (1in)(cos 45°) = 0.707 in

90°

* Use Equation 16.1 to compute NS
/

the force in each bar. F, (A]
-— ) —> K,
A
AEAL,  3(30,000)(0.707 \maginar
F JID = L= ( )( ) = 375 klpS (b) L—”J su;%porty
L, 14.14 X 12 !
AEAL 2(30,000) (1
FPP=——== ( )()=500kips
L, 10 X 12

* Compute the horizontal and vertical components of F,.
F{? = Fi{P(cos 45°) = 375(0.707) = 265.13 kips

F1y = F{°(sin 45°) = 375(0.707) = 265.13 kips "



Example 16.2 Solution (continued)

FiP =375 kips D * To evaluate K,, sum forces applied to
A iy =265.13 kips : : : ,
- the pin (Figure 16.5c¢) in the horizontal
FID =265.13 kips «=~' |1 direction.
F>" =500 kips TKI 2F. =0
l K,—FP—-FP=0
265.13 kips K, = Fi} + F3° = 265.13 + 500 = 765.13 kips
Forces at joint 1 produced
by a 1-in horizontal * Multiply the force K, in Figure 16.5¢ by
displacement A,, the actual displacement and
consider the horizontal force equilibrium
at joint 2.
Kl A.X‘ _ 60 — O
765.13 A, — 60 =0
A. = 0.0784 in

16



Horizontal and vertical
displacements A, and

A, produced by the 10-
Kip load at joint 2;
initially bar 1 is
horizontal: bar 2 slopes
upward at 45°

§17.1 Introduction

I3 Case I

(b)

Forces (stiffness
coefficients) K,, and K,

required to produce a
unit horizontal
displacement of joint 2

Figure 17.1

(¢)

Forces K,, and K,

required to produce a
unit vertical
displacement of joint 2



§17.1 Introduction

Fy=Fsing = A—f sin? ¢

AE .

E\,=Fsin(b=A—LEcos¢ sin ¢ \ F:Tsmq’)

\ F= A—f cos ¢ A

F.=Fcos¢= TE sing cos ¢
F.=Fcos¢p =
CoS ¢

Forces created by a Forces created by a
unit horizontal displacement unit vertical displacement

Fiqure 17.2 Stiffness coefficients for an axially loaded bar with
area A, length L, and modulus of elasticity E




§17.3 Construction of a Member Stiffness

Matrix for an Individual Truss Bar

Bar showing local coordinate
system with origin at node 1

Displacement introduced at
node 1 with node 2 restrained

Figure 17.3 Stiffness coefficients for an axially loaded bar




§17.3 Construction of a Member Stiffness
Matrix for an Individual Truss Bar

Displacement introduced at
node 2 with node 1 restrained

End forces and displacements of
the actual bar produced by
superposition of (b) and (c)

0, \Vi

\

Figure 17.3 Stiffness coefficients for an axially loaded bar (continued)

(d)










§17.4 Assembly of the Structure Stiffness

Matrix
e —
| Ay, E | AxE, |

L ——f— L,
Properties of two-bar system

A,
O ’4_»‘ L& ! Q3

#(o © QH
A A

Node forces produced by a positive
displacement A, of joint 1 with nodes

2 and 3 restrained

Figure 17.4 Loading conditions used to generate the structure stiffness matrix




§17.4 Assembly of the Structure Stiffness

Matrix
L
P m ‘ Ox,
e @ e
N —_

Node forces produced by a positive displacement
of node 2 with nodes 1 and 3 restrained

A,

|
! :
Q13 & | ‘4_.‘ 033
i = —R_

Node forces produced by a positive displacement
of node 3 with nodes 1 and 2 restrained

Figure 17.4 | oading conditions used to generate the structure stiffness matrix (continued)



Example 17.1

Determine the joint displacements and reactions for the structure in
Figure 17.5 by partitioning the structure stiffness matrix.

A, Oy A,

Bis &> 30 kips e
A, =1.2in? A, =0.6 in’
E, = 10,000 kips/in? E, = 20,000 kips/in*

L, =120 - L, = 150" .



