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2 Stress and Strain 
– Axial Loading 
(we study deformation of a member 
under axial loading. Also need 
deformations to solve statically 
indeterminate structures)
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Normal Strain
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Mechanical Properties / Behavior of Materials

Usual procedure to determine how materials behave when they are 
subjected to loads is to conduct tensile or compressive testing
Tensile Testing of metals:
-Circular specimen with enlarged 
ends where they fit in the grips so 
that failure doesn’t happen near the 
grips

-A gage length is fixed as per the IS 
standards.

-Extensometer arms are attached to 
the specimen at gage marks

- Load is slowly increased and the 
elongation is measured.

- Displacement controlled test

Univers
al 
Tensile 
Testing 
machine
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Stress-Strain Diagram for Structural Steel (Mild Steel):
Convert load-elongation curve to stress-strain curve to avoid dimension problem

Mild Steel

Nominal Stress (aka conventional / engineering stress) – initial 
area of the specimen is used                                                                                            
True Stress – actual area of specimen used at the cross-section 
where failure occurs

(ductile material)
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Stress-Strain Diagram for Aluminum Alloy

-No obvious yield point. 

-Yield stress may be 
determined by offset method

Offset method:
At 0.2% strain (0.002) draw line 
parallel to linear part. It cuts stress-
strain diagram at A, which is defined 
as yield stress

- Note Aluminum alloy is also ductile 
because it exhibits plasticity (large 
permanent deformation) before failure

- Other ductile materials include copper, 
nickel, bronze, etc. 



MECHANICS OF MATERIALS
Stress-Strain Diagram for Brittle materials (eg. Cast iron)

Stress-Strain Diagram for Rubber 
(elastic material)

- Materials that fail in tension at relatively 
low strains are classified as brittle. Failure 
is sudden. 
- Brittle materials fail only after a little 
elongation after the proportional limit 
(point A) is exceeded and doesn’t exhibit 
significant plasticity as ductile materials
-No Necking

- Linear relationship between stress and strain 
upto relatively large strain (as high as 0.1 or 
0.2). Beyond that behavior is non-linear and 
depends on type of rubber 

- Rubber is not ductile because it doesn’t give 
permanent deformation and returns to original 
configuration upon release of load.

Concrete, 
glass, cast 
iron, stone, 
ceramics
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Stress-strain diagram in compression

For ductile materials

- For ductile material linear regime
remains same as in tension

- With increasing load, specimen 
takes barrel shape, finally flattens  
out to provide great resistance to 
further shortening

- For brittle materials bulging 
doesn’t occur. Material actually 
breaks. However, ultimate 
compressive stress is much higher 
than ultimate tensile stress
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Elasticity and Plasticity Elastic 

Limit-Property of material returning to original 
dimension after unloading, called elasticity

- Property of material undergoing inelastic 
strains beyond the strain at the elastic limit 
(point E) is plasticity

- For steel, aluminium, Elastic limit or yield 
point is close to proportional limit, i.e., most 
of curve OE is straight line.

- When material loaded beyond elastic limit, 
upon unloading it doesn’t come back to its 
original dimension but follows path BC 
which is parallel to tangent at O or straight 
part of loading curve. Material has 
permanently yielded and a residual strain 
(or permanent strain) remains in the 
material

- Residual elongation called permanent set
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Elasticity and Plasticity

Aluminium
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Reloading of Material
Materials reloaded from point C.

1. Linear elastic behavior from C to 
(almost) B, with slope being parallel to 
tangent to original loading curve at O

2. Proportional limit now at (almost) B
which is higher than the original elastic 
limit (point E), 

3. Thus, the material properties have been 
changed - the proportional limit and elastic limit are raised 

4. Ductility reduced because in ‘new stress strain diagram’ (path    
CBF) the amount of yielding beyond elastic limit (B to F)  is less 
than in the original stress strain diagram (E to F)
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Stress-Strain Relationship: 
Hooke’s Law

Modulus of Elasticity (E) (aka Young’s Modulus). It is the ratio of normal 
stress to normal strain (i.e., measure of resistance to elastic deformation), 
evaluated below the proportional limit,  i.e., slope of the straight-line portion 
of the stress-strain curve.

The linear relationship between 
stress and strain for a bar in 
simple tension or compression 
is expressed by the equation

 E

Structural Steel  E=210 GPa (30, 000 ksi)      
Aluminum          E=73 GPa  (10,600 ksi)
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Elongation of prismatic bar in tension
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(a) Bar with external loads acting at 
intermediate points; (b) (c), and (d) 
free-body diagrams showing the 
internal axial forces N1, N2, and N3.

Calculate elongation of bar AD
Step 1: use equilibrium to obtain internal 
forces in each segment

From F.B.D (b), 

N1 = PD+PC-PB  on segment AB

From F.B.D (c), 

N2 = PC+PD           on segment BC 

From F.B.D (b), 

N3 = PD                      on segment CD 

Step 2: calculate elongation of each 
segment and add them

CDBCABAD  
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LN

AE
LN

AE
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AD
332211 

Example 2.1

Variant: non-uniform (stepped) bar



MECHANICS OF MATERIALS

.

