System of nonlinear equations

Let us now consider the n-dimensional version of the same problem, namely,
fx) =0
or, using scalar notation

ﬁ(xl) X2 ...,x") = 0

By %5065 %) =0

f;?(xl! X2y «eey xn) =)

Bracketing is very difficult
Newton’s method is good, but
needs a good initial guess

Thursday 1 September 2011

Newton-Raphson Method

In order to derive the Newton-Raphson method for a system of equations, we start
with the Taylor series expansion of f;(x) about the point x:

fix+ AX) = fix) +) :—fo,- + O(AXY) (4.5a)
j=0 4

Dropping terms of order Ax?, we can write Eq. (4.5a) as
fix + Ax) = f(x) + J(x) Ax (4.5b)

where J(x) is the Jacobian matrix (of size n x n) made up of the partial derivatives

dafi
Jij = i} (4.6)

an

Thursday 1 September 2011

Let us now assume that x is the current approximation of the solution of
f(x) = 0, and let x + Ax be the improved solution. To find the correction Ax, we set
f(x + Ax) = 0in Eq. (4.5b). The result is a set of linear equations for Ax:

J(x) Ax = —f(x) (4.7)
The following steps constitute Newton-Raphson method for simultaneous, non-
linear equations:
1. Estimate the solution vector x.
2. Evaluate f(x).
3. Compute the Jacobian matrix J(x) from Eq. (4.6).
4. Setup the simultaneous equations in Eq. (4.7) and solve for Ax.
5. Letx « x+ Ax and repeat steps 2-5.

finding analytical expression for] either
not possible or impractical

ofi _ fik+ejh) — fi(x)
BXj . h

Thursday 1 September 2011

B newtonRaphson?2

This function is an implementation of the Newton-Raphson method. The nested
function jacobian computes the Jacobian matrix from the finite difference approx-
imation in Eq. (4.8). The simultaneous equations in Eq. (4.7) are solved by Gauss
elimination with row pivoting using the function gaussPivot listed in Section 2.5.
The function subroutine func that returns the array f(x) must be supplied by the
user.

function root = newtonRaphson2(func,x,tol)

% Newton-Raphson method of finding a root of simultaneous
% eguations TICx] . x2.. .5 an) =00, A =Py s g

% USAGE: root = newtonRaphson2(func,x,tol)

% INPUT:

% func = handle of function that returns[fl,f2,...,fn].

% X = starting solution vector X1l .,%X2. . .yXnjl.

% tol = error tolerance (default is 1.0e4*eps).

% OUTPUT:

%

root = solution vector.

Thursday 1 September 2011

if nargin == 2; tol = 1.0e4*eps; end
if size(x,1) == 1; x = x'; end % X must be column vector
Tor L= 13130
[jac,f0] = jacobian(func,x);
if sqrt(dot(£f0,f0)/length(x)) < tol
root = X; return
end
dx = jac\(-f0);
X = X + dx;
if sqrt(dot(dx,dx)/length(x)) < tol*max(abs(x),1.0)
root = X; return
end
end

error(’'Too many iterations’)

function [jac,f0] = jacobian(func,x)
% Returns the Jacobian matrix and f(x).
h = 1.0e-4;
n = length(x);
jac = zeros(n);
fO0 = feval(func,x);
for i =1:n
temp = x(1i);
x(1i) = temp + h;
fl = feval(func,x);
x(1i) = temp;
gael: 1) = (¥l = £0¥/ h:

end

Thursday 1 September 2011

Example-|

Determine the points of intersection between the circle x? + y? = 3 and the hyper-
bola xy = 1.

Solution The equations to be solved are

ik,) =x*+y*-3=0 (a)
folx,y) =xy—-1=0 (b)
The Jacobian matrix is
_ | 8fifex afijay | | 2x 2y
I 1= [aﬁ_/ax 3fg/8y] = [Yy x]

Thus the linear equations J(x)Ax = —f(x) associated with the Newton-Raphson

method are
2x 2y || Ax| | —x*—y*+3 ©
y x|lAay|l | -xy+1

Thursday 1 September 2011

By plotting the circle and the hyperbola, we see that there are four points of in-
tersection. It is sufficient, however, to find only one of these points, as the others can
be deduced from symmetry. From the plot, we also get rough estimate of the coordi-
nates of an intersection point: x = 0.5, y = 1.5, which we use as the starting values.

__2 \
\
+1 \\
V3 ~
| | : —X
2\ -1 1 2
~
N 1
X
N

The computations then proceed as follows.

First iteration Substituting x = 0.5, y = 1.5in Eq. (c), we get

1.0 30 || Ax| |050
15 05| Ay | |0.25

Thursday 1 September 2011

the solution of which is Ax = Ay = 0.125. Therefore, the improved coordinates of the
intersection point are

x=0.540.125 = 0.625 y=154+0.125 = 1.625

Second iteration Repeating the procedure using the latest values of x and y, we

obtain
[1.250 3.250] [Ax] B [—0.031250]
1.625 0.625 || Ay —0.015625
which yields Ax = Ay = —0.00694. Thus
x =0.625 — 0.00694 = 0.618 06 y=1.625—-0.00694 = 1.618 06
Third iteration Substitution of the latest x and y into Eq. (c) yields
[1.236 12 3.23612] [Ax] N [—0.000 116]
1.61806 0.61806 || Ay —0.000058
The solution is Ax = Ay = —0.00003, so that
x =0.61806 — 0.00003 = 0.61803

y = 1.61806 — 0.00003 = 1.61803

Subsequent iterations would not change the results within five significant fig-
ures. Therefore, the coordinates of the four intersection points are

+(0.61803, 1.61803) and =+ (1.61803, 0.61803)

Thursday 1 September 2011

Find a solution of

Example 2

sinx+y>+Inz—-7=0
3x+2Y-Z22+1=0
X+y+z-5=0

using newtonRaphson2. Start with the point (1, 1, 1).

