
CE 620 Finite Element Method

1. Rayleigh-Ritz method

Consider the problem shown in the figure above. We want to use an approximate method to find

out the deflection. We note that the equation of the beam is:
M = - d2

d z2 u(z), where u is +ve upwards.

The energy of the beam is:

U = EI
2 ∫0

L
 d

2 u
d z2 

2
ⅆz.

Make an approximation of the form:
u = C z2,

This satisfies the kinematic boundary conditions.

u[z_] := c z2;

U =
EI

2
Integrateu''[z]2, {z, 0, L}

2 c2 EI L

The potential energy term from the work done due to the applied load is:
Ω = ∫w0 udz

Ω = Integrate[wo u[z], {z, 0, L}]
1

3
c L3 wo

The total potential energy is: P = U + Ω.

P = U + Ω

2 c2 EI L +
1

3
c L3 wo

Minimizing the potential energy with respect to C, we get:
0 = dP

dC .

D[P, c]
S = Solve[% ⩵ 0, c]
P /. S[[1]]

4 c EI L +
L3 wo

3

c → -
L2 wo

12 EI


-
L5 wo2

72 EI

The displacement function is:

u[z] /. S[[1]]

-
L2 wo z2

12 EI

The actual solution is actually

uact[z_] = -
wo

EI

L2 z2

4
-

L z3

6
+

z4

24
;

Pact =
EI

2
Integrateuact''[z]2, {z, 0, L} + Integrate[wo uact[z], {z, 0 , L}]

-
L5 wo2

40 EI

We can see, clearly that the energy of the approximate solution is lesser than the energy of the

actual solution as expected.

A better approximation:
u(z) = C1 z2 + C2 z3

with:
u '' (z) = 2C1 + 6C2 z

u '' (z) = 0 at z = L. This implies that C2 = -C1 /3 L. Using this approximation we get the following.

2 ��� Notes.nb

u[z_] = c z2 -
z3

3 L
;

P =
EI

2
Integrateu''[z]2, {z, 0, L} + Integrate[wo u[z], {z, 0, L}]

S = Solve[D[P, c] ⩵ 0, c]
P /. S[[1]]

2

3
c2 EI L +

1

4
c L3 wo

c → -
3 L2 wo

16 EI


-
3 L5 wo2

128 EI

uact[z] /. {wo → 1, L → 1, EI → 1};
u[z] /. S[[1]] /. {wo → 1, L → 1, EI → 1};

Plot{%, %%}, {z, 0, 1}, Frame → True, FrameLabel → "
u

L
", "

EI u

wo L4
"

0.0 0.2 0.4 0.6 0.8 1.0

-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

u

L

E
Iu

w
o
L4

Minimum potential energy is an amazing criteria for getting approximate solution, but an energy

need to exist (not always true for many problems, especially those not in structures.)

Drawbacks of Rayleigh-Ritz:
1. Very problem specific and not generalizable.
2. Getting approximation function can be tricky.
3. Unless exact solution is known convergence rate is not clear.
4. More and more terms need to be involved and rounding off errors will become more dominant.

Finite element method is actually a variation of the RR method with an element-wise interpolation

functions giving rise to the entire field of interest.

Weighted residue method

The differential equation could now be written in the following format:

∫EI d
2 u
d z2 +M(z) δ udz = δW, the virtual work done.

Notes.nb ���3

Using, integration by parts, we get:

-EI ∫ d ud z
dδu
d z dz + ∫ M(z)δudz +

du
dz δu a

L
= 0.

If we assume that δu = δc z2, the same for u = c z2, i.e., for the actual and the real function have the

same form, the method is called a Galerkin method.

u[z_] = c z2;
δu[z_] = δc z2;

M[z_] =
wo L - z2

2
;

δW = -EI Integrate[u'[z] × δu'[z], {z, 0, L}] +

Integrate[M[z] × δu[z], {z, 0, L}] + EI u'[L] × δu[L]
Coefficient[%, δc]
Solve[% ⩵ 0, c]

2

3
c EI L3 δc +

1

60
L5 wo δc

2

3
c EI L3 +

L5 wo

60

c → -
L2 wo

40 EI


2. Finite elements in 1D
For a single element, the following are the expressions. In this case, we will have the following

equations. The terminology used is:
θe(x) : field fora given variableθe

p(x) : (1, x)
de(x) : (θ1e, θ2e)T

M (x) :
1 x1e

1 x2e

α : (α0e, α1e)T

Using, the formulation, we get the following:
θe = p·αe

αe = (M)-1 de
Ne(x) = p (M)-1

θe(x) = Ne(x)de and
dθe(x)
d x = dNe (x)

d x de, whereBe = dNe (x)
d x .

The final equation is the ultimate expression, in which any variable is expression in terms of the

shape functions for any finite element e. The overall field θh(x) in the discretized form is:
θh(x) = ∑eNe(x)de.

This is called as the global interpolation function for the finite element analysis.

Below is the implementation for various types of elements.

4 ��� Notes.nb

(* for linear elements *)

p[x_] = {1, x};
αem = {αe[0], αe[1]};
de = {θe[1], θe[2]};
M = {{1, xe[1]}, {1, xe[2]}};
Minv = Inverse[M];

These are the shape functions.

Ne[x_] = p[x].Minv /. xe[2] - xe[1] → Le // FullSimplify

Be[x_] = D[Ne[x], x]


-x + xe[2]

Le
,
x - xe[1]

Le


-
1

Le
,

1

Le


Final field within an element.

Minv /. xe[2] - xe[1] → Le // MatrixForm // FullSimplify

θel = Ne[x].de /. xe[2] - xe[1] → Le
xe[2]
Le

-
xe[1]
Le

-
1
Le

1
Le

-x + xe[2] θe[1]

Le
+
(x - xe[1]) θe[2]

Le

Now, some of the properties of the shape functions. Shape functions at the node points.

Ne[xe[1]] /. xe[2] - xe[1] → Le

Ne[xe[2]] /. xe[2] - xe[1] → Le

{1, 0}

{0, 1}

Sum of shape functions is equal to one.

Ne[x][[1]] + Ne[x][[2]] // FullSimplify;

% /. xe[2] - xe[1] → Le

1

For quadratic.

(* for linear elements *)

p[x_] = 1, x, x2;

αem = {αe[0], αe[1], αe[2]};
de = {θe[1], θe[2], θe[3]};
M = {p[xe[1]], p[xe[2]], p[xe[3]]};
Minv = Inverse[M];

Notes.nb ���5

Ne[x_] = p[x].Minv // FullSimplify


x - xe[2] x - xe[3]

xe[1] - xe[2] xe[1] - xe[3]
,

-
(x - xe[1]) x - xe[3]

xe[1] - xe[2] xe[2] - xe[3]
, -

(x - xe[1]) x - xe[2]

xe[1] - xe[3] -xe[2] + xe[3]


Minv // FullSimplify // MatrixForm
xe[2]×xe[3]

(xe[1]-xe[2]) (xe[1]-xe[3])
xe[1]×xe[3]

(xe[1]-xe[2]) (-xe[2]+xe[3])
xe[1]×xe[2]

(xe[1]-xe[3]) (xe[2]-xe[3])

-
xe[2]+xe[3]

(xe[1]-xe[2]) (xe[1]-xe[3])
xe[1]+xe[3]

(xe[1]-xe[2]) (xe[2]-xe[3])
xe[1]+xe[2]

(xe[1]-xe[3]) (-xe[2]+xe[3])
1

(xe[1]-xe[2]) (xe[1]-xe[3])
1

(-xe[1]+xe[2]) (xe[2]-xe[3])
1

(xe[1]-xe[3]) (xe[2]-xe[3])

θel = Ne[x].de

x - xe[2] x - xe[3] θe[1]

xe[1] - xe[2] xe[1] - xe[3]
-

(x - xe[1]) x - xe[3] θe[2]

xe[1] - xe[2] xe[2] - xe[3]
-

(x - xe[1]) x - xe[2] θe[3]

xe[1] - xe[3] -xe[2] + xe[3]

Ne[xe[1]] // FullSimplify
Ne[xe[2]] // FullSimplify
Ne[xe[3]] // FullSimplify
Sum[Ne[x][[i]], {i, 1, 3}] // FullSimplify

{1, 0, 0}

{0, 1, 0}

{0, 0, 1}

1

The general shape function would be Lagrange polynomials, which are defined for any order of
polynomial as:

Nie(x) = ∏j≠i
(x-xj)
(xi-xj)

.

