CE 603: Numerical Methods HW-5: Due date: November 4, 2011

1. Consider the mass-spring system in Fig.1 where dry friction is present between the block and the horizontal surface. The frictional force has a constant magnitude μ mg (μ is the coefficient of friction) and always opposes the motion. The differential equation for the motion of the block can be expressed as:

$$\ddot{y} = -\frac{k}{m}y - \mu g \frac{\dot{y}}{|\dot{y}|}$$

where y is measured from the position where the spring is unstretched. If the block is released from rest at $y = y_0$, verify by numerical integration using **rungeKutta4** and **rungeKutta45** that the next positive peak value of y is $y_0 - 4 \mu \text{ mg}/k$ (this relationship can be derived analytically). Use k = 3000 N/m, m = 6 kg, $\mu = 0.5$, $g = 9.80665 \text{ m}/s^2$, and $y_0 = 0.1\text{m}$.

2. The differential equation describing the motion of the mass-spring system in Fig. 2 is:

$$\ddot{y} + \frac{c}{m}\dot{y} + \frac{k}{m}y = 0$$

where m = 2 kg, c = 460 N.s/m, and k = 450 N/m. The initial conditions are y(0) = 0.01 m, and $\dot{y}(0) = 0$. (a) Show that this is a stiff problem and determine the value of *h* that you would use in numerical integration with the non-adaptive Runge-Kutta method. (c) Carry out the integration from t = 0 to t = 0.2 s with the chose *h* and plot \dot{y} versus *t*.

3. The simple supported beam of length *L* in Fig. 3 is resting on an elastic foundation of stiffness $k N / m^2$. The displacement *v* of the beam due to the uniformly distributed load of intensity w_0 N/m is given by the solution of the boundary value problem.

$$EI\frac{d^{4}u}{dx^{4}} + ku = w_{0}, v|_{x=0} = \frac{d^{2}u}{dx^{2}} = u|_{x=L} = \frac{d^{2}u}{dx^{2}}|_{x=L} = 0$$

The non-dimensional form of the problem is:

$$\frac{d^4 y}{d\xi^4} + \gamma y = 1, \ y |_{\xi=0} = \frac{d^2 y}{d\xi^2} = y |_{\xi=1} = \frac{d^2 y}{d\xi^2} |_{\xi=1} = 0$$

where

$$\xi = \frac{x}{L}, \quad y = \frac{EI}{w_0 L^4} u, \quad \gamma = \frac{kL^4}{EI}$$

Solve this problem by a finite difference method with $\gamma = 10^5$ and plot y versus ξ .

4. The simply supported beam in Fig. 4 carries a uniform load of intensity w_0 and the tensile force *N*. The differential equation for the vertical displacement *u* can be shown to be:

$$\frac{d^4 v}{d x^4} - \frac{N}{EI} \frac{d^2 v}{d x^2} = \frac{w_0}{EI}$$

where *EI* is the bending rigidity. The boundary conditions are $u = d^2 u/dx^2 = 0$ at x = 0 and x = L. Changing the variables to $\xi = \frac{x}{L}$ and $y = \frac{EI}{w_0 L^4} u$ transforms the problem to the dimensionless form

$$\frac{d^4 y}{d\xi^4} - \beta \frac{d^2 y}{d\xi^2} = 1, \quad \beta = \frac{NL^2}{EI}$$
$$y|_{\xi=0} = \frac{d^2 y}{d\xi^2}|_{\xi=0} = y|_{\xi=1} = \frac{d^2 y}{d\xi^2}|_{x=1} = 0$$

Determine the maximum displacement if (a) $\beta = 1.65929$, and (b) $\beta = -1.65929$ (*N* is compressive). Use shooting method to solve the problem.

6. The equation of motion of a harmonic oscillator subjected to a periodic loading is given as follows:

 $m\ddot{x} + c\dot{x} + kx = F_0\sin\omega t,$

subject to initial conditions,

 $x(0) = x_0, \dot{x}(0) = v_0$

For, m = 1 kg, c = 0.5 N - s/m, k = 1 N/m, $F_0 = 1 N$, $\omega = 2 s^{-1}$, $x_0 = 0$, $v_0 = 0.05 m/s$, obtain the steady state amplitude A and phase shift ϕ for steady-state value of x(t) using Newmark-Beta method for:

(i) $\gamma = 1/2$, $\beta = 1/6$, (ii) $\gamma = 1/4$, $\beta = 1/4$, and (iii) $\gamma = 2/3$, $\beta = 1/4$.

Use appropriate time-step h. Compare the answer with the actual analytical answer.

$$A_0 = \frac{F_0}{k} \left(\left(1 - \frac{m\,\omega^2}{k} \right)^2 + \left(\frac{c\,\omega}{k} \right)^2 \right)^{-1/2}, \text{ and } \phi = -\tan^{-1} \left(\frac{c\,\omega/k}{1 - m\,\omega^2/k} \right).$$

7. Solve the boundary value problem:

 $y''' + yy'' = 0, y(0) = y'(0) = 0, y'(\infty) = 2.$

using shooting method and plot y(x) and y'(x). This problem arises in determining the velocity profile of boundary in incompressible flow (Blasius solution).