Solution Letting x = x;, y = X, and z = x3, the M-file defining the function array
f(x) is

function y = fex4_9(x)
% Function used in Example 4.9
Yy = [sin(x(1)) + x(2)°2 + log(x(3)) - 7;
3*xC1l) + 2 x(2) - x€3) 3 ¥ 1;
x(1) + x(2) # xC3) - 2l;

The solution can now be obtained with the single command

>> newtonRaphson2(@fex4_9,[1;1;1])

which results in

ans =
0.5991
2.3959
2.0050

Hence the solution is x = 0.5991, y = 2.3959, and z = 2.0050.

Thursday 1 September 2011

Numerical Differentiation
and Integration

Given the function f(x), compute d" f/dx" at given x

Numerical differentiation deals with the following problem: we are given the function
y = f(x) and wish to obtain one of its derivatives at the point x = x;. The term “given”
means that we either have an algorithm for computing the function, or possess a
set of discrete data points (x;, y;), i =1, 2, ..., n. In either case, we have access to a
finite number of (x, y) data pairs from which to compute the derivative.

Numerical differentiation is not a particularly accurate process. It suffers from a
conflict between roundoff errors (due to limited machine precision) and errors inher-
ent in interpolation. For this reason, a derivative of a function can never be computed
with the same precision as the function itself.

Thursday 1 September 2011

Using Taylor Series

The derivation of the finite difference approximations for the derivatives of f(x) are
based on forward and backward Taylor series expansions of f(x) about x, such as

h2 W3 h
fx+ h) = f(x) + hf'(x) + o ' (x) + = " (x) + T A% +--- (a)

h2
fx—h =) -hH'0+ 50— 7 f”’)+ 7 f““ (x) — - (b)

2 3
2h)- , ol (2h)

flx+2h) = 51 31 " (x) (c)
+%f(4)(x)+---
f(x—2h) = f(x) — 2hf' (x) + (22, f(®)— (Z;Pf”’() (d)
(Zh)4f(4)(x)

Thursday 1 September 2011

We also record the sums and differences of the series:

4
fx+h+ fx—h =2f(x)+ B2 f"(x) + %f“’ (x) +--- (e)
h3
fx+h) — f(x - h) =2hf'(x) + gf’”(x) +... (f)
4
fx+2h) + f(x — 2h) = 2f(x) + 4h* " (x) + %f(‘” (X) + -+ (®)

3
f(x+2h) — f(x — 2h) = 4hf'(x) + %f”’(x) + - (h)

Thursday 1 September 2011

First Central Difference Approximations

Solution of Eq. (f) for f'(x) is

h) — —-h K
f’(x)=f(x+)th(x . =) e

Keeping only the first term on the right-hand side, we have

f&x+h) — f(x—h)
2h
which is called the first central difference approximation for f'(x). The term O(h?)
reminds us that the truncation error behaves as h?.
From Eq. (e) we obtain

» _ ¢ 2
f,,(x)zf(x-i-h) Zj;zgx)+f(x h)+?2f(4)(x)+---

i) = + O(K?) (5.1)

or

flx+ h) —2f(x) + f(x — h)

- +O(h%) (5.2)

f// (x) =

Thursday 1 September 2011

Central difference approximations for other derivatives can be obtained from
Egs. (a)-(h) in a similar manner. For example, eliminating f’(x) from Egs. (f) and (h)
and solving for f"(x) yields

fx+2h) —2f(x+ W) +2f(x — B) — f(x — 2h)

s +O(h%) (5.3)

f/ll (x) -

The approximation

flx+2h) —4f(x + B) + 6f(x) — 4f(x — b) + f(x — 2h)
h4

is available from Egs. (e) and (g) after eliminating f”(x). Table 5.1 summarizes the
results.

+ 0 (5.4)

f(4) (x) =

Thursday 1 September 2011

fx=2n | fx-h | fx) | fx+h | f(x+2h
2hf"(x) -1 0 1
h* " (x) = 1
2R3 " (x) —-1 2 0 -2 1
ht f%(x) 1 —4 6 —4

Table 5.1. Coefficients of central finite difference approximations of
O(h?)

Thursday 1 September 2011

First Noncentral Finite Difference Approximations

Central finite difference approximations are not always usable. For example, consider
the situation where the function is given at the n discrete points x;, x, ..., X,. Since
central differences use values of the function on each side of x, we would be unable
to compute the derivatives at x; and x,. Clearly, there is a need for finite difference
expressions that require evaluations of the function only on one side of x. These ex-
pressions are called forward and backward finite difference approximations.

Noncentral finite differences can also be obtained from Egs. (a)-(h). Solving
Eq. (a) for f'(x) we get

/ _ f(x - h) i f(x) h 1 h2 1" h3 (4)
f'(x) = 7 2f (x) 6f (x) 4!f (x)
Keeping only the first term on the right-hand side leads to the first forward difference
approximation

flx+ h) — f(x)
h

Similarly, Eq. (b) yields the first backward difference approximation
f(x)—fx—h
h

+ O(h) (5.9)

T =

fx) = + O(h) (5.6)

Thursday 1 September 2011

A A

Note that the truncation error is now O(h), which is not as good as the O(h?) error in
central difference approximations.

