Initial Value Problem

Solvey' = F(x,y),y(a) =«

The general form of a first-order differential equation is

V= flx,y) (7.1a)

where y' = dy/dx and f(x, y) is a given function. The solution of this equation con-
tains an arbitrary constant (the constant of integration). To find this constant, we

must know a point on the solution curve; that is, y must be specified at some value of
X, say, at x = a. We write this auxiliary condition as

y(a) =a (7.1b)

An ordinary differential equation of order n

YW= fepyy, .y (7.2)

can always be transformed into n first-order equations. Using the notation

!

N=y =y va=y' .. yp=y" Y (7.3)

the equivalent first-order equations are

! f

N=y: Yo=y ya=ys ... Yo=Ff ..., (7.4a)

The solution now requires the knowledge of n auxiliary conditions. If these condi-
tions are specified at the same value of x, the problem is said to be an initial value
problem. Then the auxiliary conditions, called initial conditions, have the form

nla) =a y2(a) = az ysla)=a3 ... ynla) =ay (7.4b)

If y; are specified at different values of x, the problem is called a boundary value
problem.

For example,

yVi=—y yO)=1 y(0)=0

is an initial value problem since both auxiliary conditions imposed on the solution
are given at x = 0. On the other hand,

yVi=—y yl0O=1 y@E) =0

is a boundary value problem because the two conditions are specified at different
values of x.

- . 4

use of vector notation, which allows us to manipulate sets of first-order equations in
a concise form. For example, Eqs. (7.4) are written as

yV=Fkxy vy@a =« (7.5a)
where
1y _
V3
Flx,y)=|: (7.5b)
Vn
| flx,y)

A numerical solution of differential equations is essentially a table of x- and y-values
listed at discrete intervals of x.

Taylor Series Approach

The Taylor series method is conceptually simple and capable of high accuracy. Its
basis is the truncated Taylor series for y about x:

1 1 1
yvix+h) ~y(x) +y (x)h+ Ey”{x} "+ gy”’{x} P+ + Ey“’ﬂ (x) ™ (7.6)

Because Eq. (7.6) predicts y at x + h from the information available at x, it is also a
formula for numerical integration. The last term kept in the series determines the
order of integration. For the series in Eq. (7.6) the integration order is m.

The truncation error, due to the terms omitted from the series, is

1

= Y @ x<g<x+h

Using the finite difference approximation

vy (x + h) — y"™ (x)
h

y{m—l—l} (é} ~

we obtain the more usable form
hm
Er~r ——
(m+1)!
which could be incorporated in the algorithm to monitor the error in each integration
step.

Y™ (x + h) —y™ (x)] (7.7

H taylor

The function taylor implements the Taylor series method of integration order four.
[t can handle any number of first-order differential equations y’ = fi(x, y1, y2, ..., yn),

i=1,2,...,n The user is required to supply the function deriv that returns the
4 x n array

25 N I T S
a | @ _wow
AL I B T
IR L B I S U AR (e

The function returns the arrays xSol and ySo1l that contain the values of x and y
at intervals h.

B printSol

This function prints the results xSol and ySol in tabular form. The amount of data
is controlled by the printout frequency freaq. For example, if freq = 5, every fifth
integration step would be displayed. If freq = 0, only the initial and final values
will be shown.

EXAMPLE 7.1
Given that

V+ay=x* y0)=1

determine y(0.2) with the fourth-order Taylor series method using a single integra-
tion step. Also compute the estimated error from Eq. (7.7) and compare it with the
actual error. The analytical solution of the differential equation is

31 ,. 1, 1 1
= —e Xt — —x+ —
Y= Tt Tt Ty

Solution The Taylor series up to and including the term with h* is
y(h) = y(0) + y' (0)h+ % y"(0) 1 + % y"(0) I + i y@ (o) K
Differentiation of the differential equation yields
y = —4y+ x*
y' = -4y 4+ 2x = 16y — 4x* + 2x
y" =16y —8x+2=—64y+ 16x° — 8x +2

y® — 64y’ +32x — 8 =256y — 64x% +32x — 8

Thus
y'(0) = —4(1) = —4
y"(0) = 16(1) = 16
y"(0) = —64(1) + 2 = —62
y@(0) = 256(1) — 8 = 248

