Finding Roots of Algebraic
and Transcendental
Equations

Equations like this are called transcendental equations

b-x-cosx —sinx =0
bx = tan x Euler-buckling load for a fixed-pinned beam
tanx —x =0

has an infinite number of roots (x = 0, +4.493, +7.725, . ..).

Y = a Cosh (x/c), equation for a catenary

Solutions to these equations are always obtained iteratively.
Starting point is really important for obtaining the proper solution.
Lot of insight can be obtained from geometry and pictures.

Example: Natural Fregencies of
cantilever

f(B) =coshpcosp+1=0

mlL?
Ef

fi = ith natural frequency (cps)

pt = @nf)?

m = mass of the beam
L = length of the beam
E = modulus of elasticity

I = moment of inertia of the cross section

Find the solutions of f(x) = 0, where the function fis given

There are different ways of approaching a non-linear problem

The number of iterations required to reach the root depends largely on the in-
trinsic order of convergence of the method. Letting Ex be the error in the computed

root after the kth iteration, an approximation of the error after the nextiteration has
the form

Erxy1 = cE Ic] < 1

m is called the order of convergence.
Note that for most of these methods the
upper and lower bound for the root [a,b]

has to be given it is called as bracketing
for obvious reasons.

Fixed Point Iteration method

If we want to find the solution to the equation f(x) = O re-write
it in the form:

X = g(x).
we then iterate according the following rule:
X(i+1) = g(x(i)), where x(i+1i) is the value
Obtained after ith iteration. For functions with certain properties we
Will always get a convergence to a uunique point no matter what initial point

we start with

We will demonstrate with a simple example.

Use fixed-point iteration to locate a root of:
f(x) = exp(—x) — x

The function is separated in expressed in the

form:

X = g(x;) = exp(—x;)

X

X9

e

X3

Iteration

1

-2

9
10

glxp) = e =e’ =1

g(x) =M =¢ 1 =0.367898

g(xy) = 2 = 0367898

Approximate root

X,

I

0
1.000000
0.367898

0.571143
0.564879

Error is obtained
as relative error

... L

Approximate error

e, = X+l 7Y 00
Xi+]
100.0
171.8
193
1.11

03

08

07

0k

0ar

04r

0ar

0.2

01 F

Graphical Representation

0.65

0.2

0.4

0.6

0.8

Solution of
X2 +0.2=X
Starting point:
0.65

Most basic method to bracket root:
lterative search method

Fix)
20F

It uses the property that when a function hits its Root, the sign changes
From +ve to -ve or vice-versa.
So there has to be at least one root within that interval.

Problems with Iterative
search besides being slow

e
0.0/ N

004 b

- >

Dx > 0.1: root will not be captured

* 0.0z

fix)
0.04

0.03

0.01

contd...

| 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | %

0.8 1.0 l.1] 1.2

Double-roots at x = 1.0 will not be obtainable
The equation is (x-1)*2 =0

contd..

Certain singularities (poles) of f(x) can be mistaken for roots. For example,
f(x) = tan x changes sign at x = i%nx. n=1,3,5,...,asshownin Fig. 4.1. How-
ever, these locations are not true zeros, since the function does not cross the

10.0

- -

5.0 TH B SR . R SN	
0.0 fm=="""- S S b oo I S
- | | | | |
i | | | | '
B | | | |
e R N B e A
. | | | | |
- | | | | |
_10'0 1 1 [| [} [1 1 [| [} [1 [| 1 [|
0 1 2 3 4 5 6

e

Matlab code for incremental search

B rootsearch

The function rootsearch looks for a zero of the function f(x) in the interval (a,b).
The search starts at a and proceeds in steps dx toward b. Once a zero is detected,
rootsearch returns its bounds (x1,x2) to the calling program. If a root was not
detected, x1 = x2 = NaN is returned (in MATLAB NaN stands for “not a number”).
After the first root (the root closest to a) has been bracketed, rootsearch can be
called again with a replaced by x2 in order to find the next root. This can be repeated
as long as rootsearch detects a root.

Matlab code
for incremental
search

function [x1,x2] = rootsearch(func,a,b,dx)

%
%
%
%
%
%
%
%
%

Incremental search for a root of f(x).
USAGE: [x1,x2] = rootsearch(func,a,d,dx)
INPUT:

func = handle of function that returns f(x).

a,b = limits of search.
dx = search increment.
OUTPUT:

x1,x2 = bounds on the smallest root in (a,b);

set to NaN if no root was detected

x1l = a; fl1 = feval(func,x1l);
X2 = a + dx; f2 = feval(func,x2);
while f1*f2 > 0.0

if x1 >= b

X1 = NaN; x2 = NaN; return
end
X1l = X2; f1 = f£2;

X2 = X1 + dx; f2 = feval(func,x2);

end

Example

Use incremental search with Ax = 0.2 to bracket the smallest positive zero of f(x) =
x3 — 10x? + 5.

Solution We evaluate f(x) at intervals Ax = 0.2, staring at x = 0, until the function
changes its sign (value of the function is of no interest to us; only its sign is relevant).
This procedure yields the following results:

X f(x)
0.0 5.000
0.2 4.608
0.4 3.464
0.6 1.616
0.8 | —0.888

From the sign change of the function, we conclude that the smallest positive zero lies
between x = 0.6 and x = 0.8.

