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Net Torque Due to Internal Stresses 

( )∫ ∫== dAdFT τρρ

• Resultant of internal shearing stresses is an 
internal torque, equal and opposite to applied 
torque, 

• Although net torque due to shearing stresses is 
known, the distribution of the stresses is not 

• Unlike normal stress due to axial loads, the 
distribution of shearing stresses due to torsional 
loads cannot be assumed uniform. 

• Distribution of shearing stresses is statically 
indeterminate – must consider shaft 
deformations 
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Axial Shear Components 

• Torque applied to shaft produces shearing 
stresses on planes perpendicular to shaft 
axis. 

• Existence of axial shear stresses is 
demonstrated by considering a shaft made up 
of axial slats. 
 
Slats slide with respect to each other when 
equal and opposite torques applied to shaft 
ends. 

• Moment equilibrium requires existence of 
equal shear stresses on planes containing the 
shaft axis, i.e., “axial shear stresses”.  
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• Will see that angle of twist of shaft is 
proportional to applied torque and to shaft 
length. 
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Shaft Deformations 

• When subjected to torsion, every cross-section 
of circular (solid or hollow) shaft remains 
plane and undistorted. This is due to 
axisymmetry of cross section.  

• Cross-sections of noncircular ( hence non-
axisymmetric) shafts are distorted when 
subjected to torsion – since no axisymm. 
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Shearing Strain 

• Consider interior section of shaft.  When  
torsional load applied, a rectangular element 
on the interior cylinder deforms into rhombus.   

    so shear strain proportional to twist and radius 
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• Thus, 

• So shear strain equals angle between BA and   
AB ′
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Torsion Formulae in elastic range (shear stress, 
angle of twist 
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• Recall: sum of moments from internal 
stress distribution equals internal torque at 
the section, 
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• Thus, elastic torsion formulas are 

• Hooke’s law, 
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So shearing stress also varies linearly with 
radial position in the section. 

J= Polar moment of inertia 
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Torsion formulae in Elastic Range 

• If torsional loading or shaft cross-section changes 
(discretely) along length, the angle of rotation is 
found as sum of segment rotations 
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Comparison of Axial and Torsion formulae.  

AE =Axial rigidity 

Axial Stiffness 

Axial Flexibilty: 

GJ =Torsional rigidity 

Torsional Stiffness 

Torsional Flexibilty: 

L
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Axial displacement 
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Torsional displacement 

Axial stress 
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(a) element in pure shear generated due to applied torque,  
(b) stresses acting on inclined plane of a triangular stress element,  
(c) forces acting on the triangular stress element (FBD). 

Stressed on Inclined Plane 

θ≡u

Sign convention for stresses on inclined 
plane (Normal stresses tensile positive, 
shear stresses producing 
counterclockwise rotation positive.) 
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θθτθτθσθ costansinsec ooo AAA +=

Equilibrium normal to plane, 

Equilibrium along plane, 

θθτθτθτθ sintancossec ooo AAA −=

(1) 

(2) 

θτσθ 2sin=

θττθ 2cos=

θ≡u

Stressed on Inclined Plane 
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Graph of σθ and τθ versus θ. 

Maximum/minimum normal 
stress occurs at θ=+45 or -45o 

plane  

θτσθ 2sin=

τστσ −=+= minmax ;Maximum/Minimum shear 
stress occurs at θ = 0o or 90o 
plane  ττττ −=+= minmax ;

θττθ 2cos=
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Failure of Brittle material  

Try on a piece of chalk! 

Reason: Brittle materials are weak 
in tension and maximum normal 
stress (tensile) plane in this case is 45o  

Remember: Ductile materials are weak in shear and 
brittle materials are weak in tension. Thus, for  
ductile material failure occurs on maximum shear 
stress plane, and for brittle material failure occurs on 
maximum normal (tensile) stress plane.  
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Shaft BC hollow, inner dia. 90 mm, outer 
dia. 120mm.  Shafts AB and CD solid, dia. 
d.  For loading shown, find (a) min. and 
max. shearing stress in BC, (b) required 
dia. d of AB and CD if allowable shearing 
stress in them is 65 MPa. 