With i = 0.2, Eq. (a) becomes

y0.2) = 14 (~4)0.2) + 3, (16)(0.2) + 5 (~62)(0.2)° + 1, (248)(0.2)
= (0.4539

According to Eq. (7.7) the approximate truncation error is

Ly (4)
E=—[y"0.2) - y?(0)]

5!

b H

where

y4(0) = 248

y¥(0.2) = 256(0.4539) — 64(0.2)* +32(0.2) — 8 = 112.04
Therefore,
E= {0;)4 (112.04 — 248) = —0.0018

The analytical solution yields |

1(0.2) = %e—"*[m + i{n.z)z — %[0.2} + % — 0.4515

so that the actual erroris 0.4515 — 0.4539 = —0.0024.

EXAMPLE 7.2
Solve

y'=-0.1y — x y(0) =0 y'(0)=1

from x = 0 to 2 with the Taylor series method of order four using i = 0.25.

Solution With y; = yand y, = y’ the equivalent first-order equations and initial con-

ditions are
, A&t) 0
= = 0 —
Y [J’é] [—0-1-1*’2—*‘?} Yo [1}

Repeated differentiation of the differential equations yields

v = Vs B —0.1y, — x
—0.1y;, — 1 001y 4+0.1x—1
. [—01y—1 7 [oo01pm+01x—1
Y = 1001y, +0.1 |~ | —0.001y, —0.01x + 0.1

(4) _ 0.01y, 4+ 0.1 | —0.001y, —0.01x+0.1
o= —0.001y, —0.01 [| 0.0001y, + 0.001x — 0.01

Thus the derivative array required by taylor is

i V2 —0.1y, — x i
d— —0.1y2 — x 0.0y +0.1x -1
00ly, +0.1x -1 —0.001y> — 0.01x + 0.1
| —0.001y, —0.01x+ 0.1 0.0001y, +0.00lx —0.01 |

which is computed by

function d = fex7_2(x,V)

% Derivatives used in Example 7.2

d = zeros(4,2);

d(1,1) = y(2);
d(1,2) = -0.1*y(2) - X;
d(2,1) = d(1,2);
d(2,2) = 0.01*y(2) + 0.1*x -1;
d(3,1) = d(2,2),;
d(3,2) = -0.001*y(2) - 0.01*x + 0.1;
d(4,1) = d(3,2);
d(4,2) = 0.0001*y(2) + 0.001*x - 0.01;
>> [x,v] = tayvlor(@fex7_2, 0, [0 1], 2, 0.25);
>> printSol(x,v,1) X vl y2
0.0000e+000 0.0000e+000 1.0000e+000
2.5000e-001 2.4431e-001 9.4432e-001
5.0000e-001 4.6713e-001 8.2829e-001
7.5000e-001 6.5355e-001 6.5339e-001
1.0000e+000 7.8904e-001 4.2110e-001
1.2500e+000 8.5943e-001 1.3281e-001
1.5000e+000 8.5090e-001 -2.1009e-001
1.7500e+000 /.4995e-001 -6.0625e-001
2.0000e+000 5.4345e-001 -1.0543e+000

The analytical solution of the problem is
y = 100x — 5x% 4+ 990(e™*1* — 1)

from which we obtain y(2) = 0.54345 and y'(2) = —1.0543, which agree with the nu-
merical solution.

Runge-Kutta Methods

The aim of Runge-Kutta methods is to eliminate the need for repeated differenti-
ation of the differential equations. Since no such differentiation is involved in the
first-order Taylor series integration formula

y(x+h) =y(x) +y (x)h=y(x) +F(x,y)h (7.8)

it can be considered as the first-order Runge—Kutta method; it is also called Eu-
ler's method. Due to excessive truncation error, this method is rarely used in
practice.