We can derive the approximations for higher derivatives in the same manner. For
example, Egs. (a) and (c) yield

fx+2h) —2f(x+ h) + f(x)

FAx) = 12 + O(h) (5.7)
The third and fourth derivatives can be derived in a similar fashion. The results are
shown in Tables 5.2a and 5.2b.
fx) | fx+h | f(x+2n | fx+3h | fix+4h
hf' (x) -1 1
n2 f" (x) 1 —2 1
w3 f" (x) =] 3 -3 1
ht f9(x) 1 —4 6 —4 1

Table 5.2a. Coefficients of forward finite difference approximations of O(h)

fx—4h) | f(x-3h) | fx—-2h) | fx—h | fx)

hf'(x) -1 1
h* f (x) 1 —2 1
" (x) colf 3 -3 1
ht f@(x) 1 —4 6 —4 1

Table 5.2b. Coefficients of backward finite difference approximations of O(h)

Thursday 1 September 2011

Second Noncentral Finite Difference Approximations

Finite difference approximations of O(h) are not popular due to reasons that will be
explained shortly. The common practice is to use expressions of O(h?). To obtain
noncentral difference formulas of this order, we have to retain more term in Taylor
series. As an illustration, we will derive the expression for f'(x). We start with Egs. (a)

and (c), which are

h2 h3 h4
fe+h) = fo) +hf () + = f'(0 + = (0 + ﬁf““ (x) + -

/ 2 o1 4h3 - 2h*
fx+2h) = f(x) + 2hf (x) + 2R* f" (x) + - ") + 5

We eliminate f”(x) by multiplying the first equation by 4 and subtracting it from the
second equation. The result is

A+

&
fx+2h) —4f(x+ h) = -3f(x) — 2hf'(x) + h?f(‘”(x) -

Therefore,

— . 2
i f(x+2h)+42j;£x+ h) — 3f(x) +hZf(4)(x)+'“

Thursday 1 September 2011

fx) | fx+h) | fx+2h) | f(x+3h) | fx+4h) | f(x+5h)
2hf’(x) -3 4 -1
h? f"(x) 2 -5 4 -1
21 (%) -5 18 —24 14 -3
h @ (x) 3 —~14 26 —24 11 —2
Table 5.3a. Coefficients of forward finite difference approximations of O(h?)
fx—=5h) | fx—4h) | fx-3h) | f(x-2h) | f(x-h) | f(x)
2hf'(x) 1 —4 3
h? f"(x) -1 4 -5 2
2R f"(x) 3 —14 24 —18 5
ht f9 (x) -2 11 —24 26 —14 3

Table 5.3b. Coefficients of backward finite difference approximations of O (h?)

Thursday 1 September 2011

Errors in Finite Difference Approximations

Observe that in all finite difference expressions the sum of the coefficients is zero.
The effect on the roundoff error can be profound. If & is very small, the values of
f(x), f(xx h), f(x £ 2h), and so forth, will be approximately equal. When they are
multiplied by the coefficients in the finite difference formulas and added, several sig-
nificant figures can be lost. On the other hand, we cannot make £ too large, because
then the truncation error would become excessive. This unfortunate situation has no
remedy, but we can obtain some relief by taking the following precautions:

e Use double-precision arithmetic.
e Employ finite difference formulas that are accurate to at least O (h?).

To illustrate the errors, let us compute the second derivative of f(x) = e * at
x = 1 from the central difference formula, Eq. (5.2). We carry out the calculations
with six- and eight-digit precision, using different values of A. The results, shown in
Table 5.4, should be compared with (1) = e~! = 0.367 879 44.

Thursday 1 September 2011

h 6-digit precision | 8-digit precision
0.64 0.380610 0.38060911
0.32 0.371035 0.371029 39
0.16 0.368711 0.368 664 84
0.08 0.368 281 0.368 076 56
0.04 0.368 75 0.367 831 25
0.02 0.37 0.3679
0.01 0.38 0.3679
0.005 0.40 0.3676
0.0025 0.48 0.3680
0.00125 1.28 0.3712

Table 5.4. (e *)” at x = 1 from central finite dif-
ference approximation

Initial error due to truncation
Later error due to round-off

Thursday 1 September 2011

Richardson Extrapolation

Richardson extrapolation is a simple method for boosting the accuracy of certain nu-
merical procedures, including finite difference approximations (we will also use it
later in numerical integration).

Suppose that we have an approximate means of computing some quantity
G. Moreover, assume that the result depends on a parameter A Denoting the
approximation by g(h), we have G = g(h) + E(h), where E(h) represents the error.
Richardson extrapolation can remove the error, provided that it has the form E(h) =
ch”, c and p being constants. We start by computing g(h) with some value of A, say,
h = h;. In that case we have

G = g(h) + chf (D)
Then we repeat the calculation with # = h,, so that
G = g(h) + chj ()

Eliminating ¢ and solving for G, Egs. (i) and (j) yield

e (h/ hy)Pg(hy) — g(hy)

5.8
(hi/ h)P —1)

Thursday 1 September 2011

which is the Richardson extrapolation formula. It is common practice to use h, =
h; /2, in which case Eq. (5.8) becomes

_ 2Pg(h,/2) — g(hy)
N Dpi g

Let us illustrate Richardson extrapolation by applying it to the finite difference
approximation of (e *)” at x = 1. We work with six-digit precision and utilize the re-
sults in Table 5.4. Since the extrapolation works only on the truncation error, we must
confine £ to values that produce negligible roundoff. Choosing h; = 0.64 and letting
g(h) be the approximation of (1) obtained with &, we get from Table 5.4

G (5.9)

g(h) = 0.380610 g(h,/2) = 0.371035

The truncation error in central difference approximation is E(h) = O(h?) = c1h? +
coh* + c3h® + - - .. Therefore, we can eliminate the first (dominant) error term if we
substitute p = 2 and h; = 0.64 in Eq. (5.9). The result is

22g(0.32) — g(0.64) ~4(0.371035) — 0.380610

G =
22 —1 3

=0.367843

which is an approximation of (e~*)” with the error O(h*). Note that it is as accurate as
the best result obtained with eight-digit computations in Table 5.4.

Thursday 1 September 2011

Example- |

Given the evenly spaced data points

X 0 0.1 0.2 0.3 0.4
f(x) || 0.0000 | 0.0819 | 0.1341 | 0.1646 | 0.1797

compute f'(x) and f”(x) at x = 0 and 0.2 using finite difference approximations of

O(h?).