Horizontal rigid beam ABC supported by two 
vertical non-rigid bars.

Step 1: Equilibrium: ;0 yF 0 BM;0 xF H=0; FCE=2P; FBD=3P

Step 2: Member 
elongation/shortening BD

BDBD
BD EA
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Step 3: Displacement at 
A? (construct 
displacement diagram)
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Non-uniform Bar with Distributed Axial Loading

Varying axial force, i.e., distributed force p(x) having units of force 
per unit length. Distributed force may be caused by centrifugal force 
(helicopter/turbine blade, friction, or simply weight of a bar hanging 
in a vertical position) .

What is the elongation of the bar? 
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Need to solve this problem by considering a  differential element, dx, at a distance x,
and obtain the elongation, dδ, of that differential element. Assume that the force acting 
on the element is N(x).
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So you need to find the internal force N(x) acting at a 
distance x, on the segment. In this case  

Bar with Non-Uniform Cross-section/ Loading
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Calculate elongation of bar due to its own 
weight and load (P) applied

Note: the weight of the bar itself 
produces a varying internal axial force 
which is zero at the lower end and is 
maximum at the upper end

AE
PL
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ExA
dxxNL
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Internal force at a distance x from  the upper end

Weight density of the material

Example 2.3
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Static Indeterminacy
• Structures for which internal forces and reactions 

cannot be determined from statics alone are  
statically indeterminate.

0 RL 

• Deformations due to actual loads and redundant 
reactions are determined separately and then added
or superposed to obtain the compatibility equation.

• Redundant (i.e., excess) reactions are replaced 
with unknown loads which along with the other 
loads must produce compatible deformations.

• Structure will be statically indeterminate 
whenever it is held by more supports than are 
required to maintain its equilibrium.  
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Example 2.4
Determine reactions at A and B for steel bar with 
loading shown, assuming close fit at both 
supports before loads applied.

• Solve for the reaction at A due to the applied 
loads and the reaction found at B.

• Require that displacements due to loads and due 
to redundant reaction be compatible, i.e., in this 
case require that their sum be zero. Solve 
compatibility equation for RB

• Solve for displacement at B due to redundant 
reaction at B.

SOLUTION:

• Consider reaction at B as redundant, release bar 
from that support, and solve for the 
displacement at B due to applied loads.
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SOLUTION:
• Solve displacement at B due to applied loads, with 

redundant constraint/reaction released, 
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• Require that displacements due to loads and due to  
redundant reaction be compatible,
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• Find reaction at A due to the loads and the reaction at B
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(δ non-zero if initial gap at B)
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Thermal Stresses

• Temperature change results in change in length, i.e.,  
thermal strain.  No stress associated with thermal 
strain, unless elongation restrained by supports.  

 
coef.expansion   thermal




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AE
PLLT PT

• Treat additional support as redundant and apply the 
principle of superposition.

  00 
AE
PLLTPT 

• Thermal deformation and deformation from  
redundant support must be compatible, i.e., 

   TE
A
PTAEP  
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Poisson’s Ratio

• For slender bar subjected to axial loading:

0 zy
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• Elongation in x- (i.e., longitudinal/axial) 
direction  is accompanied by contraction in the 
other (i.e., lateral) directions. 

0 zy 
• Poisson’s ratio defined as
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strainallongitudin

strainlateral

. 
Only two properties (eg., E and ) needed to characterize an isotropic material

• For common materials (metals) Poisson’s ratio 
is positive, in the range 0.25-0.35. Positive for 
polymer foams.
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Generalized Hooke’s Law

• For element subjected to multi-axial loading, the 
normal strain components resulting from stress 
components may be determined from principle 
of superposition.  This requires:

1) strain is linearly related to stress
2) deformations are small

EEE

EEE

EEE

zyx
z

zyx
y

zyx
x
















• Thus:
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Dilatation: Bulk Modulus

• Relative to the unstressed state, the change in volume is 
(neglect nonlinear strain terms, e<<1 so e2 neglected)

      

 
 e)unit volumper  in volume (change dilatation 

21

111111












zyx

zyx

zyxzyx

E

e







• For element subjected to uniform hydrostatic pressure,
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• Subjected to uniform pressure, dilatation must be 
negative, therefore
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Shearing Strain
• A cubic element subjected to shear stress will deform 

into a skewed parallelopiped.  The corresponding 
shear strain is defined as change in angle between 
adjacent sides.