Let us now take a look at the graphical interpretation of Euler’s equation. For
the sake of simplicity, we assume that there is a single-dependent variable y, so that
the differential equation is y' = f(x, y). The change in the solution y between x and
x+ his

X+

h x+h
vix+h) —ylh) = f ydx = f flx, y)dx

X

Truncation error is proportional to y"(x)

_+—FError

_Euler's formula

7 x

X X+h

fx.y)

Graphical representation of error in euler integration

Second-Order Runge-Kutta Method

To arrive at the second-order method, we assume an integration formula of the form
v(x+ h) =y(x) + ¢F(x,y)h+ a\F[x + ph,y + qhF(x,y)| h (a)

and attempt to find the parameters ¢, c1, p, and g by matching Eq. (a) to the Taylor
series

1
vix+h) =y(x)+y () h+ Ey”{x] W+ O

=v(x)+Fx,yh+ éF’[x, v+ O(h°) (b)

Noting that

, F < dF , 9F < oF
F{-’i-:}’}:a—F;ay{h:ﬂ—i—Z

where n is the number of first-order equations, Eq.(b) can be written as

B 1 (0F <OF s
ylx + h) = y(x) + F(x,vy) h+ 5 (a + Zl: a—ﬁﬂ(x, Y)) h + O(h?) (c)

Returning to Eq. (a), we can rewrite the last term by applying Taylor series in

several variables:

n

dF dF
- . : — " —ph . —FE Mh
F|x+ ph,y+qhF(x,y)] =F(x,y) + o pi?+qh‘z 7 Fi(x,y) + O(h?)

i=1 !

Returning to Eq. (a), we can rewrite the last term by applying Taylor series in
several variables:

n

dF oF
- v = Elx S ohteaghS 2 E (h
Flx+ phy+qhF(x,y)| =F(x,y) + - ph + qrh'; 7 Fi(x,y) + O(h?)
so that Eq. (a) becomes
dF ", 9F 3
yix+ h) =yx)+ (co+c1) Flx,y)h + a1 aph + th rﬁ-{x, y) | h+ O(R’) (d)
i=1 !

Comparing Egs. (c) and (d), we find that they are identical if

1 1

cq+c=1 CIPZE C](}':E (e)

=0 cg=1 p=1/2 ¢q=1/2 Maodified Euler’s method
c=1/2 q=1/2 p=1 q=1 Heun’s method
co=1/3 c=2/3 p=3/4 g=3/4 Ralston’s method

All these formulas are classified as second-order Runge-Kutta methods, with no for-
mula having a numerical superiority over the others. Choosing the modified Euler’s
method, substitution of the corresponding parameters into Eq. (a) yields

h /
y(x+h) =y(x)+F [x + E? v+ EIF(I, YJ] h (f)

This integration formula can be conveniently evaluated by the following sequence of
operations

K, = hF(x,y)
= E (e " va Lk (7.9)
2 = hr | —I—E,}’—I—E 1 :

vix+h) =yx) + Ky

N

f(x+h/2,y+K,/2)

R
—_—
—_

f(xy)

N\

X

Figure 7.2 displays the graphical interpretation of modified Euler's formula for
a single differential equation y’ = f(x, y). The first of Egs. (7.9) yields an estimate of
y at the midpoint of the panel by Euler’s formula: y(x + h/2) = y(x) + f(x, y)h/2 =
y(x) + K;/2. The second equation then approximates the area of the panel by the
area K> of the cross-hatched rectangle. The error here is proportional to the curvature
y"" of the plot.

slope = f(x.+0.5h,y,+0.5hf(x,)))

(X, ¥,)

slope = f(x,y,)

X n X +h

Fourth Order Runge Kutta Method

K, = hF(x,v)
h K
Kg:hl:(,x:JrE,ij?l)
h Kg
K :f].: — ¥V —
3 ! (JH—Z Y+ 2)

Ky = hF(x + h, vy + K3)

1
y(x+ h) =y(x) + E{Kl + 2Ko + 2K3 + Ky)

k1 is the delta based on the slope at the beginning of the interval, using yn, (Euler’
ko is the delta based on the slope at the midpoint of the interval, using yn + 1/2 ky
k3 is again the delta based on the slope at the midpoint, but now using y + 1/2 k2
k4 is the delta based on the slope at the end of the interval, using yn + k3 .

