Eigenvalues and Eigenvectors



In structural dynamics we have to solve eigenfuction of
The following form:
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Symmetric Matrix Eigenvalue Problems

Find A for which nontrivial solutions of AX =)Xx exist

The standard form of the matrix eigenvalue problem is
Ax = )x (9.1)

where A is a given n x n matrix. The problem is to find the scalar A and the vector x.
Rewriting Eq. (9.1) in the form

A—-1Dx=0 (9.2)



Expansion of the determinant leads to the polynomial equation known as the char-
acteristic equation

1

a )"+ a4 taph+an =0

which has the roots 2;, 1 = 1, 2, ..., n, called the eigenvalues of the matrix A. The so-
lutions x; of (A — 4;I) x = 0 are known as the eigenvectors.



As an example, consider the matrix

The characteristic equation is

A — Al =

A

—1

—1

2

—1

= -3r+42-23=0

(b)

The roots of this equation are A1 = 0, A2 = 1, A3 = 3. To compute the eigenvector cor-

responding the A3, we substitute . = A3 into Eq. (9.2), obtaining

2 1
~1 -1
0 —1

0
0
0




We know that the determinant of the coefficient matrix is zero, so that the equations
are not linearly independent. Therefore, we can assign an arbitrary value to any one
component of x and use two of the equations to compute the other two components.

Choosing x; = 1, the first equation of Eq. (c) yields x, = —2 and from the third equa-
tion we get x3 = 1. Thus the eigenvector associated with A3 is

1
X3 = | —2
= 1 —
The other two eigenvectors
oEh oh
Xo = 0 X = 1

can be obtained in the same manner.



[t is sometimes convenient to display the eigenvectors as columns of a matrix X.
For the problem at hand, this matrix is

111
X:[Xlx_gx3]= 1 0 -2
11 1

It is clear from the above example that the magnitude of an eigenvector is in-
determinate; only its direction can be computed from Eq. (9.2). It is customary to

normalize the eigenvectors by assigning a unit magnitude to each vector. Thus the
normalized eigenvectors in our example are

1/V/3  1/v2 1/46]
X=|1/43 0 —2/v6
1/V/3 —1/V2  1/46]




Here are some useful properties of eigenvalues and eigenvectors, given without
proof:

e All the eigenvalues of a symmetric matrix are real.
e All eigenvalues of a symmetric, positive-definite matrix are real and positive.
e The eigenvectors of a symmetric matrix are orthonormal; that is, X’X = 1.

e If the eigenvalues of A are A;, then the eigenvalues of A=! are A;l.



Eigenvalue problems that originate from physical problems often end up with
a symmetric A. This is fortunate, because symmetric eigenvalue problems are much
easier to solve than their nonsymmetric counterparts. In this chapter, we largely re-
strict our discussion to eigenvalues and eigenvectors of symmetric matrices.

Common sources of eigenvalue problems are the analysis of vibrations and sta-
bility. These problems often have the following characteristics:

e The matrices are large and sparse (e.g., have a banded structure).
e We need to know only the eigenvalues; if eigenvectors are required, only a few of
them are of interest.

There are various methods like Schur's factorization, Jacobi's method etc for solving
These problems. They are not too difficult but kinda involved. We will focus more on
Simple approaches, and for more complicated matrices use the standard Matlab eigen
solver.



Physical problems often give rise to eigenvalue problems of the form
Ax = ABx (9.21)

where A and B are symmetric n x n matrices. We assume that B is also positive defi-



MATLAB Functions

MATLAB's function for solving eigenvalue problems is eig. [ts usage for the standard
eigenvalue problem Ax = Ax is

eVals = eig(A) returns the eigenvalues of the matrix A (A can be unsymmetric).

[X,D] = eig(A) returns the eigenvector matrix X and the diagonal matrix D that
contains the eigenvalues on its diagonal; that is, eVals = diag(D).

For the nonstandard form Ax = ABx, the calls are

eVals = e1g(A,B)
[X,D] = eig(A,B)



EXAMPLE 9.1

40 MF’a*

30 MP ﬁ MPa

—»80 MPa

60 MPa

The stress matrix (tensor) corresponding to the state of stress shown is

—

(80 30 O
S—30 40 0|MPa
0 0 60

(each row of the matrix consists of the three stress components acting on a coordi-
nate plane). It can be shown that the eigenvalues of S are the principal stresses and the
eigenvectors are normal to the principal planes. (1) Determine the principal stresses
by diagonalizing S with a Jacobi rotation and (2) compute the eigenvectors.