• Plot of shear stress vs. shear strain is similar to plot 
of normal stress vs. normal strain, except that  
(yield, ultimate) strength values are approximately 
half.  For small strains, 

zxzxyzyzxyxy GGG  

where G is modulus of rigidity or shear modulus.

 xyxy f  

• For isotropic material, shear stress related to shear 
strain,  
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• Determine the average angular deformation 
or shearing strain of the block.

rad020.0
in.2

in.04.0tan  xyxyxy 

• Apply Hooke’s law for shearing stress and 
strain to find the corresponding shearing 
stress.

   psi1800rad020.0psi1090 3  xyxy G

• Use the definition of shearing stress to find 
the force P.

    lb1036in.5.2in.8psi1800 3 AP xy

kips0.36P

Rectangular block of material with   
G = 90 ksi is bonded to two rigid 
plates.  Lower plate fixed, upper plate 
moves 0.04 in. due to applied 
horizontal force P.  Find a) average 
shearing strain in the material, and b) 
force P exerted on plate.

Example 2.5
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Relation Among E, , and G
• Consider axially loaded bar with initial 

cube and rotated-cube elements as shown. 
Cubic undergoes normal strain, rotated-
cubic undergoes shear strain. Diagonal of 
cube and side of rotated -cube are similar. 
Compare their angles wrt x-axis.   
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Example 2.6

Circle of dia. d = 9 in. is scribed on unloaded 
aluminum plate of thickness t = 3/4 in.  Forces 
acting in plane of plate cause normal stresses 
sx = 12 ksi and sz = 20 ksi.  

E = 10x106 psi and n = 1/3

Determine change in: 

a) length of diameter AB, 

b) length of diameter CD, 

c) thickness of the plate, and 

d) volume of the plate.
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SOLUTION:  Example 2.6

• Apply the generalized Hooke’s Law to 
find the three components of normal 
strain. 

   
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• Evaluate the deformation components.
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in.10800.0 3t

• Find the change in volume
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Generalized Hooke’s law in 3D

(Stress-strain relationships)
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 = poisson’s 
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Hooke’s law in 2D
Plane Stress Problem
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Hooke’s law 
in 2DPlane Strain Problem
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Saint-Venant’s Principle
• Loads transmitted through rigid 

plates result in uniform distribution 
of stress and strain.

• Saint-Venant’s Principle:
Stress distribution may be assumed 
independent of the method of load 
application except in the immediate 
vicinity of load application points. 

• Stress and strain distributions 
become uniform at a relatively short 
distance from the load application 
points (plate width is b).

• Concentrated loads result in large 
stresses in the vicinity of the load 
application point.

• Note: Loads used to  find far away 
stresses should be statically eqvt.
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Stress Concentration: Hole

Discontinuities of cross section may result in 
high localized or concentrated stresses. ave

max



K
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Stress Concentration: Fillet
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Example 2.7

Determine the largest axial load P
that can be safely supported by a 
flat steel bar consisting of two 
portions, both 10 mm thick, and 
respectively 40 and 60 mm wide, 
connected by fillets of radius r = 8 
mm.  Assume an allowable normal 
stress of 165 MPa.

• Determine the geometric ratios and 
find the stress concentration factor 
from Fig. 2.64b.

82.1

20.0
mm40

mm850.1
mm40
mm60





K

d
r

d
D

• Find the allowable average normal 
stress using the material allowable 
normal stress and the stress 
concentration factor.

MPa7.90
82.1
MPa165max

ave 
K



• Apply the definition of normal stress 
to find the allowable load.

   

N103.36

MPa7.90mm10mm40

3

 aveAP 

kN3.36P
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Elastoplastic Materials
• So far analyses based on assumption 

of linear stress-strain relationship, i.e., 
stresses below the yield stress

• Assumption good for brittle materials 
which rupture without yielding

• If yield stress of ductile material is  
exceeded, plastic deformation occurs

• Analysis of plastic deformations is 
simplified by assuming an idealized 
elastoplastic material (elastic-
perfectly plastic)

• Deformations of an elastoplastic 
material are divided into elastic and 
plastic ranges

• Permanent deformations result from 
loading beyond the yield stress
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Plastic Deformations
• Elastic deformation while 

maximum stress is less than 
yield stressK

AAP ave
max 

• Maximum stress is equal to 
the yield stress at the 
maximum elastic loading

K
AP Y

Y




• At loadings above the 
maximum elastic load, a 
region of plastic deformations 
develop near the hole

• As the loading increases, the 
plastic region expands until 
the section is at a uniform 
stress equal to the yield stress

Y

YU

PK

AP




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Residual Stresses
• When a single structural element is loaded 

uniformly beyond its yield stress and then 
unloaded, it is permanently deformed but all 
stresses disappear.  This is not so for a system.

• Residual stresses also result from the uneven 
heating or cooling of structures or structural 
elements

• Residual stresses will remain in a structure 
after loading and unloading if
- only part of the structure undergoes plastic 

deformation
- different parts of the structure undergo 

different plastic deformations
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Example 2.8

Cylindrical rod placed inside  
tube of same length.  Ends of  
rod and tube are attached to a 
rigid support on one side and a 
rigid plate on the other.  Load on 
the assembly increased from 0 to 
25 kN and decreased back to 0. 

a) draw load-deflection 
diagram for assembly

b) find max elongation
c) find permanent set
d) calculate residual stresses in 

rod and tube. 