Solution From the forward difference formulas in Table 5.3a, we get

—3f(0) +4f(0.1) — f(0.2) —3(0) +4(0.0819) — 0.1341

LA 2(0.1) 0.2
£/(0) = 2f(0) —5f(0.1) + 4£(0.2) — f(0.3)
B (0.1)2
~2(0) —5(0.0819) +4(0.1341) — 0.1646 _a77
B (0.1)2 T
The central difference approximations in Table 5.1 yield
£02) = —f(0.1) + f(0.3) _ —0.0819 + 0.1646 04135

2(0.1) 0.2

f(0.1) — 2£(0.2) + f(0.3) ~0.0819 —2(0.1341) + 0.1646

i02p= (0.1)2 (0.1)2

= (.967

= —2.17

Thursday 1 September 2011

Example-2

Use the data in Example 5.1 to compute f’(0) as accurately as you can.

Solution One solution is to apply Richardson extrapolation to finite difference ap-
proximations. We start with two forward difference approximations for f'(0): one us-
ing h = 0.2 and the other one h = 0.1. Referring to the formulas of O(#?) in Table 5.3a,

we get
- —-3f(0) +4f(0.2) — f(0.4) _3(0) +4(0.1341) — 0.1797
g(0.2) = 200.2) = 0.4 = 0.8918
_ -3 f(0) +4f(0.1) — f(0.2) _ —3(0) +4(0.0819) — 0.1341
g(0.1) = 20.1) = 0.2 = 0.9675

where g denotes the finite difference approximation of f'(0). Recalling that the er-
ror in both approximations is of the form E(h) = c1h? + c;h* + c3h® + - - -, we can use
Richardson extrapolation to eliminate the dominant error term. With p = 2 we ob-
tain from Eq. (5.9)

22g(0.1) — g(0.2) ~4(0.9675) — 0.8918

=:(.9927
22 -1 3

fO)~G=

which is a finite difference approximation of O(h%).

Thursday 1 September 2011

Example-3

d

The linkage shown has the dimensions @ = 100 mm, b = 120 mm, ¢ = 150 mm,
and d = 180 mm. It can be shown by geometry that the relationship between the
angles o and B is

(d —acosa — bcos/.‘i)2 + (asina +bsinﬁ)2 —c¢=0

For a given value of o, we can solve this transcendental equation for 8 by one of the
root-finding methods in Chapter 4. This was done with @ = 0°, 5°, 10°, ..., 30°, the
results being

« (deg) 0 o 10 15 20 25 30
B (rad) || 1.6595 | 1.5434 | 1.4186 | 1.2925 | 1.1712 | 1.0585 | 0.9561

Thursday 1 September 2011

If link A B rotates with the constant angular velocity of 25 rad/s, use finite difference
approximations of O(h?) to tabulate the angular velocity dg/dt of link BC against a.

Solution The angular speed of BC is

df dpde __dp
T e

where df /da is computed from finite difference approximations using the data in the
table. Forward and backward differences of O(h?) are used at the endpoints, central
differences elsewhere. Note that the increment of « is

h= (5deg) (lrad / deg) — 0.087266 rad

180
The computations yield
. —38(0°) +48(5°) — B(10°) —3(1.6595) + 4(1.5434) — 1.4186
0% =25 =25
ALO°) 2h 2 (0.087266)
= —32.01rad/s
10°) — B(0° 1.4186 — 1.6595
B(5°) = 25ﬁ(=) =25 = —34.51rad/s
2h 2(0.087266)
and so forth.
The complete set of results is
o (deg) 0 B 10 15 20 25 30
B (rad/s) || —32.01 | —34.51 | —35.94 | —35.44 | —33.52 | —30.81 | —27.86

Thursday 1 September 2011

Derivatives by Interpolation

If f(x) is given as a set of discrete data points, interpolation can be a very effective
means of computing its derivatives. The idea is to approximate the derivative of f(x)
by the derivative of the interpolant. This method is particularly useful if the data
points are located at uneven intervals of x, when the finite difference approximations
listed in the last section are not applicable."’

Polynomial Interpolant
The idea here is simple: fit the polynomial of degree n — 1

Pri(x) =a1x" + ax™ ' + - ap1x + ay (a)
through n data points and then evaluate its derivatives at the given x. As pointed

out in Section 3.2, it is generally advisable to limit the degree of the polynomial to

less than six in order to avoid spurious oscillations of the interpolant. Since these
oscillations are magnified with each differentiation, their effect can be devastating. In
view of the above limitation, the interpolation should usually be alocal one, involving
no more than a few nearest-neighbor data points.

Thursday 1 September 2011

Cubic Spline Interpolant

Due to its stiffness, cubic spline is a good global interpolant; moreover, it is easy to
differentiate. The first step is to determine the second derivatives k; of the spline at
the knots by solving Egs. (3.12). This can be done with the function splineCurv as
explained in Section 3.3. The first and second derivatives are then computed from

k[ﬂx—x.ﬂ
/ l i+1
fiin1(x) = — (X — Xi41)
6 Xi — Xi+1
kiv1 [3(x — x)? Vi — Yi+1
— — (X — X41) | +
6 Xi — Xj+1 Xi — Xj4+1
X — X1 X — Xj
ﬁ,’;'+1(x) = k; — Kit1
Xi — Xit1 Xi — Xij+1

which are obtained by differentiation of Eq. (3.10).

(5.10)

(5.11)

Thursday 1 September 2011

Given the data

Example

% 1.5 1.9 % | 2.4 2.6 3.1
f(x) || 1.0628 | 1.3961 | 1.5432 | 1.7349 | 1.8423 | 2.0397

compute f'(2) and f”(2) using (1) polynomial interpolation over three nearest-
neighbor points, and (2) natural cubic spline interpolant spanning all the data points.

