Using tangent direction making convergence very fast

Wednesday 17 August 2011

|8i+l| - |8,-|“ +V52 | K

Use of secant instead of tangent. Slow but sure.

Wednesday 17 August 2011

One of the dangers is getting
discontinuity.

B ~ . .‘\.x3 xZ

false-secant or regula-falsi

f(x)
’
,
’,
’
,
’,
s,
’
’,
’
’
’
,
’,
’
4
'l

5
i " i . . e e e s s e e s e
'
v

Wednesday 17 August 2011

Yisqp—eYq ! Y Ypoq

The false position method (also known as regula falsi) requires x, and x, to
bracket the root. After the improved root is computed from Eq above either x, or x;

is replaced by x3. If f3 has the same sign as fi, we let x; < x3; otherwise we choose
X, < Xx3.In this manner, the root is always bracketed in (x,, x,). The procedure is then
repeated until convergence is obtained.

The secant method differs from the false position method in two details. (1) It
does not require prior bracketing of the root; and (2) the oldest prior estimate of the
root is discarded; that is, after x3 is computed, we let x; < X2, xp < X3.

Wednesday 17 August 2011

Failure of secant methods

fx)

sf
3’
’
257
P
A4
A
s ?
'II
A
PR
PR
FEE
FE
v
vre
ey
ey
’Al'
4
s
‘I4
l"
l”
0,
Pt
l"’
l"‘
I”
I"
"’
l"l
VR 7
PR
s Ty
P
v’ l'
’
l" v
P I
AP
F e R
F T g
o .
P B S
Vs, Aty
SN XN,
P T . S . 4
> 7 N7
’ ’, s’
’ s’ s

Wednesday 17 August 2011

Ridder’s method
g(x)

X \
BT
II
Ridder’s method is a clever modification of the false position method. Assuming that

the root is bracketed in (x;, x,), we first compute f3 = f(x3), where x; is the midpoint
of the bracket, as indicated in Fig. above Next, we the introduce the function

Ridder’s Method

gx) = filx)e*~*¢

where the constant Q is determined by requiring the points (x;, g1), (x2, &), and
(x3, &) to lie on a straight line, as shown in Fig. above As before, the notation we use

is g = g(x;). The improved value of the root is then obtained by linear interpolation
of g(x) rather than f(x).

Let us now look at the details. From Eq. (a) we obtain
& =h & = fe"? g = fre"?

Wednesday 17 August 2011

where h = (x; — x,)/2. The requirement that the three points in Fig. 4.3b lie on a
straightline is g3 = (g1 + &)/2, or

ﬁ,e"Q e %(fl +f282h0)

which is a quadratic equation in ¢”"?. The solution is

_hEJB-fif

e"? (c)
f2
Linear interpolation based on points (x;, g) and (x3, g3) now yields for the im-
proved root
X3 — X1 hQ X3 — X1
Xy = X3 — = X3 — f3e
4 3 83 & — g 3 fé _ﬁ;eho il _fl

where in the last step we utilized Egs. (b). As the final step, we substitute "< from
Eq. (c), and obtain after some algebra

f5

VI3 - hf

(4.3)

Xy = X3 £ (X3 — x1)

It can be shown that the correct result is obtained by choosing the plus sign if fi —
f> > 0, and the minus sign if f; — > < 0. After the computation of x4, new brackets
are determined for the root and Eq. (4.3) is applied again. The procedure is repeated
until the difference between two successive values of xs becomes negligible.

Wednesday 17 August 2011

ridder method

function root = ridder(func,xl,x2,tol)

% Ridder’s method for computing the root of f(x) = 0

% USAGE: root = ridder(func,a,b,tol)

% INPUT:

% func = handle of function that returns f(x).

% x1,x2 = limits of the interval containing the root.

% tol = error tolerance (default is 1.0e6*eps).

% OUTPUT:

% root = zero of f(x) (root = NaN if failed to converge).

if nargin < 4; tol = 1.0e6*eps; end
fl = func(xl);
if f1 == 0; root
T2 = fTunc(x2):
if f2 == 0; root
i FL*T2°> 0

error(’Root is not bracketed in (a,b)’)

x1l; return; end

x2; return; end

end

Wednesday 17 August 2011

for i = 0:30
% Compute improved root from Ridder’'s formula
x3 = 0.5*%*(x1 + x2); £3 = func(x3):

i £3 == 0: root = x3: return: end
8 = sqrt(f3 "2 - £f1*f2);
if s == 0; root = NaN; return; end

dx = (x3 - x1)*f3/s;
if (fl1 - £f2) < 0; dx = -dx; end
X4 = x3 + dx; f4 = func(x4);
% Test for convergence
a b A5 S) -
if abs(x4 - x01d) < tol*max(abs(x4),1.0)
root = x4; return
end
end
x01d = x4;
% Re-bracket the root
if £3*f4 > 0

if f1*f4 < 0; x2 = x4; f2 = f4;
else X1 = x4; £l = f4:;
end

else

x) =oaxds X2 =mixdr Fl = 3 k2 =okds
end
end

root = NaN;

Wednesday 17 August 2011

Determine the root of f(x) = x> — 10x* 4+ 5 = 0 that lies in (0.6, 0.8) with Ridder’s
method.

