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Stability of Structures

• When designing columns, cross-sectional area is 
selected such that

- allowable stress not exceeded

allA
P  

- deformation falls within specifications
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• After such design, may still find that column is 
unstable under loading, i.e., that it suddenly 
becomes sharply curved or buckles. 
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Stability of Structures

• Consider model with two rods and torsional 
spring.  After small perturbation, 

• Column is stable (tends to return to straight 
orientation) if
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• A better way is to write equilibrium equation in the slightly perturbed (i.e., 
deformed) configuration, and then seek conditions for a non-trivial 
equilibrium solution (i.e., buckled state) to occur. 
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Stability of Structures – Post-buckling behavior

• Assume that load P applied and after a 
perturbation the system settles to a new 
equilibrium configuration at a finite q.
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• Noting that  sinq< q , the assumed 
configuration is only possible if  P > Pcr. 

• Plot q / sinq versus q, which is same as 
plot of P/Pc  ie.,  PL/4K versus q. Thus we 
get post-buckling behavior.
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Euler’s Formula for Pin-Ended Beams

• Consider axially loaded beam.  If after  
small perturbation, the system reaches 
a non-trivial equilibrium configuration, 
then equilibrium requires that,
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• Solution with assumed configuration 
can only be obtained if  (see following 
slides for Case I-IV details)
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Euler’s Formula for Pin-Ended Beams
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• The value of stress corresponding to 
the critical load,

• Preceding analysis is limited to 
centric loadings.
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Extension of Euler’s Formula

• A column with one fixed and one free 
end, will behave as the upper-half of a 
pin-connected column.

• The critical loading is calculated from 
Euler’s formula,
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• This matches with what we got from the 
solution of the differential equation for 
Case II (Fixed-Free) 
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Extension of Euler’s Formula

• These match with what we got from the 
solution of the differential equation for 
Cases I-IV 
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Example 10.1
Aluminum column, length L, rectangular cross-
section, has fixed end at B, supports centric load 
at A.  Two smooth and rounded fixed plates 
restrain end A from moving in one of the 
vertical planes of symmetry but allow it to move 
in the other plane.

a) Determine ratio a/b of the two sides of the 
cross-section corresponding to the most 
efficient design against buckling.

b) Design the most efficient cross-section for 
the column.L = 0.5 m

E = 70 GPa
P = 20 kN
FS = 2.5
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Example 9.1

• Buckling in xy Plane:
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• Buckling in xz Plane:

• Most efficient design:
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Most efficient design is when the resistance to 
buckling in xy and xz planes are equal, i.e., 
buckling load for buckling in xy and xz planes 
are equal, i.e., slenderness ratios in xy and xz
planes are equal.
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Example 9.1

L = 0.5 m
E = 70 GPa
P = 20 kN
FS = 2.5
a/b = 0.35

Design:
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Eccentric Loading:  The Secant Formula
• Eccentric loading is equivalent to a centric 

load and a couple.
• Bending occurs for any nonzero eccentricity.  

Question of buckling becomes whether the 
resulting deflection is excessive (infinite).
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• The deflection become infinite when P = Pcr
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Eccentric Loading:  The Secant Formula
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Fig.  Load per unit area, P/A, causing yield in column.
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Example 9.2

Uniform column consists of a 2.4 m 
section of structural tubing having the 
cross-section shown.
a) Using Euler’s formula and a FS=2, 

determine allowable centric load for the 
column and corresponding normal stress.

b) Assuming that allowable load found in part 
(a) is applied at a point 18 mm from the 
geometric axis of the column. Find 
horizontal deflection of the top of the 
column and the maximum normal stress in 
the column.

GPa200E
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Example 9.2
Maximum allowable centric load:
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Example 9.2
Eccentric load:
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