Solution of Part (1) Let the interpolant passing through the points at x = 1.9,
2.1, and 2.4 be P(x) = a, +a»x + azx*. The normal equations, Egs. (3.23), of the

least-squares fit are

n DX Zx,?-- a, i 2. Vi 1
Y&a Yo 2K D Vix;
X X Xxilal Xy

After substituting the data, we get

N
()
I

3 6.4 13.78 a, [4.6742
64 13.78 29944 || a, | = | 10.0571
| 13.78 29.944 65.6578 | | a3 | | 21.8385_

g
which yields a= [—0.7714 1.5075 —0.1930] . Thus the interpolant and its
derivatives are

B (x) = —0.1903x* + 1.5075x — 0.7714
P)(x) = —0.3860x + 15075
P)(x) = —0.3860

Thursday 1 September 2011

which gives us

f'(2) = Pj(2) = —0.3860(2) + 1.50752 = 0. 7355
f'(2) = P)’(2) = —0.3860

Solution of Part (2) We must first determine the second derivatives k; of the spline
at its knots, after which the derivatives of f(x) can be computed from Egs. (5.10) and
(5.11). The first part can be carried out by the following small program:

% Example 5.4 (Curvatures of cubic spline at the knots)
Yhara = pRoSEY o O S s D ge ZOopE 8o

yData = [1.0628; 1.3961; 1.5432; 1.7349; 1.8423; 2.0397];
k = splineCurv(xData,yData)

The output of the program, consisting of k; to kg, is

>> k =
0
-0.4258
-0.3774
-0.3880
-0.5540
0

Thursday 1 September 2011

Numerical Integration or Quadrature

Compute | ab f(x) dx, where f(x) is a given function

b n
Replace / f(x)dx with I = ZAif(xi)
a i=1

Newton-Cotes and Gauss Quadrature

1
g(x)
d
[0 V1 — x? *

Thursday 1 September 2011

Newton-Cotes Formulas

f(x)

Consider the definite integral

b
f f(x)dx

We divide the range of integration (a,b) into n-| equal
intervals of (b-a)/(n-1)
The resultant points are *1,%2,...,Zn

We fit a polynomial of degree n-1 through these points
n b n b n
Pp1(x) = ;f(xi)ﬁi(x) I'= /a P, 1(x)dx = Z; [f(xi)L E,-(x)dx:| = ;Aif(xi)

b
A,-=/ Liixdx, i=142;...,
a

 trapezoidal rule (n = 2), Simpson’s rule (n = 3), and 3/8 Simpson’s rule (n = 4)

Thursday 1 September 2011

Trapezoidal Rule

Ax) 277

Ifn=2,wehave?t, = (x — x2)/(x; — x2) = —(x — b)/ h. Therefore,

O 1 g
Al——il j (x—b)dx—z—h(b—a) —5

Also, £, = (x — x1)/(x, — x;) = (x —a)/ h, so that

I 1 , h
Az_ﬁfa (x—a)dx_z—h(b—a) =

I=fla)+ f(b)] g

Thursday 1 September 2011

Composite Trapezoidal Rule
fix)

pr— — — — —

|
| |
| | | |
| | | |
I 1 l l
X, X5 X: X X
a
the region (a, b) divided into n — 1 panels, each of width A.

we obtain for the approximate area of a typical (ith) panel
h
L= [flx) + f(xi1)] >

Hence total area, representing [ab f(x)dx,is

n—

I=) L=[f(x1)+2f()+2f(xs)+ -+ 2f(xn-1) + fxn)]
1

NS

i

which is the composite trapezoidal rule.

P (b — a)h?
12

7 (6)

Thursday 1 September 2011

Recursive Trapezoidal Rule

Let I be the integral evaluated with the composite trapezoidal rule using 2! panels.
Note thatif k is increased by one, the number of panels is doubled. Using the notation

H=b-a
- k=12, and 3.

k= 1 (1 panel):
H
L =[f(a) + fb)])

k = 2 (2 panels):

L= [f(a)+2f(a+ ‘;—“') +f(b)] R n +f(a+ ‘;i) =

k = 3 (4 panels):
I3 = [f(a)+2f(a+§) +2f(a+%{) +2f(a+37) +f(b)]
= %Iz+[f(a+?)+f(a+%{)]?

We can now see that for arbitrary k > 1 we have

2By aon (

2_2 .

1 H (2i—-1)H

L = §Ik—l+—2k_1 2 :f[a+ = :| k
i=1

Thursday 1 September 2011

B trapezoid

The function trapezoid computes I(h), given I(2h) using Egs. (6.8) and (6.9). We
can compute | ab f(x) dx by calling trapezoid repeatedly with k = 1, 2, ..., until the

desired precision is attained.

function Ih = trapezoid(func,a,b,I2h,k)

% Recursive trapezoidal rule.

% USAGE: Ih = trapezoid(func,a,b,I2h,k)

% func = handle of function being integrated.
% a,b = limits of integration.

% I2h = integral with 2" (k-1) panels.

% Ih = integral with 2"k panels.

if k == 1
fa = feval(func,a); fb = feval(func,b);
Ih = (fa + fb)*(b - a)/2.0;

else
n=2"(Ck -2); % Number of new points
h=(b - a)/n ; % Spacing of new points
x =a+ h/2.0; % Coord. of 1st new point
sum = 0.0;

for i = 1:n
fx = feval(func,x);
sum = sum + fx;
X =X + h;
end
Ih = (I2h + h*sum)/2.0;
end

Thursday 1 September 2011

Simpson’s Rules

Parabola——) fix)

fx)

\

|
I &
- i
|

1 |
X
X, =a X X3=b

_%

Simpson’s 1/3 rule can be obtained from Newton—Cotes formulas with n = 3; that is,
by passing a parabolic interpolant through three adjacent nodes, as shown in Fig. 6.4.
The area under the parabola, which represents an approximation of f,,b f(x)dx,is

I=|fla)+4f cinss + f(b) 2 (a)
44 (552) + 100

Applying Eq. (a) to two adjacent panels, we have

Xii2 h
fx) dx =~ [f(x) + 4f(Xis1) + f(xis2)] 3 (b)
b
dx = fx)dx
-/; f(x) ” j=1,3,.. [f]
b
fa f) dx = I = [fix) + 4f(x) + 2f(x) + 4f(x) + - - - E— (b — a)h’* £(&)

h
o+ 2f(Xn-2) + 4f(xXn-1) + f(xn)] 3

Thursday 1 September 2011

Simpson’s 1/3 rule requires the number of panels to be even. If this condition is
not satisfied, we can integrate over the first (or last) three panels with Simpson’s 3/8
rule:

3h
I=[f(x1) +3f(x2) + 3f(x3) + flx4)] B

Thursday 1 September 2011

Derive Simpson’s 1/3 rule from Newton—Cotes formulas.

