## Department of Civil Engineering, IIT Bombay CE 102 Engineering Mechanics - Mid-Semester Exam

Date: February 20, 2008
Max. Marks: 100
Note: State clearly all assumptions you have made, if any. Draw clear Free Body Diagram(s). If you make multiple attempts, cancel out the one(s) you do not want to be graded. Only the first non-cancelled attempt encountered will be graded.

Time: 2 hours

1. A horizontal platform $C D$ carries a truck of weight $Q$ and is rigidly welded to the vertical bar $A B$, which is hinged at the top to the horizontal lever $B F G$ (Fig. 1). Determine the weight $Q$ of the truck if a known weight $W$ hanging at $G$ holds the platform and its load in equilibrium as shown. The weight of the empty platform is just balanced by lever GB.


Fig. 1
2. Determine the forces in bars 1 and 2 of the plane truss supported and loaded as shown in Fig. 2; $\angle C A B=\angle D B A=60^{\circ} ; \angle C B A=\angle D A B=30^{\circ}$.


Fig. 2
3. Two bars $A B$ and $O D$, which are pinned together at $C$, form the diagonals of a horizontal square $A O B D$ (Fig. 3). The ends $A$ and $O$ are attached to a vertical wall by ball and socket joints. Point $B$ is supported by a cable $B E$, and a vertical load $P$ is applied at $D$. Find the components of the reactions at $A$ and $O$.


Fig. 3
4. The force $P$ is applied normal to the diametral surface of the $25-\mathrm{kg}$ semi cylinder (Fig. 4). As $P$ is gradually increased, the cylinder is observed to slip on the horizontal surface when $\theta$ reaches $32^{0}$. Calculate the coefficient of static friction $\mu_{s}$ and the force $P$ when slipping begins.


Fig. 4

CElom Midsem Sol.
P. 1 (Without truck, system is balanced $\rightarrow$ equivalent to neglectingself int of members) $A E \rightarrow 2$ force number.


$$
\Rightarrow W=Q\left(\frac{L}{L_{1}}-1\right)
$$

P. 2.


Symmetry (in load \& structure)

$$
\Rightarrow A_{y}=B_{y}=3 P, A_{x}=0
$$



$$
\begin{aligned}
\Sigma F_{y}=0 \Rightarrow & \not A_{y}-p-2 \not p-F_{D B} \cos 30 \\
& +F_{A C} \cos 30=0 \\
\Rightarrow F_{D B}= & F_{A C}=F_{1} \text { (as expected }
\end{aligned}
$$ from symmetry)

$$
\begin{aligned}
& F_{1}=0.9622 \mathrm{P}(\mathrm{C}) \\
& F_{2}=0.9622 \mathrm{P}(\mathrm{~T})
\end{aligned}
$$

$$
\begin{aligned}
& \sum M_{A}=0 \Rightarrow F_{D B} 1 \cos 30+\frac{P l}{6}+2 \frac{P l}{3}=0 \\
& \Rightarrow \quad F_{1}=F_{D B}=-\frac{5}{6}\left(\cos 300^{-1} P=-0.9622 P \cdot\right. \\
& \quad(\text { compressive }) \\
& \sum F_{X}=0 \Rightarrow F_{2}+F_{D B} \sin 30+F_{A C} \sin 30=0 \\
& \Rightarrow F_{2}=-2 F_{1} \sin 30=-F_{1}=0.9622 P
\end{aligned}
$$

(Tensile)
P.(3)


$$
\begin{aligned}
& \sum M_{O A}=0 \Rightarrow T_{B E} / \sqrt{2} \cdot \alpha=p \cdot \alpha \\
& \sum M_{O E}=0 \Rightarrow \not \cdot A_{x}=0 \\
& \sum M_{O B}=0 \Rightarrow A_{y} \cdot \alpha=P \cdot \alpha \\
& \sum F_{x}=0 \Rightarrow A_{x}+O_{x}=T_{B E / \sqrt{2}} \\
& \sum F_{y}=0 \Rightarrow A_{y}+O_{y}+T_{B E / \sqrt{2}}=p \\
& \sum F_{z}=0 \Rightarrow A_{z}+O_{z}=0
\end{aligned}
$$

Take FBD of arm $0 C D . \quad \sum M_{c y}=0 \Rightarrow\left(O_{x}-O_{z}\right) \frac{a}{2}=0$
Note that $C$ is a minige.
Soloring above 7 egns

$$
\begin{aligned}
& T_{B E}=P \sqrt{2}, \\
& A_{x}=0,
\end{aligned} A_{y}=P, O_{x}=P, ~ 子, P y, O_{z}=P, \quad A_{z}=-P . ~ \$
$$

P4.


$$
\begin{aligned}
& \sum F_{x}=0 \Rightarrow \mu_{s} N-P \sin \theta=0 \\
& \Sigma F_{y}=0 \Rightarrow P \cos \theta+m g-N=0 \\
& \sum M_{c}=0 \Rightarrow m g\left(\frac{4 r}{3 \pi} \sin \theta\right)-P \cos \theta(r \cos \theta) \\
&+P \sin \theta+(1-\sin \theta)=0
\end{aligned}
$$

Sothonig abore 3 equs $\Rightarrow P=117.33 \mathrm{~N}, N=344.76 \mathrm{~N}$,

$$
\mu_{s}=0-180
$$

