CE 620: Introduction to the Finite Element Method

Instructor: Mandar M. Inamdar Office: 136 Civil Course-Website: <u>http://www.civil.iitb.ac.in/~minamdar/ce620/</u>

Tentative Syllabus:

Sr.	Торіс	Number of lectures
1	Motivation for the course	1
2	Non-dimensionalisation of differential equations	2
3	Introduction to Rayleigh-Ritz, Weighted-Residual, Galerkin Methods	3
4	Finite Element Method in 1D: weak form, boundary conditions, finite elements, assembly	3
5	Introduction to Python + FENiCS + pre-post processing	3
6	Solving simple PDEs (Poisson equation, Heat equation) in FENiCS in 1D and 2D, types of elements, convergence	6
7	Finite Element Method for Linear Elasticity: Statics + Dynamics	6
8	Other topics: porous flows, stokes flows	3
9	Non-linear problems in finite element method using FENiCS	6
10	Special topics: iso-parametric formulation, ALE methods	3
	Total Lectures	36

Tentative grading scheme (total 100 marks):

The course will involve programming using elementary python and FENiCS environment

- 1. Five short quizzes: 5 marks each (total 25 marks)
- 2. Mid-sem exam: 20 marks
- 3. Final Exam: 30 marks
- 4. Assignments + Project: 25 marks

Recommended texts:

There is no required text-book for this course. There are many, many texts and online lectures/ notes available. I will also add additional resources on the course website. Following texts are what I will refer to.

Main References:

- 1. Langtangen, Hans Petter, Anders Logg, and Aslak Tveito. *Solving PDEs in Python: The FEniCS Tutorial I.* Springer International Publishing, 2016. <u>free pdf</u>
- Logg, Anders, Kent-Andre Mardal, and Garth Wells, eds. Automated solution of differential equations by the finite element method: The FEniCS book. Vol. 84. Springer Science & Business Media, 2012. <u>free pdf</u>

- 3. Langtangen, Hans Petter, and Kent-Andre Mardal. "Variational Methods for Linear Systems." *Introduction to Numerical Methods for Variational Problems*. Springer, Cham, 2019. 365-376.
- 4. Bathe, Klaus-Jürgen. Finite element procedures. Klaus-Jurgen Bathe, 2006.
- 5. Jacob, Fish, and Belytschko Ted. A first course in finite elements. Wiley, 2007.
- 6. Barber, James R. *Intermediate mechanics of materials*. Vol. 175. Springer Science & Business Media, 2010.
- 7. Scott, L. Introduction to Automated Modeling with Fenics. Computational Modeling Initiative LLC, 2018. <u>Older version of pdf</u>

Additional References:

- 5. Hughes, Thomas JR. The finite element method: linear static and dynamic finite element analysis. Courier Corporation, 2012.
- 6. Seshu, P. Textbook of finite element analysis. PHI Learning Pvt. Ltd., 2003.
- 7. Brenner, Susanne, and Ridgway Scott. *The mathematical theory of finite element methods*. Vol. 15. Springer Science & Business Media, 2007.
- 8. Desai, Yogesh M., TI Eldho, and Arvind H. Shah. Finite element method with applications in engineering. Pearson Education India, 2011.