Solution Referring to Fig. 6.4, Simpson’s 1/3 rule uses three nodes located at x; = a,
Xy = (a - b) /2, and x3 = b. The spacing of the nodes is h = (b — a)/2. The cardinal
functions of Lagrange’s three-point interpolation are — see Section 4.2

01 (x) = (x — x3)(x — X3) 0,00 = (X =X)(X — x3)

(X1 — x2)(x3 — Xx3) (x2 — x1) (22 — X3)

(x — x1)(x — x2)
(X3 — x1) (X3 — X2)
The integration of these functions is easier if we introduce the variable £ with origin

at x;. Then the coordinates of the nodes are §;, = —h, §, =0, £5 = h, and Eq. (6.2b)
becomes A; = fab £i(x) = f_hh 2;(E)dE. Therefore,

£3(x) =

h h
(te-0e-h, 1 (", .k
s n (=hW(=2h %= am2 [h(g b
h h
C(hErmE-B 1 (", o, 4k
&+ h)(& — 0) 1 2 _
/ Ch(h) © T 2w f_h(g FENS =3

I= iAif(xi) — [f(a) + 4f(a%b) + f(b)] }§1

Thursday 1 September 2011

Evaluate the bounds on [sin(x) dx with the composite trapezoidal rule using (1)
eight panels and (2) sixteen panels.

Solution of Part (1) With eight panels there are nine nodes spaced at h = 7 /8. The
abscissas of thenodesarex; = (i — 1)n/8, i=1,2,...,9.FromEq. (6.5) we get

8 ;
im I
I=|sin0+2) sin— +sinx | — = 1.97423
pors 2o s
The error is given by Eq. (6.6):

(b — a)h?- (- 0)(n/8)? 3

E=- £ = o ——(—sing) = —_siné

where 0 < £ < 7. Since we do not know the value of £, we cannot evaluate E, but we
can determine its bounds:

3 71.3

T T

Therefore, I + Epin < f(; sin(x) dx < I + Epgax, OF

1.97423 < f sin(x) dx < 2.01460
0

The exact integral is, of course, I = 2.

Thursday 1 September 2011

Solution of Part (2) The new nodes created by doubling of panels are located at
midpoints of the old panels. Their abscissas are

Xj=nf16+(—-1)n/8=2j-1=n/l6, j=1,2,...,8
Using the recursive trapezoidal rule in Eq. (6.9b), we get

8 3
1.974 23 D 3
- PR o Ll T
2 16 4 16

I

and the bounds on the error become (note that E is quartered when h is halved)
Enin =0, Eppax = 0.04037/4 = 0.01009. Hence

1993 58 < f sin(x) dx < 2.003 67
0

Thursday 1 September 2011

Estimate [° f(x) dx from the data

X

0

0.5

1.0

1.5

2.0

2.0

f(x)

1.5000

2.0000

2.0000

1.6364

1.2500

0.9565

Solution We will use Simpson’s rules, since they are more accurate than the trape-
zoidal rule. Because the number of panels is odd, we compute the integral over the
first three panels by Simpson’s 3/8 rule, and use the 1/3 rule for the last two panels:

3(0.5

I = [f(0) + 3f(0.5) + 3f(1.0) + f(1.5)] —(8)
0.5
+[f(15) +4f(2.0) + f(2.5)] =

= 2.8381 + 1.2655 = 4.1036

Thursday 1 September 2011

Use the recursive trapezoidal rule to evaluate [./xcos x dx to six decimal places.
How many function evaluations are required to achieve this result?

Solution The program listed below utilizes the function trapezoid. Apart from the
value of the integral, it displays the number of function evaluations used in the com-
putation.

% Example 6.4 (Recursive trapezoidal rule)
format long % Display extra precision
func = @(x) (sgrt(x)*cos(x));
I2h = 0;
for k = 1:20

Th = trapezoid(func,0,pi,I2h,k):

if (k > 1 && abs(Ih - I2h) < 1.0e-6)

Integral = Ih
No_of_func_evaluations = 2°(k-1) + 1
return
end
>> Integral =
EZH = fhne

-0.89483166485329
No_of_func_evaluations =
32769

end

error(’'Too many iterations’)

Thursday 1 September 2011

Here is the output:

>> Integral =
-0.89483166485329
No_of_func_evaluations =
32769

Rounding to six decimal places, we have [+/xcos x dx = —0.894 832

The number of function evaluations is unusually large in this problem. The slow
convergence is the result of the derivatives of f(x) being singular at x = 0. Con-
sequently, the error does not behave as shown in Eq. (6.7): E = c1h?> + coh* +- -+,
but is unpredictable. Difficulties of this nature can often be remedied by a change
in variable. In this case, we introduce ¢ = 4/x, so that dt = dx/(2./x) = dx/(2t), or
dx = 2t dt. Thus

. /5
/ Jxcosxdx = f 2t cos t2dt
0 0

Evaluation of the integral on the right-hand side would require 4097 function
evaluations.

Thursday 1 September 2011

Romberg Integration

Romberg integration combines the composite trapezoidal rule with Richardson ex-
trapolation (see Section 5.3). Let us first introduce the notation

Ri1 =1

where, as before, I; represents the approximate value of [ab f(x)dx computed by the
recursive trapezoidal rule using 2:~! panels. Recall that the error in this approxima-

tionis E = cih® + coh* + - - -, where

b—a

= 2i—1

is the width of a panel.