Bisection Method

After a root of f(x) = 0 has been bracketed in the interval (x;, x»), several methods
can be used to close in on it. The method of bisection accomplishes this by succes-
sively halving the interval until it becomes sufficiently small. This technique is also
known as the interval halving method. Bisection is not the fastest method available
for computing roots, but it is the most reliable. Once a root has been bracketed, bi-
section will always close in on it.

The method of bisection uses the same principle as incremental search: if there
is a root in the interval (x;, x3), then f(x;) - f(x») < 0. In order to halve the interval,
we compute f(x3), where x3 = %{.r.l + x2) is the mid-point of the interval. If f(x»)-
f(x3) < 0, then the root must be in (x, x3) and we record this by replacing the origi-
nal bound x; by x3. Otherwise, the root lies in (x;, x3), in which case x, is replaced by
x3. In either case, the new interval (x;, x2) is half the size of the original interval. The

bisection is repeated until the interval has been reduced to a small value &, so that

Xo —xp| < ¢

[t is easy to compute the number of bisections required to reach a prescribed
¢. The original interval Ax is reduced to Ax/2 after one bisection, Ax/2? after two
bisections, and after n bisections it is Ax/2". Setting Ax/2" = ¢ and solving for n,
we get

In(|Ax]|/e)
Hn =
In2

W bisect

This function uses the method of bisection to compute the root of f(x) = 0 that is
known to lie in the interval (x1,x2). The number of bisections n required to re-
duce the interval to tol is computed from Eq. (4.1). The input argument filter
controls the filtering of suspected singularities. By setting filter = 1, we force the
routine to check whether the magnitude of f(x) decreases with each interval halv-
ing. If it does not, the “root” may not be a root at all, but a singularity, in which case
root = NaNisreturned. Since this feature is not always desirable, the default value is
filter = 0.

function root = bisect(func,xl1l,x2,filter,tol)

%
%
%
%
%
%
%
%
%

if
if
f1
if
f2
if
if

Finds a bracketed zero of f(x) by bisection.

USAGE:
INPUT:
func
X1,x2
filter
tol
OUTPUT:

root

root = bisect(func,xl1,x2,filter,tol)

= handle of function that returns f(x).

=]limits on interval containing the root.

= singularity filter: 0 = off (default), 1 = on.

= error tolerance (default is 1.0ed*eps).

= zero of f(x),

or NaN 1f singularity suspected.

nargin < 5; tol = 1.0e4*eps; end

nargin < 4; filter =

= feval(func,x1);

f1 ==

0.0; root = X1;

= feval(func,x2);

f2 ==
f1#f2

0.0; Troot = X2;

> 0;

0; end

return; end

return; end

error(’'Root is not bracketed in (x1,x2)°’)

end

for

end

root

ceil(log(abs(x2 - x1)/tol)/log(2.0));
i =1:n

X3 = 0.5%(xX1 + xX2);

f3 = feval(func,x3);

if(filter == 1) & (abs(f3) > abs(fl))...

& (abs(f3) > abs(f2))

root = NaN; return
end
if £3 == 0.0

root = X3; return
end
if f2*f3 < 0.0

x1 = x3; f1 = £3;
else

X2 = xX3; f2 = £3;
end

= (x1 + x2)/2;

Example

Find all the zeros of f(x) = x - tan xin the interval (0, 20) by the method of bisection.
Utilize the functions rootsearch and bisect.

Solution Note that tan x is singular and changes sign at x =7/2,37/2, To pre-
vent bisect from mistaking these point for roots, we set filter = 1. The closeness
of roots to the singularities is another potential problem that can be alleviated by us-
ing small Ax in rootsearch. Choosing Ax = 0.01, we arrive at the following program:

% Example 4.3 (root finding with bisection)
func = @A(x) (x - tan(x));
a=0.0; b=20.0; dx = 0.01;

nroots = 0;
while 1
[¥1,x2] = rootsearch(func,a,b,dx);

if disnan(xl)
break
else
a = X2;
X = bisect(func,x1,x2,1);
if "disnan(x)
nroots = nroots + 1;
root(nroots) = X;
end
end
end

root

Running the program resulted in the output

>> Troot =
0 4.4934 7.7253 10.9041 14.0662

17.2208

Geometric approach to finding roots of
equations

Solution to the following equation when b = 4.0

b-x-cosx —sinx =0

A good iterative scheme should find all roots
In a given bracket irrespective of initial
guesss. This is a very tough task because
different equations have very unpredictible
behavior. This is especially true for higher
dimensional equations.

Geometric and pictorial argument for solving
the equation

b-x-cosx —sinx =0 re-written bx = tan x

whose solutions occur at the intersections of the curves
y = bx and y = tan x

y, =(0.4)-(4.0) = 1.6 1.6 = tan x, or x, = 1012 + 3.142 = 4.154

X y
4.0 1.6
4.154 1.662
4.171 1.668
- 4.173 1.669

ot
ot
e

Analytically, our rapid convergence occurs because the two derivatives are
small. Thus for the straight line

dy
-~ =b=040

while for the tangent curve

dx 1 1

dy dy/dx T osec?x 0.27

and the convergence of the process is quite good.

What if we had used

y = tan x and X = i—j

We would have happily walked away from
the real solution because the flatness criteria Is
absolutely not obeyed.

What if we had used y=bx-cosx and y=sinx

. Computationally a

bit cumbersome

	Finding Roots of Algebraic and Transcendental Equations
	Slide 2
	Slide 3
	Slide 3
	Slide 5
	Slide 6
	Slide 7
	Most basic and bone-headed method: Iterative search method
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

