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Deformation of a Beam Under Transverse Loading
Relationship between bending moment and 

curvature for pure bending remains valid for 
general transverse loadings.
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Deformation of a Beam Under Transverse Loading
• Overhanging beam

• Reactions at A and C

• Bending moment diagram

• Curvature is zero at points where bending 
moment is zero, i.e., at each end and at E.
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• Beam is concave upwards where bending moment 
is positive and concave downwards where it is 
negative.

• Maximum curvature occurs where the moment 
magnitude is maximum.

• An equation for the beam shape, i.e.,  elastic 
curve, is required to determine maximum 
deflection and slope.



MECHANICS OF MATERIALS

9 - 4

Equation of the Elastic Curve

• Thus,
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• Substituting and integrating,
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Equation of the Elastic Curve

  21 CxCdxxMdxyEI   

• Constants are determined from boundary 
conditions

• Three cases for statically determinate beams,

– Simply supported beam
0,0  BA yy

– Overhanging beam
0,0  BA yy

– Cantilever beam
0,0  AAy 

• More complicated loadings require multiple 
integrals and application of requirement for 
continuity of displacement and slope.
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Direct Determination of Elastic Curve from Load 
Distribution

• For a beam subjected to a distributed load,
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• Integrating four times yields

• Constants are determined from boundary 
conditions.
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Example 1

For portion AB of the overhanging 
beam, (a) derive equation for the 
elastic curve, (b) find maximum 
deflection, (c) evaluate ymax.
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Example 1
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- Differential equation for the elastic curve,

SOLUTION:

Develop expression for M(x) and derive 
differential equation for elastic curve.

- Reactions:
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Example 1
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Integrate differential equation twice and apply 
boundary conditions to obtain elastic curve.
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Substituting,
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Example 1
Locate point of zero slope i.e., point 

of maximum deflection.
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Statically Indeterminate Beams
• Consider beam fixed at A and roller support at B.

• There are four unknown reaction components.

• Conditions for static equilibrium are
000  Ayx MFF

So beam statically indeterminate to degree one. 
Say RB is redundant. 

  21 CxCdxxMdxyEI   
• We also have beam deflection equation,

which introduces two unknowns but provides 
three additional equations from the boundary 
conditions (used to solve for C1 , C2 , RB ):

0,At 00,0At  yLxyx 
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Example 2

For the uniform beam, find reaction 
at A, derive equation for elastic 
curve, and find slope at A.  

Beam is statically indeterminate to 
one degree (i.e., one excess reaction 
which static equilibrium alone cannot 
solve for).

SOLUTION:

• Develop differential equation for  
elastic curve (will be functionally 
dependent on reaction at A).

• Integrate twice, apply boundary 
conditions, solve for reaction at A and 
obtain elastic curve.
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Example 2
• Consider moment acting at section D,
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• The differential equation for the elastic 
curve,
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Example 2

L
xwxRM

dx
ydEI A 6

3
0

2

2


• Integrate twice
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Example 2
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elastic curve equation,
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• Differentiate once to find the slope,

at x = 0,
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Method of Superposition

Principle of Superposition:

• Deformations of beams subjected to 
combinations of loadings may be 
obtained as a linear combination of 
the deformations from the individual 
loadings

• Procedure is facilitated by tables of 
solutions for common types of 
loadings and supports.
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Example 3

For the beam and loading shown, find 
slope and deflection at point B.

SOLUTION:

Superpose the deformations due to Loading I and Loading II as shown.
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Example 3

Loading I
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In beam segment CB, bending moment is zero 
and the elastic curve is a straight line.
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Example 3
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Combine the two solutions,
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Application of Superposition to Statically 
Indeterminate Beams

• Method of superposition can be 
applied to find reactions of statically 
indeterminate beams.

• Designate one of the reactions as the 
redundant and eliminate or modify 
the support. 

• Note that you must ensure that 
redundant chosen does not make 
structure unstable

• Determine beam deformation without 
redundant reaction.

• Treat redundant reaction as an 
unknown load which, together with 
the other (i.e., applied) loads, must 
produce deformations compatible with 
the original supports.
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Example 4

For the uniform beam and loading shown, 
find reaction at each support and slope at A.

SOLUTION:

• Release “redundant” support/reaction at B, and find deformation.
• Apply reaction at B as an unknown load to ensure zero displacement at B.
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Example 4
• Distributed Load:
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• Redundant Reaction Load:
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• For compatibility with original supports, yB = 0
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Example 4

 
EI

wL
EI

wL
wA

33
04167.0

24


 
EI

wLLLL
EIL

wL
RA

32
2 03398.0

336
0688.0




























   
EI

wL
EI

wL
RAwAA

33
03398.004167.0  

EI
wL

A
3

00769.0

Slope at A,