The main drawback of this method is that is does not lend itself to an estimate of
the truncation error. Therefore, we must guess the integration step size h, or deter-
mine it by trial and error. In contrast, the so-called adaptive methods can evaluate the
truncation error in each integration step and adjust the value of /1 accordingly (but at
a higher cost of computation). One such adaptive method is introduced in the next
section.

l\."'\.
ay
o
L
y
LY

slope=f(B)

s slope=f(C)
D
o :
B
slope=f(A)

slope=(f(A)+2f(B)+2f(C)+f(D))/6

B runkut4d

The function runkut4 implements the Runge-Kutta method of order four. The user
must provide runKut4 with the function dEgs that defines the first-order differential
equationsy’ = F(x, y).

EXAMPLE 7.4
Solve

y'==01y'—x y0)=0 y'(0)=1

from x = 0 to 2 in increments of i = 0.25 with the fourth-order Runge-Kutta method.
(This problem was solved by the Taylor series method in Example 7.2.)

Solution Letting y; = y and y, = y’, the equivalent first-order equations are

' yi V2
P{I,) == = , =
y y |:y2i| |:—0.1y2—xi|

which are coded in the following function:

function F = fex7_4(X,V)
% Differential. eqgs. used in Example 7.4

F = zeros(1,2);
F(1) = y(2); F(2) = -0.1*y(2) - X;

>>

>>

I R R T 7 B o R

[x,¥] =

printSol(x,v,1)

X

.0000e+000
.5000e-001
.0000e-001
.5000e-001
.0000e+000
.2500e+000
.25000e+000
. 7500e+000
.0000e+000

T~ G0 G0 ~1 & &= N O

yv1

.0000e+000
.4431e-001
.6713e-001
.5355e-001
.8904e-001
.5943e-001
.5090e-001
.4995e-001
.4345e-001

runkut4(@fex7_4,0,[0 1],2,0.25);

V2

.0000e+000
.4432e-001
.2829e-001
.5339e-001
.2110e-001
.3281e-001
.1009e-001
.0625e-001
.0543e+000

y = C{?’Bx + E—x
which can be verified by substitution. The initial condition y(0) = 1 yields C = 0, so
that the solution to the problem is indeed y = e*.

The cause of trouble in the numerical solution is the dormant term Ce**. Sup-
pose that the initial condition contains a small error &, so that we have y(0) = 1 + .
This changes the analytical solution to

y = 8€3x+ E—x

We now see that the term containing the error ¢ becomes dominant as x is increased.
Since errors inherent in the numerical solution have the same effect as small changes
in initial conditions, we conclude that our numerical solution is the victim of numer-
ical instability due to sensitivity of the solution to initial conditions. The lesson here
is: Do not always trust the results of numerical integration.

Stability of Euler's Method

As a simple illustration of stability, consider the problem
Y =-iy y0) =8 (7.11)
where A is a positive constant. The exact solution of this problem is
y(x) = Be™

Let us now investigate what happens when we attempt to solve Eq. (7.11) numer-
ically with Euler’s formula

y(x+ h) = y(x) + hy'(x) (7.12)

Substituting y'(x) = —Ay(x), we get
yix+h = (1-2ah)y(x)

If |1 — lh‘ > |, the method is clearly unstable since |y| increases in every integration
step. Thus Euler’s method is stable only if ‘1 - lh| < 1,or

h<2/i (7.13)
The results can be extended to a system of n differential equations of the form
y = —Ay (7.14)

where A is a constant matrix with the positive eigenvalues A;,i = 1, 2, ..., n. It can be
shown that Euler’'s method of integration formula is stable if

h < 2/Amax (7.15)

where inax is the largest eigenvalue of A.