Example 17.1 Solution

* Compute the stiffness k= AE/L

Ay ONY a,  for each member.
— — N
O = 2= 0k R 1.2(10,000)
ips _ _ . .
| | k= = 100 kips/in
A, =12in? A, =0.6 in? 120
E, = 10,000 kips/in? E, = 20,000 kips/in?
e 0 L. sy
L =120 L, =150 ) 0.6(20,000) T
) = 730 = ips/in

* Evaluate member stiffness matrices, using Equation 17.19. Because

the local coordinate system of each bar coincides with the global
coordinate system, k' = k.

1 2
. [ 1 —1] _[ 100 —100]l
S S B —100 100 2

I 3
1 —1 80 —80 (!
k, =k, —
—1 1 —80 80 |3

- 10



Example 17.1 Solution (continued)

* Set up the structure stiffness matrix K by combining terms of the
member stiffness matrices k, and k,. Establish Equation 17.30 as

follows:

_ _ _ | 2 R _
01 =30 | 100+80 :—100 —80 A
0, = | —100 100 0| A, =0

0, 1L -8 0 80]LA,=0]

* Partition the matrices as indicated by Equation 17.30 and solve for
A, using Equation 17.35. Since each submatrix contains one

element, Equation 17.35 reduces to a simple algebraic equation.
A= Ki'Q;

11



Example 17.1 Solution (continued)

» Solve for the reactions, using Equation 17.36.
Qs — KZlKl_lle

2] =[] = g

1
where 0, = @(—100)30 = —16.67 kips

1
03 = —=>(=80)30 3.33 kips

* Therefore, the reactions at joints 2 and 3 are -16.67 and -13.33 kips,
respectively. The minus signs indicate that the forces act to the left.

12



Local to Global

13



Local to Global y

YF
T
YN
| X
XN
XF
XF — XN XF — XN
L \(xe — xo)? + RV
(xp — xn) (YF — YN)
YF — YN YF — VYN

L V(xp — xn)* + (yF — yn)?






Displacement Transformation

d=TD

16



Force Transformation




Force Transformation

_QNx_ _/\x 0 )
Ony Ay, O
QFx 0 )‘x

_QFy_ - 0 )‘y_

— TTq
—Ax 0 —
A 0
TT y
0 A,
0 A

dn
qF

18



Global Transformation

q = k'TD
Q = T'’k'TD
Q = kD

k = T/k’T

19



Global Transformation

A, O
L[ A OAE[ 1 1A A, 0O
0 Al L [-1  1JL0 0 A A,
0 A,
N, N, F, F,
22 AA,  —AE =M, [N,
2 2
L AE )\x)\zy A —/\;)\y —-A |N,
L | A A A A, | Fy
2 2
SAA, A A, A |F,




Truss Analysis

Q =KD

1
1
1
1
1
1
1
1
-
1
|
1
1
1
1
1
1

Q_k f KllDu
Qu — K21Du
_DNx_
AE Dy
=—[-A —A, A, A /
dF L [ X y X y] DFx
_DFy_

21



§17.6 Member Stiffness Matrix of an
Inclined Truss Bar

ix f @ iy
Fiy Horizontal Vertical
A, displacement A, displacement AVS

Figure 17.6

22



§17.6 Member Stiffness Matrix of an

Inclined Truss Bar F,

Horizontal
displacement A,

; D

Vertical
displacement A,

Figure 17.6 (continued)
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Example 17.2

Determine the joint displacements and bar forces of the truss in
Figure17.7 by the direct stiffness method. Member properties: A, = 2 in?,

A, =2.5in?, and E = 30,000 kips/in.

)
|
6
T

24



Example 17.2 Solution

* Construct member stiffness matrices. For member 1, joint 1 is the
near joint and joint 3 is the far joint. Compute the sine and cosine of
the slope angle with Equation 17.37.