The global definition of the interpolation function is:
θh(x) = ∑eNe(x)de

However, using a more compact notation:
de = Le d, where d corresponds to the global vector for the all the nodal variables. If the total

number of nodes is M and the total number of nodes per element is k, then Le is a matrix of size

k × M, where for every row i all the entries are zero except corresponding to the column Jwhere the

node number m of element e is mapped to.

With these definitions,
θh(x) = N(x)d , where N(x) = ∑eNe Le, where Neis a row vector of size 1×N. The general proper-

ties are still satisfied:
∑iNi(x) = 1, and Ni(xj) = δij.

Since each shape function Ni(x) is C0continuous, the field θh(x) is also too. Do the elements have

higher order continuity is something that we will check later.

6 ��� Notes.nb

Similarly, for the weight function:
wh(x) = N(x)w.

Demonstrate this with a simple example:

and

The number of shape functions is equal to the number of nodes.

The plot below, is for Lagrange quadratic shape functions.

Notes.nb ���7

Plot
x - 0.5 (x - 1)

0 - 0.5 0 - 1
, {x, 0, 1}

Plot
x - 0 (x - 1)

0.5 - 0 0.5 - 1
, {x, 0, 1}

Plot
x - 0 x - 0.5

1 - 0 1 - 0.5
, {x, 0, 1}

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Gauss Quadrature

There are a number of integrals that one needs to evaluate with respect to the weak form.
Consider the following integral

I = ∫a
bf(x)ⅆx = ?

8 ��� Notes.nb

The Gauss quadrature formulas are always given over the parent domain [-1, 1].

This can be expressed in the following form:

From this we get,

where, the Jacobian J is given as:

which we want to be expressed in the following form.

The goal of gauss quadrature is to choose the n integration points ξi and the corresponding weights

Wi such that for the given n points, the highest order polynomial of some order m is exactly inte-
grated.

’

This can be expressed in the matrix form as

Notes.nb ���9

The matrices have the following dimensions:
f ≡ n × 1
M ≡ n × m

α ≡ n × m
and can be written in a compact form as:

The integral can be written as:

But could also be written as WTMα = P α. Thus the integration points could be chosen such that:

It could be shown that Gauss-Legendre polynomials given below can be used to perform these

integrations.

For a polynomial of order n, it can be shown that the minimum number of points for Gauss Integra-
tion mmin ≥ n+ 1

2 .

P[n_, x_] := LegendreP[n, x]
S[n_] := Solve[P[n, x] ⩵ 0, x] // N

W[n_] :=
2

1 - x2 D[P[n, x], x]2
/. S[n]

n = 3;
x /. S[n]
W[n]

{0., -0.774597, 0.774597}

{0.888889, 0.555556, 0.555556}

What is the Legendre Polynomial

10 ��� Notes.nb

Plot[{P[1, x], P[2, x], P[3, x], P[4, x]}, {x, -1, 1},
PlotLegends → Placed[{"n=1", "n=2", "n=3", "n=4"}, Above]]

n=1 n=2 n=3 n=4

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

The integral will work between the interval ∈ [-1, 1]. In 2-D things are more complex, but tables are
available, and we will not bother further with analytical equations. In 1-D the tables are as follows:

Finite Element Analysis in 1D
Finite element analysis has three steps:

1. pre-processing in which the mesh is constructed
2. formulation of the discrete finite element equations
3. solving the discrete equations.
4. post-processing, where the solution is displayed and various variables that do not emanate

Notes.nb ���11

directly from the solution are calculated.

Quite straight forward for 1D problems. Very important in 2D and 3D problems. Consider the 1D

problem of elasticity. The weak-form is:

The transpose T is not important, but will be required when we discuss the discretisation in FEA.

(a) two-element mesh, (b) global shape functions and (c) and example of a trial solution that satis-
fies the essential boundary conditions.

The discretization is now provided in the following form:
u(x) ≈ uh(x) = N (x)u = u1 N1(x) + u2 N2(x) + u3 N3(x) and

w(x) ≈ wh(x) = N (x)w = w1 N1(x) + w2 N2(x) + w3 N3(x).
The trial functions should be chosen such that u1 = u

-
1 and w1 = 0.

For every element:

The weak form is now written in the form:

where e corresponds to element number. For each element we can write

12 ��� Notes.nb

Note, that the global shape function N and the element-level shape function Ne are the same!
Hence we now get:

The following is what we now interpret:

In these equations, Γte is the portion of the element boundary on the natural boundary and fΩe and fΓe

are the element external body and boundary forces matrices, respectively. This is very similar to

what is done in the stiffness approach for structures.

From all the equations, we obtain:

Here, the global stiffness matrix

The system matrix for the differential equation is assembled by exactly the same operations as for
the discrete systems: matrix scatter and add, which is also equivalent to the directly assembly.

Notes.nb ���13

This is the column matrix assembly operation. It consists of a columns matrix scatter and add and

easier to learn that matrix assembly. Look at the Second Chapter of Fish and Belytschko.

Using these equations we get the following equation

If now we say that:
Kd - f = r, then

wT r = 0, which is true for w1 = 0. This implies that:
w2 r2 + w3 r3 = 0, for any w2 andw3.

This can only happen when r1 is something unknown but r2 = r3 = 0. This now simply implies that:

This upon rearrangement gives

We can use matrix partition methods to provide us

and the reaction r1 will be obtained as

We now obtain the stiffness matrix for two noded element.

In this case,

For this the stiffness matrix becomes,

14 ��� Notes.nb

which is the same that we will get for a truss element! However, this simple form will not work in 2D

and 3D. The body forces acting on the bar are given as:

Since the body force distribution is linear, it can be expressed in terms of the same shape function

as

In the special case, when b1 = b2, the half the body force is transferred to each node as expected.
What does one do when the body forces are not linear? One could approximate with shape-func-
tions of the order that could be used.

Table: Terminology for finite element matrices

Application to heat conduction and diffusion problems.

The differential equation is:

Notes.nb ���15

Note that the source term s is positive is the heat flow is into the system and the boundary term q is

positive if the heat flows out of the bar. In the current case, q(x = 0) = -q
-
, i.e., we are assuming

that the heat flux is into the bar.

The equivalence between the heat conduction and the elasticity problem is:
k ⧦ E

q⧦ -p

s⧦ b
In the finite element formulation the equations would look like this:

The quantity Φ
-

 = -q
-

 in the current case (the flux q
-

 is positive when flowing outwards.)
Problem

The finite element mesh is as shown below:

The shape functions are as below:

16 ��� Notes.nb

Shape functions for element-1

Shape functions for element-2

Element conductance Matrix

The element stiffness is replaced with conductivity.

The conductance matrix for element-1 is:

and for element-2

Global conductance matrix

The gather operators for the two elements are

The scatter of the conductance matrices gives

Notes.nb ���17

The total stiffness is obtained by adding the scattered element stiffness mattices.

However, though this is conceptually easier to discuss, in practice the stiffness matrices are not add

like these, but assembled.

The resulting global conductance matrix is the same as above.

Boundary flux matrix

The element boundary flux are calculated as per the following expression

Shape functions for element 1 vanish on boundary 1, i.e. Γq. Only the shape functions that are non-
zero at the natural boundary survive need to be considered. More explicitly,

The scatter process then gives the global boundary flux matrix

This result is exactly the same as assigning (-A q) directly on the boundary node. In practise this is

how it is done.