Stiffness

An initial value problem is called stiff if some terms in the solution vector y(x) vary
much more rapidly with x than others. Stiffness can be easily predicted for the differ-
ential equations y = —Ay with constant coefficient matrix A. The solution of these
equations is y(x) =). C;v; exp(—A;x), where ; are the eigenvalues of A and v; are
the corresponding eigenvectors. It is evident that the problem is stiff if there is a large
disparity in the magnitudes of the positive eigenvalues.

Numerical integration of stiff equations requires special care. The step size h
needed for stability is determined by the largest eigenvalue Amax, even if the terms
exp(—AimaxX) in the solution decay very rapidly and become insignificant as we move
away from the origin.

For example, consider the differential equation'®

y"+1001y" + 1000y = 0 (7.16)

Using y3 = yand y» = y', the equivalent first-order equations are

;o Y2
Y =1 ~1000y, — 1001y,

0 —1
A=
|:lDﬂD ll][}li|

The eigenvalues of A are the roots of

In this case

—A —1
1000 1001 — A

A — A =

Expanding the determinant we get
—A(1001 —4) + 1000 =0

which has the solutions A1 = 1 and i» = 1000. These equations are clearly stiff. Ac-
cording to Eq. (7.15), we would need h < 2/4, = 0.002 for Euler’s method to be sta-
ble. The Runge—Kutta method would have approximately the same limitation on the
step size.

EXAMPLE 7.7
(1) Show that the problem
B 19

"'P" = —I}" —_ J_D_}f’ y[{]] — -9 }""[{]] =2\

is moderately stiff and estimate /nay, the largest value of i for which the Runge—
Kutta method would be stable. (2) Confirm the estimate by computing y(10) with
h~ hpax/2 and h ~ 2hpax.

Solution of Part (1) With the notation y = y; and y’ = y» the equivalent first-order
differential equations are

Va2 V1
=1 19 =—A|"
Y ——n —10y2 |:,1’2]
4
where
0 -1
A=1|19
— 10
4

The eigenvalues of A are given by

IA— Al =19 —0

Solution of Part (2) An estimate for the upper limit of the stable range of /i can be
obtained from Eq. (7.15):

2 2
Amax | 19/2

Pmax =

Although this formula is strictly valid for Euler's method, it is usually not too far off
for higher-order integration formulas.

Here are the results from the Runge-Kutta method with 7 = 0.1 (by specifying
freq = 0inprintSol, only the initial and final values were printed):

> X vl Ve
0.0000e+000 -9.0000e+000 0.0000e+000
1.0000e+001 -6.4011e-002 3.2005e-002

The analytical solution is

EE—I;’E + le—lgxfz

y(x) =— 5 5

> X vl V2
0.0000e+000 -9.0000e+000 0.0000e+000
1.0000e+001 -6.4011e-002 3.2005e-002

The analytical solution is

EE—IKZ + ie—lgx;’?_

y(x) =— 5 5

yielding y(10) = —0.0640 11, which agrees with the value obtained numerically.
With h = 0.5 we encountered instability, as expected:

> X vl V2
0.0000e+000 -9.0000e+000 0.0000e+000
1.0000e+001 2.7030e+020 -2.5678e+021

Adaptive Runge-Kutta Method

Determination of a suitable step size h can be a major headache in numerical inte-
gration. If /1 is too large, the truncation error may be unacceptable; if /1 is too small,
we are squandering computational resources. Moreover, a constant step size may
not be appropriate for the entire range of integration. For example, if the solution
curve starts off with rapid changes before becoming smooth (as in a stiff problem),
we should use a small & at the beginning and increase it as we reach the smooth re-
gion. This is where adaptive methods come in. They estimate the truncation error at
each integration step and automatically adjust the step size to keep the error within
prescribed limits.

The adaptive Runge-Kutta methods use so-called embedded integration formiu-
las. These formulas come in pairs: one formula has the integration order m, the other
one is of order m + 1. The idea is to use both formulas to advance the solution from x
to x + h. Denoting the results by y,,(x + /) and y,,.1(x + /), an estimate of the trun-
cation error in the formula of order m is obtained from:

E(h) =Yma(x + h) —ym(x + h) (7.17)

What makes the embedded formulas attractive is that they share the points where
F(x,vy) is evaluated. This means that once y,;,(x + h) has been computed, relatively
small additional effort is required to calculate y;;,.1 (x + h).