Xp =X 20—-0 . Yi—Yi 0—0
S ju— ju— ju— 1 d S ju— ju— ju— O
CoS ¢ 3 0 and sin ¢ 3 0
AE  2(30,000)
= = 250 kips/in
L 20(12)
12 3 4 _
1 0 -1 O
0O 0 0 O
k, = 250
-1 0 1 0
0 0 0 0




Example 17.2 Solution (continued)

* For member 2, joint 2 is the near joint and joint 3 is the far joint:

20— 0 . ~0—=15
Cos ¢ = s = 0.8 sin ¢ = o=

= —0.6

AE  2.5(30,000)
L 25(12)

= 250 kips/in

1 2 5 6 _
0.64 —-048 —0.64 0.48

—0.48 0.36 0.48 —0.36

—0.64 0.48 0.64 —0.48
048 —036 —048 0.36 _

k, = 250




matrices k, and k, into the appropriate rows and columns.

Example 17.2 Solution (continued)

* Set up the matrices for the force-displacement relationship of
Equation 17.30 (that is, Q = KA). The structure stiffness matrix is
assembled by inserting the elements of the member stiffness

=0

= 250

_ 2 . 3 4
164 —0.48 | —1 0
—0.48 036 00
~1 0 10
0 0 {00
—0.64 048 0 0
048 —0.36 |

00 —048 0.36

5 6 —
0.64 0.48
0.48 —0.36
0 0
0 0
0.64 —0.48

A,
A,
T
A, =0
As =0
| A =0

27



Example 17.2 Solution (continued)

* Partition the matrices and solve for the unknown displacements A,

and A, by using Equation 17.33.
Q= Ky

{ 0] [ 1.64 —O.48”A1]
= 250
—30 —0.48 0.36 | A,
* Solving for the displacements gives
A —0.16
=[] = ose

* Substitute the values of 1 and 2 into Equation 17.34 and solve for

the support reactions Q..

Qs = KZlAf
0, | [ —1 0 40 |
Oy | _ -5 0 0 —0.16 | _ 0
O —0.64 0.48 || —0.547 —40
O _ | 048 —-036] _ 30 |




Example 17.2 Solution (continued)

* Compute member end displacements D in terms of member
coordinates with Equation 17.51. For bar 1, / = joint 1 and j = joint 3,
cos @ =1, and sin @ = 0.

A; =0
{51}_[1 0 0 0} A, =0 _{ 0 ] ARS.
5] [0 0 1 0J|lA =-016 | [-0.16
A, = —0.547 _

* Substituting these values of ¢ into Equation 17.53, we compute the
bar force in member 1 as

—1
F\; =250[0 —0.16}[ 1] = —40 kips (compression ) Ans.

29



Example 17.2 Solution (continued)

* For bar 2, i =joint 2 and j = joint 3, cos @ = 0.8, and sin = 0.6.

Ay =0
{62}_[08 -06 0 0 ] Ag =0 _{o ]
5] L0 0 08 —06JA =-016 | [0.20
A, = —0.547_

* Substituting into Equation 17.53 yields

—1
Fy; = 250[0 0.20}[ J = 50 kips (tension) Ans.

30



Example 17.3

Analyze the truss in Figure 17.8 by the direct stiffness method.
Construct the structure stiffness matrix without considering if joints are
restrained or unrestrained against displacement. Then, rearrange the
terms and partition the matrix so that the unknown joint displacements A;
can be determined by Equation 17.30. Use k, = k, = AE/L = 250 kips/in
and k,; = 2AE/L = 500 kips/in.

31




Example 17.3 Solution

* Number the joints arbitrarily. Arrows are shown along the axis of
each truss bar to indicate the direction from the near end to the far
end of the member. Superimpose on the truss a global coordinate
system with origin at joint 1. Form the member stiffness matrices
using Equation 17.48. For bar 1, i = joint 1 and j = joint 2. Using
Equation 17.37,

)

cos ¢ = 3 s
y]_.yi 0—0
1 p— p— :O
sin ¢ 3 s
R ) 3 4
1 0 —1 0]t
0O O 0O 0|2
k, = 250
! -1 0 1 013
0 O 0 0|4

32




Example 17.3 Solution (continued)

* For bar 2, i =joint 1 and j = joint 3.
0-0 20— 0

_ — O 1 ju— :.1
cos ¢ 0 sin ¢ 0
1 2 5 6 _
0 0 O 0 |!
0 1 0 —1|2
k2:250
0 0 O 0|5
0 -1 O 16

* For bar 3, j = joint 3 and j = joint 2.