Source flux matrix

18 ��� Notes.nb

The element source flux matrix is now simply obtained as:

Since s1 = s2, the above reduces to

Since the length of both elements is the same l(1) = l(2) = 2 and s = 5, which gives

The assemble source flux matrix now becomes:

In practice, a direct assembly is used:

Partition and solution

The global system of equations is given by

Since node 1 is on the essential boundary, we partition a�er the first row, which gives

Postprocessing
The temperature gradient is given as:

The temperature gradient is piecewise constant as expected.

Comparision with the exact solution

Notes.nb ���19

Comparision of the the exact and finite element solutions of the temperature. Note that for 1D FEA

the nodal values are exactly the same as the actual solution. Note: this does not mean, however,
that the error of the solution is zero.

Comparison of the exact and finite element solutions of temperature gradient.

The strong form of the differential equation will not be satisfied, especially at the transition

between the two elements, where due to the Co continuity the derivative is infinite (or does not
exist.)

Convergence to the actual solution
Definition of error.

To define error, we need to first define now concept of “distance” or “norm”. For any vector a
→
,

sometimes called the norm of the vector and denoted by || a
→
||,

|| a
→

 || = (∑i= 1
n ai2)

1
2 ,

where nis the number of components of the vector. For any function, the norm of the function is

defined by:

where [x1, x2] is the interval over the function is defined. The error norm in the finite element
solution is:

The normalized error is given by

20 ��� Notes.nb

A more important quantity is the error in the derivative:

This is also called as the energy norm. The error fraction percentage is:

Consider the problem below:

Consider a bar of length 2 l, cross-section area A and Young’s modulus E. The bar is fized at x = 0

subjected to linear force c x and applied traction t = -c l2 /A at x = 2 las shown in the figure above.
The strong form is:

In the equation above n = 1 .

The solution for the above problem can be obtained in the closed form.

Notes.nb ���21

Consider the following parameters:
E = 104 Nm-2, A = 1m2, c = 1Nm-2 and l = 1m .

L2 norm of error for linear (le�) and quadratic (right) finite element meshes.

This is a log-log plot and the fit to the error can be expressed as:

where C is an arbitrary constant, the y -intercept of the curve. The the power of both sides gives:

For a finite element that containts the complete polynomial of order p, the convergence can be

showed to be:

Energy norm of error for linear (le�) and quadratic (right) finite element meshes.

We will proceed further with FEniCS.

Weak form for multi-dimensional scalar field
First consider 2D problems. The conversion from 2D to 3D is extremely straight forward. Though the

FEA formulation for 2D is very much the same as in 1D, the ideas required to obtain the weak form is

somewhat different and involves a more generalised version of integration by parts and called as

22 ��� Notes.nb

Green’s theorem.
In 2D, the analogy between 1D is as follows
d
dx ⧦∇ = i ∂

∂x + j
∂
∂y 

Hence the full derivative has to be replaced with the appropriate partial derivative. Taking the

example of heat equation, the heat flux now is a vector
q = qx i + qy j.

And could be written interchangeably in the matrix notation:

q = 
qx
qy

 and qT = (qx qy) . Note, how the row and column vector are written.

The gradient vector can also be written in terms of column vector

∇ =

∂
∂x
∂
∂y

 and similarly for ∇T.

Note that the row and column vectors obtained earlier are not real vectors. However, for all practi-
cal purposes, we can replace vectors in terms of their components, and hence column or row

matrices.

All the other notations are similar to what we have done in the class.

(a) One-dimensional domain and (b) Two-dimensional domain.
The 2D domain could be quite complex with multiple holes (multiply connected) or with corners.
The unit normal vector to the domain is given as:

n
→
= nx i

→
+ ny j

→
.

Here, n
→

 is of unit magnitude, i.e., nx2 + ny2 = 1. What is the equivalent of integration by parts in 2D.

For any C0 integrable function in one-dimensional domain Ω, we have:

The boundaries correspond to x = 0, l. In 2D (or multi-dimension) the equation becomes:

The 1D formula is a special case of this. This equation can be used to derive the Gauss divergence

theorem.

Notes.nb ���23

The Green’s theorem can be written in terms of two vector equations:

Now, writing θ = qxand θ = qyin (a) and (b) above and adding them we get

which is the Gauss divergence theorem stated above. Below, we have the Green’s formula:

This formula is obtained by noting that

Integrating this expression over the domain Ω we get

We then apply the divergence theorem to get:

This formula is extremely important to obtain the weak form from the strong form for the steady-
state heat equation. For a rectangular domain of dimension l×1 with one-dimensional heat flow,
where

q
→
= qx i

→
and n = n i , where n(0) = -n(l) = 1.

If both w and q are only functions of x then

24 ��� Notes.nb

This is pretty much the same as the expression for the 1D case.
Problem:

The function and the gradient are obtained as follows:

θ[x_, y_] := x2 + 2 y2

gradθ[x_, y_] = {∂xθ[x, y], ∂yθ[x, y]}

{2 x, 4 y}

To solve part (a), i.e., the contour of θ(x, y) which points through x = y = 0.5. The value of θ is:

θ[0.5, 0.5]

0.75

The contour corresponds to x2 + 2 y2 = 0.75. The normal is the unit vector passing through 0.5, 0.5.

gradθ1  2, 1  2

Normgradθ1  2, 1  2


1

5
,

2

5


To make the full contour plot along with vector field:

Notes.nb ���25

A = VectorPlot[gradθ[x, y], {x, -1, 1}, {y, -1, 1}];
B = ContourPlot[θ[x, y], {x, -1, 1}, {y, -1, 1},

ContourShading → None, ContourLabels → False, Contours → 7];
Show[
A,
B]

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

To address part (b), we use the following

domain

Note that the empty box above many symbols should have had →.

Integration of this over the domain we get

26 ��� Notes.nb

Evaluating the boundary integral counter-clockwise:

Thus the divergence theorem for the domain is verified.

Application to heat equation

Fourier’s law in 1D is:
q = -k dT

dx

In 2D the flux has two components qx and qy. In this case, Fourier law becomes.

where k is a positive constant and the -ve sign indicates that heat flows from hot to cold tempera-
ture. The flux balance equation can be derived link in 1D as:

∇ ·q+ s = 0, where s is the source time. Hence, the full equation now becomes:
k∇2 T + s = 0,

 where s is positive if the heat flows into the system and sign convention for the heat flux q is posi-
tive along the outward normal n to the boundary. Here ∇2 is:

This equation is called as Poisson’s equation. In the case when s = 0, this becomes the Laplace

equation. If the conductivity is not constant or anisotropic then the Fourier’s law gets modified to

which in the matrix form becomes:
q = -D∇ T,

where D is conductivity matrix. The final balance equation becomes:

Notes.nb ���27

Here,

corresponds to the isotropic case. The boundary conditions are specified as follows:

Problem domain and boundary conditions: temperature ΓT and flux Γq. The boundary conditions

are specified as

which are essential boundary conditions also called as Dirichlet conditions. The other boundary

conditions are:

This could be written more explicitly as:
qn = -knT ∇T, on Γq.

The flux depends on the derivatives of the temperature and correspond to natural boundary condi-
tions. The box below describes how to Strong form is written in vector and matrix form as:

28 ��� Notes.nb

The variables s, D, T
-
andq

-
are the inputs to the problem along with the geometry of the domain.

Weak form:
The weak form for the strong form and the natural boundary condition becomes:

where w correspond to a sufficiently smooth but otherwise arbitrary weight function. Now, apply-
ing the Green’s formula, we get:

Using the above two equations, we get:

In this equation, the boundary is split into two parts Γq and ΓT.