Here are the Runge-Kutta embedded formulas of orders five and four that
were originally derived by Fehlberg; hence, they are known as Runge—Kutta-Fehlberg

formudlas:
K = hF(x, y)
i—1
Kf:}".‘:F J{—I—Agh,}’—l—ZBinj , 1=2,3,...,6 (7.18)
j=0
6
Vs(x+ h) = y(x) + Z C;K; (fifth-order formula) (7.19a)
i=1
6

Valx 4+ h) = y(x) + Z D;K; (fourth-order formula) (7.19b)

i=1

[A; B” C; D;
1 37 2825
378 27648
1 1
2| = | = _ _ _ _ 0 0
3 3 3 9 250 18575
10 40 40 621 48384
A 3 3 9 6 125 13525
5 10 10 5 594 55296
O O
54 2 27 27 14336
5 7 1631 175 575 44275 253 512 1
8 55296 512 13824 110592 4096 | 1771 4

Table 7.1. Cash—Karp coefficients for Runge-Kutta—Fehlberg formulas

The solution is advanced with the fifth-order formula in Eq. (7.19a). The fourth-
order formula is used only implicitly in estimating the truncation error

6
E(h) = ys(x+ h) —yalx+ h) = Y (G — D)K; (7.20)

i=1

We could also control some gross measure of the error, such as the root-mean-square

error defined by

n—1
1

. _ - 2
E(h= | ; E?(h) (7.22)

where n is the number of first-order equations. Then we would use

e(h) = E(h) (7.23)

Error control is achieved by adjusting the increment /2 so that the per-step error
e is approximately equal to a prescribed tolerance . Noting that the truncation error
in the fourth-order formula is @(/°), we conclude that

e(hy) n 0

~| - (a)
e(h) hy
Let us now suppose that we performed an integration step with /; that resulted in

the error e(/11). The step size h, that we should have used can now be obtained from
Eq. (a) by setting e(h;) = &:

1/5
}".’2 = h] [E{hﬂ] [b]
£
, 1/5
Factor of safety h, = 0.9 [{'{h’l]]
&

EXAMPLE 7.8
The aerodynamic drag force acting on a certain object in free fall can be approxi-

mated by
Fp = av?e ™™
where

v = velocity of the object in m/s

y = elevation of the object in meters
a = 7.45kg/m

b =10.53 x 107> m™!

The exponential term accounts for the change of air density with elevation. The dif-
ferential equation describing the fall is

my =—mg+ Fp

where g =9.80665 m/s?> and m = 114 kg is the mass of the object. If the object is
released at an elevation of 9 km, determine its elevation and speed after a 10 s fall
with the adaptive Runge-Kutta method.

Solution The differential equation and the initial conditions are

. a .,
e JE— —b F
y g+ my exp(—by)

7.45 -
7? exp(—10.53 x 10~ y)

= —9.80665
T 114

y(0) =9000m j(0) =0

Letting y; = y and)» = y, the equivalent first-order equations and the initial condi-
tions become

.|| %)
Y= |:_Pz] B [—9.80665 + (65.351 x 107) (y2)* exp(—10.53 x 10‘5}f1]i|

9000 m
o= [00]

The function describing the differential equations is

>> [x,yv] = runKut5(@fex7_8,0,[9000 0],10,0.5,1.0e-2);
>> printSol(x,v,1

EXAMPLE 7.9
Integrate the moderately stiff problem

19
J"H — _IV - l[]:r" F[DJ — _9 :l"f'[:[]] — U

from x = 0 to 10 with the adaptive Runge-Kutta method and plot the results (this
problem also appeared in Example 7.7).