15-0 0 — 20
s = = 0.6 S = = —0.8
COS ¢ >s sin ¢ >
_ S5 6 3 4 _
0.36 —048 —0.36 0.48 |5
—0.48 0.64 0.48 —0.64 |6
k, = 500

—0.36 0.48 0.36 —0.48 |3

048 —0.64 —048 0.64 |4




Example 17.3 Solution (continued)

* Add k4, k,, and k; by inserting the elements of the member stiffness

matrices into the structure stiffness matrix at the appropriate
locations. Multiply the elements of k; by 2 so that all matrices are

multiplied by the same scalar AE/L, i.e. 250.

- 5 6 —

2 3
0 -1 0 0 0 L
1 0 0 0 —1 :
0 .72 —096 —0.72 0.96 |3
0
0
—1

K=2
>0 —0.96 1.28 0.96 —1.28 |4

—0.72 0.96 0.72 —0.96 |5
0.96 —128 —0.96 2.28 |6

oSO O = O =




Example 17.3 Solution (continued)

* Establish the force-displacement matrices of Equation 17.30 by
shifting the rows and columns of the structure stiffness matrix so that
elements associated with the joints that displace (i.e., direction
components 3, 4, and 6) are located in the upper left corner.

- _ ~ 3 4 6 ., 1 2 5 _
Q;=0 1.72 =096  096i—1 0 —0.72{4A; |3
0,=—40 —-096 128 —128F 0 0 096 A, [
Q0=0 |_,o|.096 —128 2281 0 —1 —096] A, |0
O —1 0 0 {1 0 0 |[A=0]
0, 0 O -1 {0 1 0 A,=0|>
05 ] =072 096 —096f 0 0 0.72][As=0]s




Example 17.3 Solution (continued)

* Partition the matrix and solve for the unknown joint displacements,

using Equation 17.33.

Q= KA,
0 T 172
—40 | = 250 —0.96
0] 0.96

—0.96
1.28
—1.28

0.96 |
—1.28

2.28 |

* Solving the set of equations above gives

[ —0.12 |
—0.375
| —0.16 _

Ans.

36



Example 17.3 Solution (continued)

* Solve for the support reactions, using Equation 17.34.

Qs = K21Af
_Ql_

0, | = 250
| Qs

[ —1 0
0 0
| —0.72  0.96

0
—1

—0.96 |

[ —0.12 |
—0.375

| —0.16

30
40
—30

Ans.

37



Example 17.4

If the horizontal displacement of joint 2 of the truss in Example 17.3 is
restrained by the addition of a roller (see Figure 17.9), determine the
reactions.

i
6

|
©

b

38



Example 17.4 Solution

* Although the addition of an extra support creates an indeterminate
structure, the solution is carried out in the same manner. The rows
and columns associated with the degrees of freedom that are free to
displace are shifted to the upper left corner of the structure stiffness
matrix.

_ _ 4 6 12 3 5 _ _
0,=—40 128 —1.28% 0 0 —0.96 096 A, |4
0s=0 —128 228 00 096 —096(A, [0
TOTTTOTTE T O ST 0T AN =0
Q) =250 E !
0, 0 -1 {01 0 0 |[A,=0]
0, —0.96 096 i—=1 0 172 —0.72 (| A;=0|3
| Os i 096 =096 0 0 —0.72 0.72]| As=0]5

39



Example 17.4 Solution (continued)

* Partition the matrix and solve for the unknown joint displacements
Qf — KllAf

[—40] [ 1.28 —1.28”A4}

= 250

0 —1.28 228 [ A,

* Solution of the set of equations above gives
{Aq B {—0.285]

* Solve for the reactions using Equation 17.34.

