e MECHANICS OF
9 MATERIALS

Deflection of Beams
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Deformation of a Beam Under Transverse Loading

Relationship between bending moment and
curvature for pure bending remains valid for
general transverse loadings.

1 M(x)

P El

Cantilever beam subjected to tip load,

_Px
El

Curvature varies linearly with x

At free end A,

At support B,
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Deformation of a Beam Under Transverse Loading

Overhanging beam
Reactions at A and C
Bending moment diagram

Curvature is zero at points where bending
moment 1S zero, i.e., at each end and at E.

1:M(x)

P El

Beam is concave upwards where bending moment
IS positive and concave downwards where it is
negative.

Maximum curvature occurs where the moment
magnitude i1s maximum.

An equation for the beam shape, i.e., elastic
curve, is required to determine maximum
deflection and slope.
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Equation of the Elastic Curve

d(tang) _d’y _d(tang)do _
dx dx’ de d

Substituting and integrating,
1 d’y

El —=El =M
p dXZ (X)

dy
EIHzEI&:IM(X)dX+C1

El y:jdx‘[M(x)dijC1x+C2
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Equation of the Elastic Curve

» Constants are determined from boundary
conditions

El y=IdeM(x)dx+C1x+C2

» Three cases for statically determinate beams,

— Simply supported beam
ya=0, yg=0

— Overhanging beam
YA = 0, YB = 0

— Cantilever beam
YA = 0, HA =0

* More complicated loadings require multiple
Integrals and application of requirement for
continuity of displacement and slope.
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Direct Determination of Elastic Curve from Load
Distribution

» For a beam subjected to a distributed load,
2
M _y ) 9™ _dV

" 2 =g = )

» Equation for beam displacement becomes
d°M

[Mp=0]
B dX2

(a) Cantilever beam

* Integrating four times yields

El y(x)= —Idx‘[dx‘[dx‘[w(x)dx

+ %Clx?’ + %szz +C3x+Cy

» Constants are determined from boundary

[M,=0] [Ma= 0] COﬂdItIOI’]S

(b) Simply supported beam
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W360 X 101 1 =300 X 10° mm*

E = 200 GPa

P=200kN L=45m

a=12m
For portion AB of the overhanging
beam, (@) derive equation for the
elastic curve, (b) find maximum
deflection, (c) evaluate y,.,.
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SOLUTION:

Develop expression for M(x) and derive

1!(

*

>~

J differential equation for elastic curve.

- Reactions:

Pa a
Ra=—+ Rg=P[1+-|T
A=) Ry =P ]

- From FBD for section AD,

M =—P%x (0<x<L)

- Differential equation for the elastic curve,
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Y Integrate differential equation twice and apply
[x=0,4y=0] [x=Ly=0] boundary conditions to obtain elastic curve.

ad__1pde.c
dx

l1_a 3
Ely=—P—x"+Cx+C
y 6 L 1 2
atx=0,y=0: Cr,=0

atx=L,y=0: 0=—2p2334cl ¢ =1Pal
6 L 6

Substituting,

g __1lpape, lp, dv_Pal 1—3(
dx 2 L 6 dx 6El

1.a. 3

Ely=—P—X +1PaLx
6 L 6

g PaL’| x
L
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Locate point of zero slope i.e., point
of maximum deflection.

dy_o_Patll_g(xm

dx 6El L

Evaluate maximum deflection.

2
Vimay = PaL [o 577 (0.577) ]

2
y.. =0.06427 2k
El

(200x10° N)1.2m)4.5mY
(200x10°Pa J300x107° m*)

y_ . =0.0642

Yimax = 9-2MM
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Statically Indeterminate Beams

10 o Consider beam fixed at A and roller support at B.
RN

B« There are four unknown reaction components.

 Conditions for static equilibrium are
YFy=0 YF;=0 YXMup=0

So beam statically indeterminate to degree one.
Say Rg Is redundant.