EXAMPLE 9.3

n+1
1 0 1 2 n-1 n v n+2

P——= o X

The propped cantilever beam carries a compressive axial load P. The lateral dis-
placement u(x) of the beam can be shown to satisfy the differential equation

P
94 =0
i +E1‘ (a)

where EI is the bending rigidity. The boundary conditions are

u(0) =u'(0)=0 wl)=u(L)=0 (b)

(1) Show that buckling analysis of the beam results in a matrix eigenvalue problem

if the derivatives are approximated by finite differences. (2) Use Jacobi method to
compute the lowest three buckling loads and the corresponding eigenvectors.



Solution of Part (1) We divide the beam into n + 1 segments of length L/(n + 1) each
as shown and enforce the differential equation at nodes 1 to n. Replacing the deriva-

tives of u in Eq. (a) by central finite differences of O(h?) at the interior nodes (nodes
1 to n), we obtain

Ui—p — 4ui_1 + 61 — 4uisy + Uiy
%

- P —Ui_1 + 2u; — Ui i—19 n
" El 2 ST




After multiplication by h*, the equations become

u_1 — 4y + 61y — 4o 4 15 = AM—1p + 214 — 1)

g — 41y + 61 — Ay + 1y = AM—1y + 21 — Ug)

Up_3 — 4Up_p + 6Up_1 — U + Ups) = A—Up—2 + 2Up_1 — Up)

Up—2 — 4Un_1 + 6Up — dUns1 + Unyo = Al—Un_1 + 2Up — Uny1)

where

B Ph? B P12
 EI  (n+12EI




The displacements 1_y, 1y, tpe1, and u,y» can be eliminated by using the prescribed
boundary conditions. Referring to Table 8.1, the finite difference approximations to
the boundary conditions in Egs. (b) yield

ty = 0 U_) = —1 Uy =0 Upiz = Uy

Substitution into Eqgs. (c) yields the matrix eigenvalue problem Ax = ABx, where

5 —4 | o 0 --. 0]
-4 6 -4 | 0 --. 0
1 -4 6 —4 I - 0
A=
0 I -4 6 -4 1
0 0 1 -4 6 -4
0 0 0 1 -4 7]




0

-1
0




The buckling loads are given by P, = (n+ 1)* A; EI/L%. Thus

11)2(0.1641) EI El
plz{ ) {LE ) :19.86?
11)2(0.4720) EI El
(11)%(0.9022) ET El

The analytical values are P, = 20.19E1/L?, P, =59.68E1/L% and P, = 118.9E1/L>.



Inverse Power and Power Methods
Inverse Power Method

The inverse power method is a simple iterative procedure for finding the smallest
eigenvalue 1, and the corresponding eigenvector x; of

Ax = )x (9.27)

The method works like this:

1. Letvbe an approximation to x; (a random vector of unit magnitude will do).
2. Solve

Az=v (9.28)

for the vector z.
3. Compute |z|.
4. Letv = z/|z| and repeat steps 2—-4 until the change in v is negligible.



At the conclusion of the procedure, |z| = £1/4; and v=x;. The sign of A is de-
termined as follows: if z changes sign between successive iterations, 4, is negative;

otherwise, use the plus sign.



The inverse power method also works with the nonstandard eigenvalue problem
Ax = ABx (9.30)
provided that Eq. (9.28) is replaced by

Az = Bv (9.31)



Eigenvalue Shifting

By inspection of Eq. (9.29) we see that the rate of convergence is determined by the
strength of the inequality|i; /42| < 1 (the second term in the equation). If |1,] is well
separated from |A;|, the inequality is strong and the convergence is rapid. On the
other hand, close proximity of these two eigenvalues results in very slow conver-

gence.
The rate of convergence can be improved by a technique called eigenvalue shift-

ing. Letting
A=MA"+s (9.32)

where s is a predetermined “shift,” the eigenvalue problem in Eq. (9.27) is trans-

formed to
Ax = (A" +5)x

Af =A — sl
A*x = A'x N



Solving the transformed problem in Eq. (9.33) by the inverse power method yields 4]
and xj, where 1] is the smallest eigenvalue of A*. The corresponding eigenvalue of
the original problem, 4 = A7 + s, is thus the eigenvalue closest to s.