Example 3.1 
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• Cut sections, use equilibrium to find 
internal torque. 
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• Apply elastic torsion formulae to 
find min. and max. stress in BC 
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• Given allowable shearing stress and 
applied torque, find required dia. of AB 
and CD 
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Example 3.2 

Two solid steel shafts  
connected by gears.  For each 
shaft G = 77 GPa and 
allowable shearing stress 55 
Mpa. Find (a) largest torque T0 
that can be applied to end of 
AB, (b) corresponding angle 
through which end A rotates. 
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• Equilibrium  • Kinematic constraint of no slipping 
between gears (to relate rotations) 

Example 3.2 
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• Find T0 for max allowable torque 
on each shaft – choose smallest 

• Find the corresponding angle of twist for each 
shaft and the net angular rotation of end A 

Example 3.2 

3- 19  
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• Generator applies equal and opposite 
torque T’ on shaft. 

• Shaft transmits torque to generator 

• Turbine exerts torque T on shaft 

Design of Transmission Shafts 
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Design of Transmission Shafts 

• Transmission shaft performance 
specifications are: 

- power 
- speed 

• Determine torque applied to shaft at 
specified power and speed, 
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• Find cross-section so that max 
allowable shearing stress not exceeded, 

( )

( ) ( )shafts hollow
2

shafts solid
2

max

4
1

4
2

22

max

3

max

τ
π

τ
π

τ

Tcc
cc

J

Tc
c
J

J
Tc

=−=

==

=

• Designer must select shaft 
material and cross-section to 
meet performance specs. without 
exceeding allowable shearing 
stress.  

P= Power (Watt) 
T= torque (N-m) 
ω= angular speed 
(rad/s) 
N= revolution per sec 
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• Given applied torque, find torque reactions at A 
and B. 

Statically Indeterminate Shafts 

• Equilibrium, 
 
 
So problem is SID. 
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• Compatibility, 
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Thin-Walled Hollow Shafts 

• Since wall is thin, assume shear stress 
constant thru wall thickness. For AB, 
summing forces in x(shaft-axis)-direction, 

 
 

   So shear flow constant and shear stress at 
section varies inversely with thickness 
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• Compute shaft torque from integral of the 
moments due to shear stress 
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Example 3.3 

Extruded aluminum tubing with 
rectangular cross-section has torque 
loading 2.7 kNm.  Find shearing stress 
in each of four walls considering (a) 
uniform wall thickness of 4 mm and 
(b) wall thicknesses of 3 mm on AB 
and AC and 5 mm on CD and BD. 
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3 - 25 

Example 3.3 
Find corresponding shearing stress 

for each wall thickness. 

With uniform wall thickness,  
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With variable wall thickness 

m003.0
mN1012.251 3×

== ACAB ττ

m005.0
mN1012.251 3×

== CDBD ττ

MPa7.83== BCAB ττ

MPa2.50== CDBC ττ

 

Find shear flow q. 
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Stress Concentrations 

• The derivation of the torsion formula, 
 
 
assumed a circular shaft with uniform 
cross-section loaded through rigid end 
plates. 

J
Tc

=maxτ

J
TcK=maxτ

• Experimental or numerically determined 
concentration factors are applied as 

• The use of flange couplings, gears and 
pulleys attached to shafts by keys in 
keyways, and cross-section discontinuities 
can cause stress concentrations 
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Torsion of Noncircular Members 

• At large values of a/b,  the maximum 
shear stress and angle of twist for other 
open sections are the same as a 
rectangular bar. 

Gabc
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T

3
2

2
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max == φτ

• For uniform rectangular cross-sections, 

• Previous torsion formulas are valid for 
axisymmetric or circular shafts  

• Planar cross-sections of noncircular 
shafts do not remain planar and stress 
and strain distribution do not vary 
linearly 



MECHANICS OF MATERIALS 
Example 3.4 

3 - 28 
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Example 3.4 
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Example 3.5 

3 - 30 
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Example 3.5 

3 - 31 
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Example 3.6 

3 - 32 
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Example 3.6 

3 - 33 

27 0.53 
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Example 3.6 

3 - 34 
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Example 3.7 

3 - 35 
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Example 3.7 

3 - 36 

22.09 (0.5) 
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Example 3.8 

3 - 37 
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Example 3.8 

3 - 38 
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Example 3.8 

3 - 39 
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Example 3.9 

3 - 40 
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Example 3.9 

3 - 41 
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Example 3.9 

3 - 42 

 

rB rC 
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Example 3.9 

3 - 43 

rB rC 

1829.39 868.25 

1829.39 

868.25 
43.13 MPa 

48.53 
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Example 3.9 

3 - 44 
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Example 3.10 

3 - 45 
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Example 3.10 

3 - 46 
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Example 3.11 

3 - 47 
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Example 3.11 

3 - 48 
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Example 3.12 

3 - 49 
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Example 3.12 

3 - 50 
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Example 3.12 
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