The substituting the weak form in (b) above we get

If now we note that w = 0 as earlier on the essential boundary ΓT, this simplies to

where U0 is the set of sufficiently smooth functions that vanish on the essential boundary. The

definition of smoothness is the same as in 1D – C0continuous and L2 integrable over the domain.
Expressing the final weak form in matrix notation we obtain

Note that this weak form is true for any material, linear or nonlinear. In the current case for the

linear case, we use the expression for Fourier’s law in the term involving q above, we obtain

Notes.nb ���29

Exercise: Show the equivalence of weak form and strong form.
The 2D formulation could easily be extended to 3D.

Shape functions for 2D scalar field.
The trial functions should satisfy C0 continuity and be complete. The approach is very similar to

that in 1D but there are some complexities in 2D that we need to address.
Triangle elements
The entire domain is divided into triangular elements

Triangular domain

as shown above. The trial solution for each element can take different forms:

(a) is a complete, linear element. (b) will not converge since it is missing the linear term in y. (c) is

complete and quadratic in x and y. (d) The quadratic terms do not come systematically (complete),
so the convergence will be the same as that of (a). Complete polynomials appear from the Pascal
triangle.

Pascal triangle in 2D. Using the Pascal triangle the interpolation functions can be composed as

follows.

30 ��� Notes.nb

Construction of linear elements with C0continuity
Consider two elements with the interpolation functions:

The C0continuity has to be seen as below

i.e.

The procedure is the same as in 1D FEA, i.e., writing the coefficients in terms of θ.

Triangle elements are extremely versatile, but have lower convergence than quadrilateral ele-
ments. The edges are straight, and so any curved domain is approximated with straight lines. If the

element size is sufficiently small then the error of approximation is diminished. So for the scalar
field θe:

Notes.nb ���31

The number of α unknowns are the same as the number of θ unknowns on the nodes of the ele-
ment:

The number of nodes is done in anti-clockwise manner. This could be written in the matrix form as:

The intermediate steps are the same as in 1D and can be written as:

Hence,

Substitution gives

as in the 1D case,

Thus the shape functions are then given as

The shape functions can be evaluated from the following expression:

Since the area of the triangle is:

The final expression for the shape functions are:

32 ��� Notes.nb

As expected, the shape functions are linear in x and y.

Three noded triangular element shape functions.
It could be easily verified that:

and the sum of shape functions is equal to 1.
Also note that the dashed line corresponds to the value of function along the edges of the triangles,
is clearly linear. Hence, the value of the field along the edge only depend on the values of the

function on the two nodes of the edge.
Global approximation and continuity

Local and global numbering

Like in the 1D case, the global shape functions could be given in terms of the element shape func-
tions as:

The trial solutions are approximated by a linear combination of C0 global shape functions

so that continuity C0 continuity of θhis guaranteed. Since the value of shape function along the

shared edge depends only on values at the nodes that are shared between the two elements, the

C0continuity of the global shape functions is automatically guaranteed.

Notes.nb ���33

C0shape functions for a two-element mesh. Only global node numbering is shown.

Using higher order triangular elements.

Very interesting idea to generate general shape functions

34 ��� Notes.nb

For linear element, the Be matrix is given as:

Similar to the linear 1D element.

Quadrilateral elements.

Four-node rectangle element:

Notes.nb ���35

Why the term x y? We need four equations (nodal variables) to find the four unknowns. This term

has all the linearity properties, since the shape functions need to be linear at the edges (else mode

nodes to be added)!

Even though we can invert the shape functions, a more clever method is generally implemented:
method of tensor products.

Hence, for node I, J, the shape function becomes:

These shape functions automatically satisfy:

The delta property of the shape functions is also automatically satisfied.

The nodal values of the shape functions are given in the table below:

36 ��� Notes.nb

Consequently, the shape functions look as follows:

In a more explicit form, the shape functions are written as:

The shape functions obtained thus are not applicable for any general quadrilateral other than a

rectangle. For example consider the shape below:

Notes.nb ���37

Along the line 1 - 4, the equation of the line is x = y. In this case, the shape function along the edge

1 - 4 has to be quadratic and not linear. Hence, to maintain C0continuity, we need to have addi-
tional node along that edge, which essentially contradicts what we want. There is an extremely

powerful technique called isoparametric mapping that can be used to generate shape functions for
any arbitrary quadrilateral with multiple nodes.

Isoparametric Mapping

For a two noded linear element:

Similarly, for the field θ, we also get:

Thus, remarkably, we see that the same interpolation is true for both the spatial coordinate x and

the field θ.
For a quadrilateral, the shape functions should look something as follows:

38 ��� Notes.nb

and N4Q(ξ, η) are the four-node element shape functions in the parent coordinates.

Replacing the values of coordinates with ξ, η, we get the following shape function:

Note that this shape functions are independent of element. Hence, for a quadrilateral, if we think of
the parent shape as:

mapped to the physical quadrilateral, and use the idea for the shape outer product for the rectangu-
lar shape, we get the following. The shape function will also look as:

Continuity of isoparametric elements:

Along any of the edge elements, the mapping is linear. Thus we need only two values to exactly

describe the value of the function along the edge – the two nodal values can then exactly describe

Notes.nb ���39

the function.

For example, along the right edge, ξ = 1,

Thus, very clearly the function is linear along this edge. This is also C0 continous with the

Some calculations to show that the all the edges map to straight edges, but not straight lines map

to straight lines.

N1[ξ_, η_] :=
1

4
(1 - ξ) (1 - η);

N2[ξ_, η_] :=
1

4
(1 + ξ) (1 - η);

N3[ξ_, η_] :=
1

4
(1 + ξ) (1 + η);

N4[ξ_, η_] :=
1

4
(1 - ξ) (1 + η);

{x1, x2, x3, x4} = {0, 1, 1, 0};
{y1, y2, y3, y4} = {0, 0, 2, 1};
x = N1[ξ, η] x1 + N2[ξ, η] x2 + N3[ξ, η] x3 + N4[ξ, η] x4
y = N1[ξ, η] y1 + N2[ξ, η] y2 + N3[ξ, η] y3 + N4[ξ, η] y4
1

4
(1 - η) (1 + ξ) +

1

4
(1 + η) (1 + ξ)

1

4
(1 + η) (1 - ξ) +

1

2
(1 + η) (1 + ξ)

X = x /. {ξ → η};
Y = y /. {ξ → η};

40 ��� Notes.nb

A = ParametricPlot[{X, Y}, {η, -1, 1}];
B = ParametricPlot[{x, y} /. ξ → -1, {η, -1, 1}];
c = ParametricPlot[{x, y} /. ξ → 1, {η, -1, 1}];
d = ParametricPlot[{x, y} /. η → 1, {ξ, -1, 1}];
e = ParametricPlot[{x, y} /. η → -1, {ξ, -1, 1}];
f = ParametricPlot[{x, y} /. ξ → -η, {η, -1, 1}];
Show[A, B, c, d, e, f]

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

Derivatives of isoparametric shape functions

This process is a bit more involved due to changes of parameters in 2D.

We will need to use the chain rule as follows:

Notes.nb ���41

The derivatives in terms of x and y will be expressed as

In terms of concise matrix form we will get:

Where, G is the gradient operator given as:

and the Jacobian is expressible in terms of element co-ordinates and hence has the subscript e on

it.

The quantity Beis given as:

The value (Je)-1 to exist,

42 ��� Notes.nb

The map between (ξ, η) and (x, y) is unique.

Higher order quadrilateral elements

Note the numbering convention.

The shape function is simply:

Relating the node number in terms of I and J as shown in the above figure.