>> [x,v] = runKuts>(@fex7_7,0,[-9 0]1,10,0.1);
>> printSol(x,y,4)

Bulrisch-Stoer Method

Midpoint Method

The midpoint formula of numerical integration ofy’ = F(x, y) is

y(x+ h) =y(x — h) +2hF|x, y(x)]

Consider now advancing the solution of y'(x) = F(x,y) from x = x; to xo + H
with the midpoint formula. We divide the interval of integration into n steps of length

h = H/neach

0
><

Xo X4 Xp X3 /\/\ Xn - 1

Vi = Yo + hFE,
Y2 = Yo + 2hF,
V3 =V + 2hF;

Yn = Vn-2 + 2th—l

Here we used the notation y; = y(x;) and F; = F(x;, v)).

Taking the average of

YH ~ Yn—l + hFH

And sum of previous terms: yn
To get

1
Y(ID + H) = E [Yu -+ (YH—[+ h-Fu)]

Error in this expression IS

E=ci’+cht +c3h® +-..

This Is fantastic because we can now use
Richardson's extrapolation

Herein lies the great utility of the midpoint method: we can eliminate as many of the
leading error terms as we wish by Richarson’s extrapolation. For example, we could
compute y(xp + H) with a certain value of /7 and then repeat process with /1/2. De-
noting the corresponding results by g(/) and g(/1/2), Richardson’s extrapolation — see
Eq. (5.9) — then yields the improved result

4g(h/2) — g(h

Ybetter (x(] + H) = 3

This is fourth order accurate

L

sequence h/2, h/4, h/6, h/8, h/10, - - -, which has been found to be more economical.

B midpoint

The function integrate in this module combines the midpoint method with
Richardson extrapolation. The first application of the midpoint method uses two in-
tegration steps. The number of steps is increased by 2 in successive integrations, each
integration being followed by Richardson extrapolation. The procedure is stopped
when two successive solutions differ (in the root-mean-square sense) by less than a

prescribed tolerance.

Bulirsch-Stoer Algorithm

When used on its own, the module midpoint has a major shortcoming: the solution
at points between the initial and final values of x cannot be refined by Richardson ex-
trapolation, so thaty is usable only at the last point. This deficiency is rectified in the
Bulirsch—-Stoer method. The fundamental idea behind the method is simple: apply
the midpoint method in a piecewise fashion. That is, advance the solution in stages
of length H, using the midpoint method with Richardson extrapolation to perform
the integration in each stage. The value of H can be quite large, since the precision of
the result is determined mainly by the step length /2 in the midpoint method, not by
H.However, if Histoo large, the midpoint method may not converge. If this happens,
try smaller value of H or larger error tolerance.

B bulStoer

This function contains our greatly simplified algorithm for the Bulirsch-Stoer
method.

Solution With n = 2, the step length is i = 0.25. The midpoint formulas, Eqs. (7.26)
and (7.27) yield

Vi =Yoo+ hfo=1+0.25sin1.0 =1.210368

Vo = Yo+ 2hfi =1+ 2(0.25)sin 1.210368 = 1.467 87 3

1
yr(0.5) (y1 + yo + hf2)

2
|
5[1.210 368 + 1.467 873 + 0.25sin 1.467 87 3)

= 1.463 459

EXAMPLE 7.10
Compute the solution of the initial value problem

y' =siny y(0) =1

at x = 0.5 with the midpoint formulas using n = 2 and n = 4, followed by Richardson
extrapolation (this problem was solved with the second-order Runge-Kutta method
in Example 7.3).

Using n = 4, we have h = 0.125 and the midpoint formulas become

V1= Yo+ hfo=1+0.125sin1.0 =1.105184
Vo = Yo+ 2hfi = 1+ 2(0.125) sin 1.105 184 = 1.223 387
¥s = y1 + 2hfy = 1.105 184 + 2(0.125) sin 1.223 387 = 1.340 248

Va = Vo + 2hfs = 1.223 387 + 2(0.125) sin 1.340248 = 1.466 772

1
Vr2(0.5) = E(yq + y3 + hfy)

1
=35 (1.466 772 + 1.340248 4+ 0.125sin 1.466 772)

= 1.465672

Richardson extrapolation results in

4(1.465672) — 1.463 459
y(0.5) = 3 — 1.466 410

which compares favorably with the “true” solution y(0.5) = 1.466 404.