Q, = KzlAf
_Ql— [0 0 0
0 —1 —0.285 40
221 = 250 [ ] = Ans.
Qs —0.96 0.96 || —0.160 30
| 05| . 096 —0.96 _ | —30 |




Example 17.4 Solution (continued)

30 kips
~— IR
0 kip 30 kips
e \1 —
T 40 kips
40 kips

Results of analysis

41



Determine the force in member 2 of the assembly in Fig. 14-11a if the
support at joint @ settles downward 25 mm. Take AE = 8(10°) kN.

(4) 3 2

A "\,‘J -

Y

- 4 m

42



o 3 N Lt B W

2:

1 A, =0,A, =1, L = 3m,so that

3
0
k, = AE| 0
0
0

1
0
0
0
0

2
0

—0.333

0

0.333_

N = B~ W

Ay = —08,A, = —0.6, L = 5m, so that

1
0.128
0.096

—0.128

| —0.096

k, = AE

0.
0.

2
096
072

—0.096
—0.072

5

—0.128
—0.096
0.128
0.096

—0.096 |

6

—0.072
0.096

0.072_

3: A,=1,A,=0,L = 4m,so that

k; = AE

7
0.25
0
—0.25
0

S OO O ®

1

—025 0]

0

2

0

025 0

0

0

N = 00

AN L N =



Displacements and Loads.

|

0

-

0 0.378
0 0.096
Qs 0
Ol _ 4g| °
Qs —0.128
Qs —0.096
Q7 —0.25
| Og 0
0 0378 0.096

|

0= AE
0 = AE

0.096 0.405

0.096 :

D,
D,

o O

o O O O O O

|+ az]

Here Q = KD yields

0
0

0
—0

333

0
—0.333

—0.128
—0.096

—0.128
—0.096

—0.096
—0.072

0.096
0.072
0
0

—0.096
—0.072

(0.378D, + 0.096D,) + 0]
(0.096D; + 0.405D,) + 0.00833]

o O

©C O O O O O

—-025 0
0 0

|

44




Member 2: A, = —0.8, A, = —0.6, L = 5m, AE = 8(10°) kN, so
that

0.00556 |
8(10° —0.021
g, = (10°) [08 06 -0.8 —0.6] 0.021875
5 0
0 _
8(10°)
- (0.00444 — 0.0131) = —13.9kN Ans.

5
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Inclined Supports Using Nodal Coordinates

y
y”
<_ ”
T 2| *
@)f x
y
y' " local

coordinates

nodal
coordinates

( x
@ global coordinates

(®) 46



Inclined Supports Using Nodal Coordinates
dy = Dy, cos 6, + Dy, cos 6,

y Y = Dpyr €08 0 + Dpyr COS 0

DNy D ,:Lxu
Dy, cos 0,n —Fx
Dy, cos 0, @ 0, : X
| Dy global
Dy cos 0, coordinates

DNx
{dN} {/\x A, 0 0] Dy,
dr 0 0 Ay Ap]| Dpy
_DFy”_

47



Inclined Supports Using Nodal Coordinates:
Force Transformation

QNx — (N COS Hx QNy — (N COS Hy

QFryx = qF €OS 0, QFy = qF cos 6,y

QNx /\x 0
Ony | _ | Ay O {QN}
QFx 0 Ay |LgF
_QFy”_ - 0 /\y”_

48



Resulting Stiffness Matrix

Ay O
)\y

0 Ay
0 Ay

k = TIK'T
{ 1 -1
—1 1

A,

2
/\)’

A Ay

—AyA,

I

A, A, O

0 O

y

— Ay
— Ay Ay
A2,

Axn/\yn

A x"

— Ay

— A Ay
AX”Ay”
A2,

49




Determine the support reactions for the truss

30 kN
®—>

A

3m

50



r1. Fig 14-13¢c, A, = 1, A, = 0, A, = 0.707, Ay» = —0.707

5 6 3 4
025 0 -017675 0176755
0 0 0 0 6
ky = AE —0.17675 0  0.125 —0.125 |3
017675 0 —0.125 0125 |4