 The most important observation is that, we can map the parent square to physically curved edges.
 Plotting the actual shape functions

Notes.nb ���43

N1[x_] :=
x (x - 1)

2
N2[x_] := (x + 1) (1 - x)

N3[x_] :=
(x + 1) x

2
Plot[{N1[x], N2[x], N3[x]}, {x, -1, 1}]

-1.0 -0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

N1[ξ, η] = N1[ξ] × N1[η]
N2[ξ, η] = N3[ξ] × N1[η]
N3[ξ, η] = N3[ξ] × N3[η]
N4[ξ, η] = N1[ξ] × N3[η]
N5[ξ, η] = N2[ξ] × N1[η]
N6[ξ, η] = N3[ξ] × N2[η]
N7[ξ, η] = N2[ξ] × N3[η]
N8[ξ, η] = N1[ξ] × N2[η]
N9[ξ, η] = N2[ξ] × N2[η]
1

4
(-1 + η) η (-1 + ξ) ξ

1

4
(-1 + η) η ξ (1 + ξ)

1

4
η (1 + η) ξ (1 + ξ)

1

4
η (1 + η) (-1 + ξ) ξ

1

2
(-1 + η) η (1 - ξ) (1 + ξ)

1

2
(1 - η) (1 + η) ξ (1 + ξ)

1

2
η (1 + η) (1 - ξ) (1 + ξ)

1

2
(1 - η) (1 + η) (-1 + ξ) ξ

(1 - η) (1 + η) (1 - ξ) (1 + ξ)

44 ��� Notes.nb

{x1, x2, x3, x4, x5, x6, x7, x8, x9} = {0, 1, 1, 0, 0.5, 1, 0.5, 0., 0.5};
{y1, y2, y3, y4, y5, y6, y7, y8, y9} = {0, 0, 2, 1, 0, 1, 1.5, 0.5, 0.5};
xx = {x1, x2, x3, x4, x5, x6, x7, x8, x9};
yy = {y1, y2, y3, y4, y5, y6, y7, y8, y9};
NN = {N1[ξ, η], N2[ξ, η], N3[ξ, η], N4[ξ, η],

N5[ξ, η], N6[ξ, η], N7[ξ, η], N8[ξ, η], N9[ξ, η]};
x = NN.xx
y = NN.yy

0. + 0.25 (-1 + η) η (1 - ξ) (1 + ξ) +

0.5 (1 - η) (1 + η) (1 - ξ) (1 + ξ) + 0.25 η (1 + η) (1 - ξ) (1 + ξ) +

1

4
(-1 + η) η ξ (1 + ξ) +

1

2
(1 - η) (1 + η) ξ (1 + ξ) +

1

4
η (1 + η) ξ (1 + ξ)

0.25 (1 - η) (1 + η) (-1 + ξ) ξ +
1

4
η (1 + η) (-1 + ξ) ξ + 0.5 (1 - η) (1 + η) (1 - ξ) (1 + ξ) +

0.75 η (1 + η) (1 - ξ) (1 + ξ) +
1

2
(1 - η) (1 + η) ξ (1 + ξ) +

1

2
η (1 + η) ξ (1 + ξ)

Notes.nb ���45

A = ParametricPlot[{x, y} /. ξ → η, {η, -1, 1}];
B = ParametricPlot[{x, y} /. ξ → -1, {η, -1, 1}];
c = ParametricPlot[{x, y} /. ξ → 1, {η, -1, 1}];
d = ParametricPlot[{x, y} /. η → 1, {ξ, -1, 1}];
e = ParametricPlot[{x, y} /. η → -1, {ξ, -1, 1}];
f = ParametricPlot[{x, y} /. ξ → -η, {η, -1, 1}];
Transpose[{xx, yy}]
g = ListPlot[%, PlotMarkers → {Automatic, Medium}, PlotStyle → Red];
Show[A, B, c, d, e, f, g]

{{0, 0}, {1, 0}, {1, 2}, {0, 1}, {0.5, 0}, {1, 1}, {0.5, 1.5}, {0., 0.5}, {0.5, 0.5}}

● ●

●

●

●

●

●

● ●

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

g

0. + 1.5 (-1 + η) η (1 - ξ) (1 + ξ) +

3. (1 - η) (1 + η) (1 - ξ) (1 + ξ) + 1.5 η (1 + η) (1 - ξ) (1 + ξ) +

3

2
(-1 + η) η ξ (1 + ξ) + 3 (1 - η) (1 + η) ξ (1 + ξ) +

3

2
η (1 + η) ξ (1 + ξ),

1.75 (1 - η) (1 + η) (-1 + ξ) ξ +
7

4
η (1 + η) (-1 + ξ) ξ + 3.5 (1 - η) (1 + η) (1 - ξ) (1 + ξ) +

5.25 η (1 + η) (1 - ξ) (1 + ξ) +
7

2
(1 - η) (1 + η) ξ (1 + ξ) +

7

2
η (1 + η) ξ (1 + ξ)

Along edge 1-7-4

N3[ξ, η] θ3 + N4[ξ, η] θ4 + N7[ξ, η] θ7 /. η → 1

1

2
θ4 (-1 + ξ) ξ + θ7 (1 - ξ) (1 + ξ) +

1

2
θ3 ξ (1 + ξ)

46 ��� Notes.nb

Mapping curved edges

{x1, x2, x3, x4, x5, x6, x7, x8, x9} = {0, 1, 1, 0, 0.5, 1.1, 0.5, 0.1, 0.5};
{y1, y2, y3, y4, y5, y6, y7, y8, y9} = {0, 0, 2, 1, 0.1, 1, 1.65, 0.5, 0.5};
xx = {x1, x2, x3, x4, x5, x6, x7, x8, x9};
yy = {y1, y2, y3, y4, y5, y6, y7, y8, y9};
NN = {N1[ξ, η], N2[ξ, η], N3[ξ, η], N4[ξ, η],

N5[ξ, η], N6[ξ, η], N7[ξ, η], N8[ξ, η], N9[ξ, η]};
x = NN.xx
y = NN.yy

0.05 (1 - η) (1 + η) (-1 + ξ) ξ + 0.25 (-1 + η) η (1 - ξ) (1 + ξ) +

0.5 (1 - η) (1 + η) (1 - ξ) (1 + ξ) + 0.25 η (1 + η) (1 - ξ) (1 + ξ) +

1

4
(-1 + η) η ξ (1 + ξ) + 0.55 (1 - η) (1 + η) ξ (1 + ξ) +

1

4
η (1 + η) ξ (1 + ξ)

0.25 (1 - η) (1 + η) (-1 + ξ) ξ +
1

4
η (1 + η) (-1 + ξ) ξ +

0.05 (-1 + η) η (1 - ξ) (1 + ξ) + 0.5 (1 - η) (1 + η) (1 - ξ) (1 + ξ) +

0.825 η (1 + η) (1 - ξ) (1 + ξ) +
1

2
(1 - η) (1 + η) ξ (1 + ξ) +

1

2
η (1 + η) ξ (1 + ξ)

Notes.nb ���47

A = ParametricPlot[{x, y} /. ξ → η, {η, -1, 1}];
B = ParametricPlot[{x, y} /. ξ → -1, {η, -1, 1}];
c = ParametricPlot[{x, y} /. ξ → 1, {η, -1, 1}];
d = ParametricPlot[{x, y} /. η → 1, {ξ, -1, 1}];
e = ParametricPlot[{x, y} /. η → -1, {ξ, -1, 1}];
f = ParametricPlot[{x, y} /. ξ → -η, {η, -1, 1}];
Transpose[{xx, yy}]
g = ListPlot[%, PlotMarkers → {Automatic, Medium}, PlotStyle → Red];
Show[A, B, c, d, e, f, g, PlotRange → All]

{{0, 0}, {1, 0}, {1, 2}, {0, 1}, {0.5, 0.1},
{1.1, 1}, {0.5, 1.65}, {0.1, 0.5}, {0.5, 0.5}}

● ●

●

●

●

●

●

● ●

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

Along the edge 1-7-4

N3[ξ, η] θ3 + N4[ξ, η] θ4 + N7[ξ, η] θ7 /. η → 1

1

2
θ4 (-1 + ξ) ξ + θ7 (1 - ξ) (1 + ξ) +

1

2
θ3 ξ (1 + ξ)

What is the Jacobian for the nine-node element.