Eigenvalue shifting has two applications. An obvious one is the determination of
the eigenvalue closest to a certain value s. For example, if the working speed of a shaft
is s rev/min, it is imperative to assure that there are no natural frequencies (which are
related to the eigenvalues) close to that speed.

Eigenvalue shifting is also used to speed up convergence. Suppose that we are
computing the smallest eigenvalue 1, of the matrix A. The idea is to introduce a shift
s that makes A7 /A; as small as possible. Since 4] = 4; — s, we should choose s ~ 1,
(s = A1 should be avoided to prevent division by zero). Of course, this method works

only if we have a prior estimate of 4.



The inverse power method with eigenvalue shifting is a particularly powerful
tool for finding eigenvectors if the eigenvalues are known. By shifting very close
to an eigenvalue, the corresponding eigenvector can be computed in one or two
iterations.



1 Al Al
— X T X+ X3+
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Power Method

The power method converges to the eigenvalue furthest from zero and the associated
eigenvector. It is very similar to the inverse power method; the only difference be-
tween the two methods is the interchange of vand z in Eq. (9.28). The outline of the

procedure is:

1. Letv be an approximation to X, (a random vector of unit magnitude will do).
2. Compute the vector

z = Av (9.35)

3. Compute |z|.
4. Letv = z/|z| and repeat steps 2—4 until the change in v is negligible.

At the conclusion of the procedure, |z| = &1, and v = X, (the sign of 4, is deter-
mined in the same way as in the inverse power method).



EXAMPLE 9.4
The stress matrix describing the state of stress at a point is

30 10 20|
S=| 10 40 -50|MPa
| 20 -50 -10

Determine the largest principal stress (the eigenvalue of S furthest from zero) by the
power method.



Solution Firstiteration:

30 10 20][1] [ =300
Zz=Sv=| 10 40 —-50|]|0|= 10.0
20 —50 —10][0]| | 20.0]
1Z| = /302 + 102 + 202 = 37.417
i " _30.0 | | - _0.80177 |
V= — = 10.0 =| 0.26726
|Z| 37.417
200 | 0.53452

T
Letv = [l 0 D] be the initial guess for the eigenvector. Then




Second iteration:

—30
Z = Sv = 10
20

10 20
40 —-50
—-50 —10

- _0.80177
0.267 26

0.53452

37.416
—24.053

| —34.744

Z| = /37.4162 + 24.0532 + 34.7442 = 56, 442

37.416 |
—24.053

| —34.744

56.442

1

0.66291
—0.426 15
 —0.61557




Third iteration:

Z=Sv=

—30
10
20

10 20
40 -50

—50 —10

—0.42615

0.66291 |

[ _36.460 |
= | 20.362

—0.61557 |

40.721

Z| = V/36.4602 + 20.3622 + 40.7212 = 58.328

- _36.460 |

20.362
40.721

58.328

[ _0.62509 |

0.34909
0.69814 |




At this point the approximation of the eigenvalue we seek is » = —58.328 MPa (the
negative sign is determined by the sign reversal of z between iterations). This is actu-
ally close to the second-largest eigenvalue 1, = —58.39 MPa. By continuing the itera-
tive process we would eventually end up with the largest eigenvalue A3 = 70.94 MPa.
But since |1,| and |A3| are rather close, the convergence is too slow from this point on



EXAMPLE 9.5
Determine the smallest eigenvalue A, and the corresponding eigenvector of

(11 2 3 1 4]
29 3 5 2

A=| 3 3 15 4 3
I 5 4 12 4

4 2 3 4 17

Use the inverse power method with eigenvalue shifting knowing that »; ~ 5.



% Example 9.5 (Inverse power method)

S = 5;

A= [11 2 3 4

2 9 3 5 2;

3 3 15 4 3;

1 5 4 12 4,

4 2 3 4 17];
[eVal,eVec] = invPower (A, s)



W invPower

Given the matrix A and the scalar s, the function invPower returns the eigenvalue
of A closest to s and the corresponding eigenvector. The matrix A* = A — sl is de-
composed as soon as it is formed, so that only the solution phase (forward and back
substitution) is needed in the iterative loop. If A is banded, the efficiency of the pro-
gram can be improved by replacing LUdec and LUsol by functions that specialize
in banded matrices — see Example 9.6. The program line that forms A* must also be
modified to be compatible with the storage scheme used for A.
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