2. Fgl4-13d,A, = 0,A, = —1,Ap = —0.707, A,y = —0.707

1 2 3 4
0 0 0 0 11
& k, = AE 0 03333 —-02357 —-02357 |2
0 —-02357 01667 0.1667 |3
|0 —02357 0.1667  0.1667 | 4
o y' Member 3. A, = 08,1, = 0.6
T [ 5 6 1 2
Y 0.128  0.096 —0.128 —0.096
w\ K= Ap| 0096 0072 -00% 0072

NN = N

9y =135 85 _ 1aso —0.128 —0.096 0128  0.096
- | —0.096 —0.072 009  0.072 |



Global K matrix

30 0128 009 0 0 —0128  —0.09 |[ Dy
0 0.096 04053 —02357 | —02357 —0.09  —0.072 || D,
O oap ) 0702357 02917 00417 —0.17675 O || Ds
) 0 —02357 00417 | 02917 017675 0 0
Os ~0.128 —0.096 —0.17675 | 0.17675 0378 0.096 || 0
| Os_ | —0.096 —0072 0 0 0.096 0.072 || 0
359 5 0, = 0(352.5) — 0.2357(—157.5) + 0.0417(—127.3)

D, = ===
' AE — 31.8kN
- -1575
D, =% 05 = —0.128(352.5) — 0.096(—157.5) — 0.17675 (—127.3)
~127.3 = —7.5kN
D3 -
AE
O¢ = —0.096(352.5) — 0.072(—157.5) + 0(—127.3)

—22.5 kN



Temperature effects fabrication errors

AEaAT
—AEaAT

53



Force in the member

q = k'TD + Jo

DNx
AE Dy
— A, —A, A, A Y1 +
_DFy_

94



Determine the force in members 1 and 2 of the pin-connected assembly
of Fig. 14-15 if member 2 was made 0.01 m too short before it was fitted
into place. Take AE = 8(10°) kN.




Since the member is short, then AL = —0.01 m, and therefore
applying Eq. 14-26 to member 2, with A, = —0.8, A, = —0.6, we have

(O1)o 0.8 0.0016 | 1
(@) |  AE(-0.01)| —0.6 | | 00012 |2
(Qs)o 5 0.8 —0.0016 | 5
| (Qs)o_ 0.6 | —0.0012 | 6

56



= AE

o O

_______________________________________________________________________________________________________________

0.378 0.096 0
0.096 0.405 0
0 0 0
0 —0.333 0
—0.128 —0.096 0
—0.096 —0.072 0
—0.25 0 0
0 0 0

0 = AE[0.378D; + 0.096D,] + AE[0] + AE[0.0016]
0 = AE[0.096D; + 0.405D,] + AE[0] + AE[0.0012]

D,
D,

0 —0.128 —0.096
—0.333 —-0.096 —-0.072

0 0 0

0.333 0 0

0 0.128 0.096

0 0.096 0.072

0 0 0

0 0 0

= —0.003704 m
= —0.002084 m

o O O O O O

+ AE

S57




Member 1. A, = 0,1, = 1,L = 3m, AE = 8(10°) kN, so that

8(10%)
q1 = 3 [0

-1 0 1]

0

0
—0.003704
| —0.002084

+ (0]

Ans.

Member 2. A, = —0.8, A, = —0.6, L = 5m, AE = 8(10°) kN, so

8(103)
qdr = 5

[08 0.6

qdr = 9.26 kN

—0.8

—0.6]

- —0.003704 |
—0.002084
0

0

~ 8(10%) (—0.01)

5

Ans.



§17.7 Coordinate Transformation of a

Member Stiffness Matrix

Figure 17.10 Global coordinates shown by xy system:
member or local coordinates shown by x' y' system
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§17.7 Coordinate Transformation of a

Member Stiffness Matrix

k=T'kK'T (17.54)

where k = 4 X 4 member stiffness matrix referenced to global coordinates
k' = 2 X 2 member stiffness matrix referenced to local coordinate
system
T = transformation matrix, that is, matrix that converts 4 X 1
displacement vector A in global coordinates to the 2 X 1 axial
displacement vector o in the direction of bar’s longitudinal axis

Equation 17.54 Stiffness matrix
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