rξ = {∂ξN1[ξ, η], ∂ξN2[ξ, η], ∂ξN3[ξ, η], ∂ξN4[ξ, η],
∂ξN5[ξ, η], ∂ξN6[ξ, η], ∂ξN7[ξ, η], ∂ξN8[ξ, η], ∂ξN9[ξ, η]};

rη = {∂ηN1[ξ, η], ∂ηN2[ξ, η], ∂ηN3[ξ, η], ∂ηN4[ξ, η], ∂ηN5[ξ, η],
∂ηN6[ξ, η], ∂ηN7[ξ, η], ∂ηN8[ξ, η], ∂ηN9[ξ, η]};

48 ��� Notes.nb

{rξ, rη}.Transpose[{xx, yy}] // FullSimplify // Expand;
MatrixForm[%]
Det[%%] // Expand
Plot3D[%, {ξ, -1, 1}, {η, -1, 1}]

0.5 + 0.2 ξ - 0.2 η2 ξ 0.25 + 0.25 η + 0.5 ξ - 0.05 η ξ - 0.75 η2 ξ

0. - 0.2 η ξ2 0.775 + 0.75 η + 0.25 ξ - 0.025 ξ2 - 0.75 η ξ2

0.3875 + 0.375 η + 0.28 ξ + 0.15 η ξ - 0.155 η2 ξ -

0.15 η3 ξ + 0.0375 ξ2 - 0.325 η ξ2 - 0.005 ξ3 - 0.05 η ξ3 - 0.005 η2 ξ3

Higher order ele-
ments

Notes.nb ���49

Construction of shape functions for the 12 noded element. The inner nodes are not required for
continuity.

Serendipity elements:

Some such elements do not have internal nodes. For example,

This is 8 nodes. How to construct the 8 shape functions? The most important property is the Kroe-
necker Delta property, i.e., the shape function is 1 at the given node and zero at other nodes.

Consider Node 8, The shape function is N18Q(ξ, η). This function (1 - ξ) (1 - η) (1 + ξ + η) vanishes at
all the points except at 1! The value of this function at (-1, -1) is -4, hence the shape function should

be

N18Q(ξ, η) = - 1
4 (1 - ξ) (1 - η) (1 + ξ + η)

Similarly, for node 4
N48Q(ξ, η) =

1
4 (1 - ξ) (1 + η) (-1 - ξ + η)

For node 8
N88Q(ξ, η) =

1
2 (1-η) (1 + η) (1-ξ)

50 ��� Notes.nb

Such element is called as the Serendipity element.

(* checking the Kroenecker Delta property *)

n1 = -
1

4
(1 - ξ) (1 - η) (1 + ξ + η) ;

% /. {ξ → -1, η → -1}

n4 =
1

4
(1 - ξ) (1 + η) (-1 - ξ + η) ;

% /. {ξ → -1, η → 1}

n8 =
1

2
(1 - η) (1 + η) (1 - ξ);

% /. {ξ → -1, η → 0}

1

1

1

How does the function vary along the edge 1-8-4? Here ξ = -1

n1 θ1 + n4 θ4 + n8 θ8 /. ξ → -1 // Expand

-
η θ1

2
+
η2 θ1

2
+
η θ4

2
+
η2 θ4

2
+ θ8 - η2 θ8

This is a complete quadratic polynomial!

Isoparametric elements for triangles:

For a three-node triangular element, the most natural way to define isoparametric coordinates are

through centroid coordinates

For every point:
ξI =

AI
A , as a result of which, the Kroenecker delta property is automatically satisfied.

Notes.nb ���51

Consequently, very likely these are actually the interpolants, i.e., the linear functions that were

obtained in the previous classes. It is obvious that
∑ξI = 1,

Thus, we can express a relation between ξI and x, y coordinates.

This could be inverted to provide:

Here, the notation xIJe = xIe - xJe and so on. Hence, ξI are also linear functions of x and y. Since there

will be unique shape functions that will satisfy the Kroenecker delta property and linearity, ξI
indeed has to be shape functions NI that were obtained earlier. Hence, we can write:

The triangular coordinates can be interpreted is shown in the Figure above. Based, on all these

thoughts, similar to what we do for isoparametric quadrilaterals, we can obtain a parent element
for the physical three noded triangle as:

52 ��� Notes.nb

Since the triangular coordinates are linear in x and y, we get the following equation for the relation

between the material derivatives and physical derivatives.

Higher order elements can be obtained using the same trick as that used for the quadrilaterals.

Also consider this parent triangle for reference

We need 6 nodes for a six node element. The shape functions are easily obtained for example:

Node 1
N1 ∼ ξ1ξ1 -

1
2 

Node 4
N4 ∼ ξ2 ξ1

The normalisation is to be done by noting that at that particular node I the corresponding value of
the shape function in 1.
The final list of shape functions is:

Notes.nb ���53

How does the map happen?

{x1, x2, x3, x4, x5, x6} = 0, 1,
1

2
, 0.5, 0.5 1 + 0.5, 1 / 4;

xx = %;

{y1, y2, y3, y4, y5, y6} = 0, 0,
3

2
, 0,

3

4
,

3

4
;

yy = %;
a = ListPlot[Transpose[{xx, yy}],

PlotMarkers → {Automatic, Medium}, PlotStyle → Red];

N1[ξ1_, ξ2_, ξ3_] := ξ1 2 ξ1 - 1

N2[ξ1_, ξ2_, ξ3_] := ξ2 2 ξ2 - 1

N3[ξ1_, ξ2_, ξ3_] := ξ3 2 ξ3 - 1

N4[ξ1_, ξ2_, ξ3_] := 4 ξ1 ξ2
N5[ξ1_, ξ2_, ξ3_] := 4 ξ3 ξ2
N6[ξ1_, ξ2_, ξ3_] := 4 ξ1 ξ3
(* The shape functions are *)

NN = {N1[ξ1, ξ2, ξ3], N2[ξ1, ξ2, ξ3],
N3[ξ1, ξ2, ξ3], N4[ξ1, ξ2, ξ3], N5[ξ1, ξ2, ξ3], N6[ξ1, ξ2, ξ3]};

x = NN.xx // Expand
y = NN.yy // Expand
(* Plotting the edges *)

b = ParametricPlot{x, y} /. ξ3 → 1 - ξ1 - ξ2 /. ξ2 → 0, {ξ1, 0, 1};

c = ParametricPlot{x, y} /. ξ2 → 1 - ξ1 - ξ3 /. ξ3 → 0, {ξ1, 0, 1};

d = ParametricPlot{x, y} /. ξ2 → 1 - ξ1 - ξ3 /. ξ1 → 0, {ξ3, 0, 1};

Show[a, b, c, d]

-ξ2 + 2. ξ1 ξ2 + 2 ξ22 -
ξ3

2
+ ξ1 ξ3 + 3. ξ2 ξ3 + ξ32

-
3 ξ3

2
+ 3 ξ1 ξ3 + 3 ξ2 ξ3 + 3 ξ32

54 ��� Notes.nb

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

{x, y} /. ξ3 → 1 - ξ1 - ξ2 /. ξ2 → 0 // Expand

0.5 -
ξ1

2
,

3

2
-

3 ξ1

2


Notes.nb ���55

{x1, x2, x3, x4, x5, x6} = 0, 1,
1

2
, 0.5, 0.5 1 + 0.5 - 0.1, 1 / 4 + 0.1;

xx = %;

{y1, y2, y3, y4, y5, y6} = 0, 0,
3

2
, 0.2,

3

4
,

3

4
;

yy = %;
a = ListPlot[Transpose[{xx, yy}],

PlotMarkers → {Automatic, Medium}, PlotStyle → Red];

N1[ξ1_, ξ2_, ξ3_] := ξ1 2 ξ1 - 1

N2[ξ1_, ξ2_, ξ3_] := ξ2 2 ξ2 - 1

N3[ξ1_, ξ2_, ξ3_] := ξ3 2 ξ3 - 1

N4[ξ1_, ξ2_, ξ3_] := 4 ξ1 ξ2
N5[ξ1_, ξ2_, ξ3_] := 4 ξ3 ξ2
N6[ξ1_, ξ2_, ξ3_] := 4 ξ1 ξ3
(* The shape functions are *)