Thursday 1 September 2011

Romberg integration starts with the computation of R;,; = I, (one panel) and
R, = L, (two panels) from the trapezoidal rule. The leading error term c, h? is then

eliminated by Richardson extrapolation. Using p = 2 (the exponent in the error term)
in Eq. (5.9) and denoting the result by R; >, we obtain

2Ry, — R, 4 1
Ry = 92-1 - §R2,1 = §Rl,l (a)

It is convenient to store the results in an array of the form

R
Ry Rpp

The next step is to calculate Ry, = L (four panels) and repeat Richardson ex-
trapolation with R;; and Rj,, storing the result as Rj »:

4 1
j ¢ — » DN b
32 = g M1~ gl (b)

The elements of array R calculated so far are

Ry
Ry Ry
| Rs1 Rsp

Thursday 1 September 2011

Both elements of the second column have an error of the form c; h*, which can also
be eliminated with Richardson extrapolation. Using p = 4 in Eq. (5.9), we get

il . A8 1
R = : — = —R _——
- 24-1 15 22715

R;» (c)

This result has an error of O (h®). The array has now expanded to

i i
Ry) Ry
| R33 Rsz Ras_

After another round of calculations we get

Ry

Ro1 Rap

Ry Rz Rsj

| R4n R4z Rs3z Ryg

where the error in R, 4 is O(h®). Note that the most accurate estimate of the integral
is always the last diagonal term of the array. This process is continued until the differ-
ence between two successive diagonal terms becomes sufficiently small. The general
extrapolation formula used in this scheme is

477'R i1 — Riy,j
g1-1

Ri,j= 08 PR & R o5 e | (6.13a)

Thursday 1 September 2011

A pictorial representation of Eq. (6.13a) is

Ri_y,j

N
o (6.13b)

N
Rij1| = B—=| Ry

where the multipliers @ and g depend on j in the following manner

i 2 3 4 5 6
« | -1/3 -1/15 -1/63 —1/255 —1/1023 (6.13c)
B | 4/3 16/15 64/63 256/255 1024/1023

The triangular array is convenient for hand computations, but computer imple-
mentation of the Romberg algorithm can be carried out within a one-dimensional
array r. After the first extrapolation - see Eq. (a) — Rj,) is never used again, so that it
can be replaced with R; ,. As a result, we have the array

=Ry
r» = Ry

In the second extrapolation round, defined by Egs. (b) and (c), R3, overwrites R, ,
and Rj 3 replaces Ry 2, so that the array now contains

" = R33
2 = Ry
r3 = R3)

and so on. In this manner, r, always contains the best current result. The extrapola-

tion formula for the kth round is

e 4“‘frj+1 —y
S L e S

j=k—1,k—2,...,1 (6.14)

Thursday 1 September 2011

B romberg

The algorithm for Romberg integration is implemented in the function romberg. It
returns the value of the integral and the required number of function evaluations.
Richardson’s extrapolation is performed by the subfunction richardson.

function [I,numEval] = romberg(func,a,b,tol, kMax)

% Romberg integration.

% USAGE: [I,numEval] = romberg(func,a,b,tol,kMax) if nargin < 5; kMax = 20; end
sl if nargin < 4; tol = 1.0e4*eps; end
% func = handle of function being integrated.

% a,b = limits of integration. r = zeros(kMax);

% tol = error tolerance (default is 1.0ed*eps). r(1l) = trapezoid(func,a,b,0,1);

% kMax =]limit on the number of panel doublings r0ld = r(1);

% (default is 20). for k = 2:kMax

% OUTPUT: :

% I = value of the integral. r(k) = trapezoid(func,a,b,r(k-1),k);
% numEval = number of function evaluations. r = richardson(r,k);

if abs(r(l) - r0ld) < tol
numEval = 2°(k-1) + 1; I = r(1);
return
end
rO0ld = r(1);
end

error(’'Failed to converge’)

function r = richardson(r,k)
% Richardson’s extrapolation in Eq. (6.14).
for j = k-1:-1:1
c.m 47(K-3); T(J) = (e*r(j+l) - x(J))/(c=1);
end

Thursday 1 September 2011

Show that Ry, in Romberg integration is identical to composite Simpson’s 1/3 rule in

Eq.

Example

(6.10) with 25! panels.

Solution Recall that in Romberg integration Ry, = I; denoted the approximate in-
tegral obtained by the composite trapezoidal rule with 2¥~! panels. Denoting the ab-
scissas of the nodes by x,, x;, ..., x,, we have from the composite trapezoidal rule in

Eq. (6.5)
n—1 1 h
Rpy=5 = |:f(x1) o= zigz:f(xi) + Ef(xn)] 2

When we halve the number of panels (panel width 2h), only the odd-numbered ab-
scissas enter the composite trapezoidal rule, yielding

n—-2
Re 1= = [f(xl) +2 Z f(x) +f(xn):| h

i=3,5,...

Applying Richardson extrapolation yields

4 1
Rk,z = §R}c,1 T §Rk—l.l
1 4 n—1 2 n—2 1
= §f(XI) =+ 3 ;=§_,_ fa) + 3 i=325:mf(xi) + §f(xn) h

which agrees with Simpson’s rule in Eq. (6.10).

Thursday 1 September 2011

Example

Use Romberg integration to evaluate [f(x) dx, where f(x) = sin x. Work with four
decimal places.

Solution From the recursive trapezoidal rule in Eq. (6.9b), we get

Riy = I(m) = 5 [f©) + fir)] =0

Roy = I(n/2) = %I(Jr) o % fr/2) = 1.5708

Ry1 = I(n/4) = %I(n /2) + % [£(r/4) + f(37/4)] = 1.8961

Ry = I6/8) = S 16/9) + 7 [f(e/8) + (3/8) + f(6m/8) + f(T /8]
= 1.9742

Using the extrapolation formulas in Egs. (6.13), we can now construct the following
table:

p— — — —

Rl,l 0

R,y R, | 1.5708 2.0944

Ry Ry, Ris3 | 1.8961 2.0046 1.9986

| Ryy Ri» Rys Ryq | | 1.9742 2.0003 2.0000 2.0000 |

It appears that the procedure has converged. Therefore, [, sin xdx = Rs,s = 2.0000,
which is, of course, the correct result.