EXAMPLE 7.11

The differential equations governing the loop current i and the charge g on the ca-
pacitor of the electric circuit shown are
di q dqg .

LE+RI+E=E(I] ikl

If the applied voltage E is suddenly increased from zero to 9 V, plot the resulting loop
current during the first 10s. Use R=1.09, L =2H, and C = 0.45E

Solution Letting

=[n]- [

and substituting the given data, the differential equations become

y=|7| = N
! (=R —yo/C+ E) /L

The initial conditions are

% Example 7.11 (Bulirsch-Stoer integration)
[xSol,ySol] = bulStoer(@fex7_11,0,[0 0],10,0.5);
plot(xSol,ySol(:,2), k-0")

grid on

xlabel('Time (s)’)

ylabel (’'Current (A)’)

Numerical Methods in Structural
Dynamics

~Implicit or explicit methods.
~Small time-step generally Is good enough, but
costly.
~Errors include erroneous phase-shift or artificial
damping

Central Difference

Att=0

m vg + ¢ vg + k vg = po

. 1 , ,
vop = — |po — ¢ vo — k vg]
m
- . Vo — V-1 : . U1 — Vg
Y-tz = h /2 = h
.. Ui —v_1/2 . 1 1
h h2 " h2

from which .

'E—‘D — h—z ('E.-‘l — 2'51-‘0 —|— ?_’_1)

I I.;"
Velocity
'r— {rz 'rD 'rl.-"-,_I
AU
/———j\
/i
Ir""""--...___‘_h
Displacement
- - * -
h h

Substituting this expression into Eq. (7-7) then leads to

h? .
(S) Vo -+ V_1 = — (pD — CUp — k 'UU)
m

and solving this for the displacement at the end of the time step results 1n

h? .
v1 = — (po — cg — kwvg) + 209 — v_1
m
v —v_1
Up =—
2h

V_1 — U — 2}1 'I-,-*[].

_ h2 .
vy =vg+ hvg+ — (po — cvg — kvg)
2m

Conditionally stable, and will blow up if the following condition
Is not obeyed

Newmark Beta Method

1 =09+ (1 —~v)hvg+vhi

1 | . ..
v = vg + htg + (5 — [3) h? g + 3 h? i

No artificial damping if y = 1/2, so used for SDOF

Using y = ¥2 and [3 = ¥ we reduce to the constant acceleration

method (unconditonally stable)
Using y = %2 and 3 = 1/6 we get linear acceleration method
(conditionally stable: h/T < 0.55). Made unconditionally stable with

Wilson's metho _ h . .
"1 = Up —|— F (f'[] + 6'1)

i b h? N he
M = g h + — 1 —
1 0 0 5 0 6 1

Acceleration

(Constant)

Velocity

(Linear)

Displacement

(Quadratic)

4
[H

av
L

_ I - -
= T(Uﬂ +0,)

v(t) =1, +% (Uy +0y)

. 2 .. .
U(T) = v, + 0,1 +I{UQ +U;)

h

: o .
v, = v+ U+ 7 W +vyp)

Acceleration

(Linear)

Velocity

(Quadratic)

Displacement

(Cubic)

%]

v, +

Conversion to explicit form fory = 1%
and 3 =V

1 4

U1 = 72 (v1 — vo) — 7 vy — Ug
| 2 .
U1 :E (v1 — o) — Vo

mvy+civy+kv =p

Writing equations in a special form
2c 4m

J V1 = P, k. — k- |
) Hle © h h?

— 20 dvg 4
Ple =P1 +¢C (— + fg) +m (— + — g + f[})
h h?2 h

Finally we obtain the acceleration at the final step

1
vy =— (p1 —cvy —kwvy)
m

The algorithm proceeds further.

For a MDOF system we need to do one inversion
To solve matrix equation of the form
Kx =F

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69