NN = {N1[ξ1, ξ2, ξ3], N2[ξ1, ξ2, ξ3],
N3[ξ1, ξ2, ξ3], N4[ξ1, ξ2, ξ3], N5[ξ1, ξ2, ξ3], N6[ξ1, ξ2, ξ3]};

x = NN.xx // Expand
y = NN.yy // Expand
(* Plotting the edges *)

b = ParametricPlot{x, y} /. ξ3 → 1 - ξ1 - ξ2 /. ξ2 → 0, {ξ1, 0, 1};

c = ParametricPlot{x, y} /. ξ2 → 1 - ξ1 - ξ3 /. ξ3 → 0, {ξ1, 0, 1};

d = ParametricPlot{x, y} /. ξ2 → 1 - ξ1 - ξ3 /. ξ1 → 0, {ξ3, 0, 1};

Show[a, b, c, d, PlotRange → All]

-ξ2 + 2. ξ1 ξ2 + 2 ξ22 -
ξ3

2
+ 1.4 ξ1 ξ3 + 2.6 ξ2 ξ3 + ξ32

0.8 ξ1 ξ2 -
3 ξ3

2
+ 3 ξ1 ξ3 + 3 ξ2 ξ3 + 3 ξ32

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

Thus we can represent curved boundaries quite conveniently. Whenever, the edge boundaries

remain straight the resulting elements are called as subparametric elements and have better
convergence that the elements with curved boundaries. So the curved elements should not be used

unless a curved boundary needs to be mimicked with a few number of elements.

56 ��� Notes.nb

Similar rules need to be implemented for higher order triangles:

For a cubic element.

Shape functions of 10 noded triangular element.

Triangular elements by collapsing the quadrilateral elements:

One can obtain triangle element shape functions by collapsing nodes for a quadrilateral element.
This will, however, make the Jacobian zero at the boundaries because we have mapping of two

points to just one point.

It can be shown that the Isoparametric elements are complete, i.e., they can at least represent a

linear field.

Notes.nb ���57

Gauss quadrature for Quadrilateral elements.
The integration over a quadrilateral element is given as:

Mapping of the element between parent and physical domain.

In the physical domain, we have:

The area dΩ of the physical domain, we get:

Hence, the Integral described earlier is

58 ��� Notes.nb

First integrating along ξ

Here, the Gauss quadrature is evaluated over the 1D Gauss points in the ξ direction. Then evaluat-
ing the Integral over η direction:

The points ξi and ηj are the Gauss points in 1-D. It is to be noted that Je(ξ, η) f(ξ, η) is not
necessarily a polynomial function of the variables ξi, ηi. Hence, Gauss quadrature need not be

exact.

Integration over triangular elements.

The integral:

∫ f dΩ = ∑i=1
ngpWi fξ1(i), ξ2(i), ξ3(i) Jeξ1(i), ξ2(i), ξ3(i).

The Gauss-quadrature points are far more tricky in this case.

The degree of precision means that the quadrature is exact for a polynomial up to that degree. Note

also that:
ξ1 + ξ2 + ξ3 = 1.

For three node triangles (or a straight edge triangle) the Jacobian matrix is:

Notes.nb ���59

The resulting Jacobian (det(J)) is twice the area of the triangle with coordinates corresponding to 1,
2, 3. It is also the ratio of the area of the reference triangle and the parent triangle.

For straight edge triangle:

3D finite elements
Very similar ideas to described shape functions in 3D. Either tetrahedron (extension of triangle) or
brick (extension of quadrilateral) element.

The shape function can be obtained from outer-product via 2-node 1D elements as:

60 ��� Notes.nb

What are the I, J, K corresponding to every element number L of the quadrilateral.

The iso-parametric idea can be used to express any field:

It is quite clear that for any of the faces, either ξ, η, ζ assumes a constant value and so the field

θebecomes a linear bilinear field in terms of the other two. Since a bilinear function can be uniquely

defined in terms of the values at the four nodes, C0continuity is automatically satisfied. Higher
order element obtained in a similar manner by using outer-product of higher order 1D elements, or
by using seredipity elements.

The Jacobian in 3D is:

Notes.nb ���61

and the integral can be expressed as:

Tetrahedral is similar to triangles, but a bit complex in terms of geometry.

The Tetrahedral coordinates of point P are:

with

The shape functions of a four-node tetrahedron are:

62 ��� Notes.nb

For a 10 node tetrahedron (quadratic) the shape functions are obtained by the same trick as for
triangles:

We will now combine the ideas regarding the Boundary Value problem, Green’s theorem and Weak-
Form along with the triangular and quadrilateral elements and shape functions developed here to

solve 2D BVP using the Finite Element.

Solution to BVP using the finite element method
Finite element formulation for heat conduction prob-
lem

where

Notes.nb ���63

Finite element mesh on the domain.

Integrals are replaced with the summation over the elements

The finite element trial function and the weight functions is:

Here Ne is the element shape function and

and

For isoparametric formulation the shape functions are expressed in terms of ξ and η. The element
nodal degrees of freedom are expressed as

64 ��� Notes.nb

Hence,

The gradient becomes:

In a more compact notation, the gradient becomes:

where,

The gradient operator for the weight function will give

The degrees of freedom are partitioned as:

Here, E corresponds to the essential boundaries where the values of the field are known and the

rest are given by F. Substituting all the values, we obtain

Notes.nb ���65

where the element conductance matrix is:

and the element flux matrix is:

Here fΓe and fΩe are the boundary flux and the domain source terms, respectively. The weak form can

then be written as:

This could be rewritten as:

where,

and the global matrices are assembled as in 1D.

The partition can be done as follows

66 ��� Notes.nb

However, since wE = 0 at the essential boundaries, this reduces to rF = 0. The final partitioned

equations can be written as:

which could be

rewritten as:

An example is provided as follows:

Problem:

The above problem can be broken into two elements:

Notes.nb ���67

The nodes at the intersection of essential and natural boundaries should satisfy the essential
boundaries and should have lower numbering. The Be for the matrix is given as:

And the area of the element is given as:

In the simple case where D = k I, the conductance matrix greatly simplifies.

68 ��� Notes.nb

Local node numbering and coordinates of element-1.

The area A(1) = 1 and the resulting B matrix is:

Hence, the conductance is:

Similarly, for element 2 A(2) = 0.5, and the conductance matrix is:

Local node numbering for element 2.
The conductance matrix for element 2 is

The global conductance is given as

Notes.nb ���69

i

Now, consider the source term:

where the element shape functions are:

In the special case when the source terms is constant, using

and s the flux terms from the source

70 ��� Notes.nb

The integral can be evaulated by noting that:

and the volume of this ‘’pyramid’’ is

1
3 A

(1)×1.

The direct assembly of the element source matrices

To obtain the boundary flux we note that element-1 has two edges on the essential boundary

condition where the temperature is specified and one interior edge, but no edge on the flux bound-
ary condition. So only element 2 contributes to the boundary flux.

For element-2, q = 20 only on the top boundary. On the vertical boundary the flux is zero.
The boundary flux is obtained as follows:

Notes.nb ���71

The shape function on the top boundary is evaluated as follows.

This value is then subsituted and integrated to give the boundary flux.

The total boundary flux is then obtained as.

Finally, the right hand side matrix of the matrix:

is assembled to give:

The resulting system of equations is given as:

72 ��� Notes.nb

They can be solved to give:

The resulting global and element temperature matrices are:

The flux matrices are:

Note that the flux is obtained not for the node, but for the element. In general, we need to ‘project’
the flux from the element back to the nodes.

We will do the same problem by using quadratic element and isoparametric element formulation.