» We also have beam deflection equation,
El y=jdij(x)dx+C1x+C2

which introduces two unknowns but provides
three additional equations from the boundary
*conditions (used to solve forC,,C, ,Rg ):

Atx=0,6=0y=0 Atx=L,y=0
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SOLUTION:

» Develop differential equation for
elastic curve (will be functionally
dependent on reaction at A).

* Integrate twice, apply boundary
For the uniform beam, find reaction conditions, solve for reaction at A and
at A, derive equation for elastic obtain elastic curve.
curve, and find slope at A.

Beam is statically indeterminate to
one degree (i.e., one excess reaction
which static equilibrium alone cannot

solve for).
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» The differential equation for the elastic
curve,
2 3
197 _ M = rux - 0
dx? 6L
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y * Integrate twice

[x=L,0=0]
: 1. 2 wox?

eny-0l B Y o E19=LR,x
[x=0,y=0] dx 2 241

1 W X°
1y = R o0t

+Cix+C
5 1 2

» Apply boundary conditions:
atx=0,y=0: C,=0

atx=L,0=0:

atx=L,y=0:

e Solve for reaction at A
1 3 1 4
—RAL——wphL =0
3 A7 30 0
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+ * Substitute for C;, C,, and R, in the
elastic curve equation,

5
El yzl(iwoije’—Wox —( L WOL3jx
6110 120L \120

y = L(— x> +2L°x3 — L4x
120EIL

» Differentiate once to find the slope,

o= _ Yo (54,6122 14
dx ~ 120EIL

_ WO |_3

at x = O, QA—
120El
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Method of Superposition

150 kN P = 150 kN

20 kN/m

Principle of Superposition:

» Deformations of beams subjected to
combinations of loadings may be
obtained as a linear combination of
the deformations from the individual

loadings

w = 20 kN/m

* Procedure is facilitated by tables of
solutions for common types of
loadings and supports.
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. . For the beam and loading shown, find

. l \ slope and deflection at point B.
l*—— L —> L/2

SOLUTION:

Superpose the deformations due to Loading I and Loading Il as shown.

Loading 1 Loading 11

(0p);

,(.’/B)u
X
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Loading I

Loading Il

WL3 WL4
9 _ ——— =
(6 48EI (e 128El

In beam segment CB, bending moment is zero
and the elastic curve is a straight line.

w3
(QB)H = (QC )|| = ﬁ

2

(YB)H =

+ =
128El 48El 384El

wit o w (Lj_ 7w
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Loading 1

Loading 11

Combine the two solutions,

WL3 WL3

_|_
6El 48El

O Z(QB)| +(QB)|| =-

wﬁ+7wﬁ
S8El  384El

YB Z(YB)| +(YB)|| =
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Application of Superposition to Statically
Indeterminate Beams

Method of superposition can be e Determine beam deformation without
applied to find reactions of statically redundant reaction.

Indeterminate beams.
e Treat redundant reaction as an

Designate one of the reactions as the unknown load which, together with
redundant and eliminate or modify the other (i.e., applied) loads, must

the support produce deformations compatible with
Note that you must ensure that the original supports.

redundant chosen does not make
structure unstable
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For the uniform beam and loading shown,
find reaction at each support and slope at A.

SOLUTION:

» Release “redundant” support/reaction at B, and find deformation.
» Apply reaction at B as an unknown load to ensure zero displacement at B.
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w

Distributed Load: (y), =- zrllzl [t =216 + ]

bu= (1) -2(31) (31

4
_ _o.o1132 W
El

i Pa?h?
Redundant Reaction Load:At x=a, y=- 3EIL

2 2 3
(Ve )g == B (ng (%j =0.01646%

R™3E1ILL3

For compatibility with original supports, yz =0

4 3
0=(yg)y +(Yg)r = —0.01132% + 0.01646R|BE—L

Rg =0.688wL T

(67)R

(yp)R

From statics,

Ra=0271wLT  Rc =0.0413wL T
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3 3
WL 041678
24E] £

2 3
_0.0688WL(LJ ] _(Lj 0033085
6EIL 3 3 El

3 3
Oa=(0p)y +(0a)g = —0-04167% + 003398

3
Op = —0.00769%