Solution The starting points are
x =06 f=06—-10(0.6)>+5=1.6160
Example
=08 f,=08°-10(0.8)°+5=—0.8880
Firstiteration Bisection yields the point
X =07 f3=0.7°-10(0.7)? + 5 = 0.4430

The improved estimate of the root can now be computed with Ridder’s formula:

s=/f2 - fify = /0.4330% — 1.6160(—0.8880) = 1.2738

Xy = X3 % (a3 — xl)%
Because f; > f, we must use the plus sign. Therefore,
0.4430
x4 = 0.7+ (0.7 - 0.6) 72738 = 0.7348

fi = 0.7348° — 10(0.7348)* + 5 = —0.0026

As the root clearly lies in the interval (x3, x4), we let
X, <« x3=0.7 f1<—f3=04430
X, «— Xxq = 0.7348 fo « fi = —0.0026

which are the starting points for the next iteration.

Wednesday 17 August 2011

Second iteration

x3 = 0.5(x; + x2) = 0.5(0.7 + 0.7348) = 0.7174

fz3 =0.7174° — 10(0.717 4)* + 5 = 0.2226

s=/f2 - fifs = v/0.22267 — 0.4430(—0.0026) = 0.2252

f5

Xs = X3 £ (X3 — xl)?

Since f; > f> we again use the plus sign, so that

0.2226

02252 — 0.7346

X, = 07174+ (0.7174 — 0.7)

fi = 0.7346° — 10(0.7346)> + 5 = 0.0000

Thus the root is x = 0.7346, accurate to at least four decimal places.

Wednesday 17 August 2011

_ Example

Compute the zero of the function 100 :
1 1 ol
JX) = 0377001~ =087+ 0.04 ®
Solution The M-file for the function is 1
20

function y = fex4_5(x)

% Function used in Example 4.5 -20}

vy = 1/((x - 0.3)"2 + 0.01)... o
- 1/((x - 0.8)°2 + 0.04);

We obtain the approximate location of the root by plotting the function. The fol-
lowing commands produce the plot shown:

>> fplot(@fex4_5,[-2,3])

>> grid on

It is evident that the root of f(x) = 0 lies between x = 0.5 and 0.7. We can extract
this root with the command

>> ridder(@fex4_5,0.5,0.7)
The result, which required four iterations, is

ans =
0.5800

Wednesday 17 August 2011

Newton’s Method

f&)

-

fxi21) = fx) + f(x) (Xe1 — %) + O(xi41 — X;)°

L S ﬁ((f,-))
W)
B == f)

Wednesday 17 August 2011

Newton’s Method Algorithm

Tangent line —

f(x)

o : X
Xj+1 s Al

1. Let x be a guess for the root of f(x) = 0.
2. Compute Ax = —f(x)/f"(x).
3. Let x « x + Ax and repeat steps 2-3 until |Ax| < ¢.

Wednesday 17 August 2011

fx)

Failure

Wednesday 17 August 2011

B newtonRaphson

The following safe version of the Newton-Raphson method assumes that the root to
be computed is initially bracketed in (a,b). The midpoint of the bracket is used
as the initial guess of the root. The brackets are updated after each iteration. If a
Newton—-Raphson iteration does not stay within the brackets, it is disregarded and
replaced with bisection. Since newtonRaphson uses the function £(x) as well as
its derivative, function routines for both (denoted by func and dfunc in the listing)

must be provided by the user.

%
%
%
%
%
%
%
%
%

Finding a root of f(x) = 0.

USAGE: root = newtonRaphson(func,dfunc,a,b,tol)
INPUT:

func = handle of function that returns f(x).

dfunc = handle of function that returns f’(x).

a,b = brackets (limits) of the root.
tol = error tolerance (default is 1.0e6*eps).
OUTPUT:

root = zero of f(x) (root NaN if no convergence).

Wednesday 17 August 2011

if nargin < 5; tol = 1.0e6*eps; end
fa = feval(func,a); fb = feval(func,b);
if fa == 0; root = a; return; end

if fb == 0; root = b; return: end
1€ fa*¥h > 0.0

end
X =

for

end

Traot

error('Root is not bracketed in (a,b)’')

(a + b)/2.0;
i=1:30
fx = feval(func,x);
if abs(fx) < tol; root = x; return; end
% Tighten brackets on the root
if fa*fx < 0.0; b = x;
else; a = Xx;
end
% Try Newton-Raphson step
dfx = feval(dfunc,x);
if abs(dfx) == 0; dx = b - a;
else; dx = -fx/dfx;
end
X = X + dx;
% If x not in bracket, use bisection
if (b - x)*(x - a) < 0.0
dx = (b - a)/2.0;
X = a + dx;
end
% Check for convergence
if abs(dx) < tol*max(b,1.0)
root = X; return
end

= NaN

Wednesday 17 August 2011

Wednesday 17 August 2011