Solve the same problem using a single quadratic element. The integration is to be performed

using the 2 × 2 Gauss quadrature developed earlier

Notes.nb ���73

Note, that the numbering is done in an anti-clockwise manner. The element coordinate matrix is:

The shape functions for the four-node quadrilateral element are:

The gradients in the parent domain are:

These gradients are converted from the parent to the physical or material domain via the Jacobian

matrix which is obtained as:

Using this Jacobian matrix we can obtain the gradients in the material space or the global coordi-
nates as

The conductance matrix is given as

Note that the matrix K above is not a polynomial. It will look as:

74 ��� Notes.nb

GN =
1

4
{{η - 1, 1 - η, 1 + η, -η - 1}, {ξ - 1, -ξ - 1, 1 + ξ, 1 - ξ}};

MatrixForm[%]
xy = {{0, 1}, {0, 0}, {2, 0.5}, {2, 1}};
MatrixForm[%]
(* Jacobian Matrix for the element *)

J = GN.xy // FullSimplify;
MatrixForm[%]
(* Determinant of the Jacobian *)

detJ = Det[J]
(* The B matrix is *)

B = Inverse[J].GN // FullSimplify;
MatrixForm[B]

(* The Integrand kBTB detJ to obtain the K matrix *)

detJ * Transpose[B].B // FullSimplify;

MatrixForm[%]
1
4
(-1 + η)

1-η
4

1+η
4

1
4
(-1 - η)

1
4
(-1 + ξ)

1
4
(-1 - ξ)

1+ξ
4

1-ξ
4

0 1
0 0
2 0.5
2 1


0 -0.375 + 0.125 η

1 0.125 + 0.125 ξ


0.375 - 0.125 η

1.-0.5 η-0.5 ξ

-3.+1. η

0.5+0.5 ξ

-3.+1. η

1.+1. ξ

3.-1. η

0.5-0.5 η-1. ξ

3.-1. η

2. -
4.

3.-1. η
-2. +

4.
3.-1. η

-
1+η

1.5-0.5 η
-2. +

8.
3.-1. η

-0.625-0.53125 η2+η (1.125-0.0625 ξ)+(0.125-0.03125 ξ) ξ

-3.+1. η

0.4375+0.5 η2+η (-0.96875+0.03125 ξ)+(-0.03125+0.03125
-3.+1. η

0.4375+0.5 η2+η (-0.96875+0.03125 ξ)+(-0.03125+0.03125 ξ) ξ

-3.+1. η

-0.53125+(1.-0.5 η) η+(-0.0625-0.03125 ξ) ξ

-3.+1. η

0.625-0.5 η2+η (-0.0625-0.0625 ξ)+(0.0625-0.0625 ξ) ξ

-3.+1. η

-0.4375+0.5 η2+(0.125+0.0625 ξ) ξ

-3.+1. η

-0.4375+0.53125 η2+η (-0.09375+0.09375 ξ)+(-0.15625+0.0625 ξ) ξ

-3.+1. η

0.53125-0.5 η2+η (-0.03125-0.03125 ξ)+(-0.03125-0.0625
-3.+1. η

This explicit calculation to only demonstrate that you may not encounter perfect polynomials. Else,
you need to figure out what the Gauss points are and can evaluate individual terms at those points.
In the current case using 2 × 2 Gauss quadrature with following sampling points and weights:

The conductance matrix becomes:

Notes.nb ���75

A�er plugging in the values, we get:

For comparision, the exact Integral that is obtained analytically is:

Integrate5 detJ * Transpose[B].B, {ξ, -1, 1}, {η, -1, 1} // MatrixForm

4.77675 -3.52675 -2.94649 1.69649
-3.52675 4.15175 1.69649 -2.32149
-2.94649 1.69649 6.60702 -5.35702
1.69649 -2.32149 -5.35702 5.98202

Which is quite comparable with that obtained using the four point Gauss quadrature.

Now, to obtain the contribution from the source term to the element flux. The shape functions are:

N1 =
1

4
(1 - ξ) (1 - η);

N2 =
1

4
(1 + ξ) (1 - η);

N3 =
1

4
(1 + ξ) (1 + η);

N4 =
1

4
(1 - ξ) (1 + η);

Hence, the source matrix is sim-
ply:

fΩ = Integrate[6 {N1, N2, N3, N4} detJ, {ξ, -1, 1}, {η, -1, 1}];
MatrixForm[%]

2.5
2.5
2.
2.

Since the integrand above was a perfect polynomial in ξ, η with appropriate degree (2) in both,
2×2 quadrature was sufficient to get the exact answer. Finally, we need to obtain the flux from the

top horizontal boundary.

76 ��� Notes.nb

The mapping is as follows:

If one goes from 1-4, it corresponds to positive η and from 1-2 correspond to positive ξ.

The boundary flux can be integrate analytically or using one-point gauss quadrature. On the top

boundary 1-4, ξ = -1 and so:

The resulting RHS matrix is given by:

The global system of equations is:

which yields T4 = -3.04. The global temperature matrix is:

Notes.nb ���77

The resulting flux matrix is generally computed at the Gauss points and is given as:

Note, that unlike for the 3-node triangle element, the flux in this case is not constant.

As expected, the values that we get for the triangle and the quadrilateral element are not the same.
However, they will converge to the real solution when the element size becomes small.

Side Note:

1) If the integral has to be performed on the inclined boundary 2-3, then 2-3 corresponds to ξ = 1

and positive η. For this element, it is immediately, clear that:

dΓ = L23 dη, where L23 = 22 + 0.52 ≈ 2.06.

2) If the integral was to be performed on 1-2, then it corresponded to +ve ξ. In that case, η = -1 and :
dΓ = -dy = L12 dξ , and the limits of integration are from ξ = -1 to +1, and L12 = 1.

3) If the integral was to be performed on 3-4, then it corresponded to -ve ξ and η = 1. In this case:
dΓ = dy = -L34 dξ, where L34 = 0.5. Now the integral will

∫Γ f d Γ = ∫0
0.5f dy = -∫1

-1f L34 dξ = ∫-1
1 f L34 dξ .

The goal of this long exercise is to establish how to take the boundary integral. If the boundary is

curved, then the relation between d Γ and d ξ is more complex.

22 + 0.52

2.06155

A short detour: some side calculations:
Shape functions on the boundary ξ = 1.

78 ��� Notes.nb

n1 =
η (η - 1)

-1 - 0 (-1 - 1)

n2 =
(η + 1) (η - 1)

0 + 1 0 - 1

n3 =
η (η + 1)

1 - 0 (1 + 1)

1

2
(-1 + η) η

-(-1 + η) (1 + η)

1

2
η (1 + η)

If the points on the edge are (0, 0), (0.5, 0.5), (2, 2), then the middle point is not exactly at the center
of the edge. In that case, the mapping between the parent and the physical edge is non-linear.

x = n1 0 + n2 0.5 + n3 2 // Expand
Plot[x, {η, -1, 1}]
y = n1 0 + n2 0.5 + n3 2 // Expand
Plot[y, {η, -1, 1}]

0.5 + η + 0.5 η2

-1.0 -0.5 0.5 1.0

0.5

1.0

1.5

2.0

0.5 + η + 0.5 η2

-1.0 -0.5 0.5 1.0

0.5

1.0

1.5

2.0

If, we now plot how the edge looks like then:

Notes.nb ���79

ParametricPlot[{x, y}, {η, -1, 1}];
ListPlot[{{x, y} /. η → -1, {x, y} /. η → 0, {x, y} /. η → 1}];
Show[%, %%]

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

If, however, the middle point is at the exact center of the edge, then, the middle point is (1, 1) and

the mapping on the edge is:

80 ��� Notes.nb

x = n1 0 + n2 + n3 2 // Expand
Plot[x, {η, -1, 1}]
y = n1 0 + n2 + n3 2 // Expand
Plot[y, {η, -1, 1}]

1 + η

-1.0 -0.5 0.5 1.0

0.5

1.0

1.5

2.0

1 + η

-1.0 -0.5 0.5 1.0

0.5

1.0

1.5

2.0

Notes.nb ���81