Thursday 1 September 2011

Example

Use Romberg integration to evaluate foﬁ 2x? cos x? dx and compare the results with
Example 6.4.

Solution We use the following program:

% Example 6.7 (Romberg integration)
format long

func = @(x) (2*(x 2)*cos(x"2));
[Integral ,numEval] = romberg(func,0,sqrt(pi))

The results are

Integral =
-0.89483146948416
numEval =
207

It is clear that Romberg integration is considerably more efficient than the trape-

zoidal rule. It required 257 function evaluations as compared to 4097 evaluations with
the composite trapezoidal rule in Example 6.4.

Thursday 1 September 2011

Gaussian Integration

Gaussian Integration Formulas

We found that Newton-Cotes formulas for approximating | ab f(x)dx work best is f(x)

is a smooth function, such as a polynomial. This is also true for Gaussian quadrature.
However, Gaussian formulas are also good at estimating integrals of the form

b
/ w(x) f(x)dx (6.15)

where w(x), called the weighting function, can contain singularities, as long as they

are integrable. An example of such integral is fol (1 + x%) In x dx. Sometimes infinite
limits. as in /. e* sin x dx. can also be accommodated.

Gaussian integration formulas have the same form as Newton—-Cotes rules

I=) Aif(x) (6.16)
i=1

where, as before, I represents the approximation to the integral in Eq. (6.15). The dif-
ference lies in the way that the weights A; and nodal abscissas x; are determined. In
Newton-Cotes integration the nodes were evenly spaced in (a, b), that is, their loca-
tions were predetermined. In Gaussian quadrature the nodes and weights are chosen

so that Eq. (6.16) yields the exact integral if f(x) is a polynomial of degree 2n — 1 or
less; that is,

b n
f w(x) Pn(x)dx = ZA;Pm(x,-), m<2n-1 (6.17)

i=1

One way of determining the weights and abscissas is to substitute Pi(x) =1, B:(x) =
X, ..., Pop_1(x) = x?"!in Eq. (6.17) and solve the resulting 2n equations

Thursday 1 September 2011

b . n .
f wx)x'dx=Y Aix/, j=0,1,...,2n-1
a i=1

for theunknowns A;and x;,i =1, 2,..., n.

As an illustration, let w(x) = e *, a = 0, b = o0, and n = 2. The four equations
determining x, x2, A1, and A; are

241
x1=2—s/§ A1=f+

f e *dx =A+ A 24/2
0
1 X =2+ V2 A, = ﬁ i
f e xdx = A x + Axxp 2+/2
0

1
f e xldx = A\ x% + Arx?

0

1
f e *x’dx = A1x; + Arx%;

0

oc - N 1
fo e fwdx s (V24D f(2-v2) + W2 -D f(2++2)]

After Evaluating

Al+A=1
Ay +Ax =1
Apx+Apxt =2
A1xi +Axx; =6

Thursday 1 September 2011

Abscissas and Weights for Gaussian Quadratures

We list here some classical Gaussian integration formulas. The tables of nodal ab-
scissas and weights, covering n = 2 to 6, have been rounded off to six decimal places.
These tables should be adequate for hand computation, but in programming you
may need more precision or a larger number of nodes. In that case you should con-
sult other references,'® or use a subroutine to compute the abscissas and weights
within the integration program.’*

The truncation error in Gaussian quadrature

b n
E= f w(x) f(x)dx — ZAif(xi)
a i=1

has the form E = K(n) f“"(c), where a < ¢ < b (the value of ¢ is unknown; only its
bounds are given). The expression for K(n) depends on the particular quadrature
being used. If the derivatives of f(x) can be evaluated, the error formulas are useful
in estimating the error bounds.

Thursday 1 September 2011

Gauss-Legendre Quadrature

1 n
f : fE)dE = Y Aif(E) (6.26)
o i=1
+§; Aj +§; A;
n= —
0.577 350 1.000 000 | 0.000000 0.568 889
n= 0.538 469 0.478 629
0.000 000 0.888889 | 0.906180 0.236927
0.774597 0.555 556 =
n= 0.238619 0.467 914
0.339981 0.652 145 | 0.661209 0.360 762
0.861136 0.347 855 | 0.932470 0.171324
Table 6.3

This is the most often used Gaussian integration formula. The nodes are ar-
ranged symmetrically about & = 0, and the weights associated with a symmetric pair
of nodes are equal. For example, for n = 2, we have §;, = —£, and A, = A,. The trun-
cation error in Eq. (6.26) is

22n+1 (n!)4
E = 3
2n+1) [2n)!]

@), =-1<c<l (6.27)

Thursday 1 September 2011

To apply Gauss-Legendre quadrature to the integral [ab f(x)dx, we must first map
the integration range (a, b) into the “standard” range (-1, 1). We can accomplish this
by the transformation

b+a b-a
T T (6.28)
Now dx = d&(b — a) /2, and the quadrature becomes
: b—a <
f fx)dx~ — > Aif(x) (6.29)
z =1

where the abscissas x; must be computed from Eq. (6.28). The truncation error here
is
N (b — g)2n+! (n!)4

(2n)
= (¢ a<c<b (6.30)
@n+1) [(2n)!]3f e

Thursday 1 September 2011

4 piece trapezoid rule
shaded area = 20(18+12+9) = 780

Overall length = 80 1 piece trapezoid rule estimate i
Heights are in orange because the heights at the Overall length = 80
endpoints are zero Heights are in orange

2 piece trapezoid rule
shaded area =40(12) =480

Overall length = 80 8 piece trapezoid rule
Heights are in orange shaded area = 10(13+18+16+12+17+9+10)=950

Overall length = 80
Heights are in orange

Thursday 1 September 2011

