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Net Torque Due to Internal Stresses

Resultant of internal shearing stresses is an
Internal torque, equal and opposite to applied
torque,

T=]pdF =[p(z dA)

Although net torgue due to shearing stresses is
known, the distribution of the stresses is not

Distribution of shearing stresses is statically
Indeterminate — must consider shaft
deformations

Unlike normal stress due to axial loads, the
distribution of shearing stresses due to torsional
loads cannot be assumed uniform.
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Axial Shear Components

» Torque applied to shaft produces shearing
stresses on planes perpendicular to shaft
axis.

Moment equilibrium requires existence of
equal shear stresses on planes containing the
shaft axis, i.e., “axial shear stresses”.

Existence of axial shear stresses is
demonstrated by considering a shaft made up
of axial slats.

Slats slide with respect to each other when
equal and opposite torques applied to shaft
ends.
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Shaft Deformations

» Will see that angle of twist of shaft is
proportional to applied torque and to shaft
length.

¢ocT
¢ oc L

When subjected to torsion, every cross-section
of circular (solid or hollow) shaft remains
plane and undistorted. This is due to
axisymmetry of cross section.

Cross-sections of noncircular ( hence non-
axisymmetric) shafts are distorted when
subjected to torsion — since no axisymm.
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Shearing Strain

Consider interior section of shaft. When
torsional load applied, a rectangular element
on the interior cylinder deforms into rhombus.

So shear strain equals angle between BA and
BA'

Thus,

Ly=p¢ = 7=p—|_¢

so shear strain proportional to twist and radius

Co P
=— and y =~
Y’ max L 4 c Y’ max
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Torsion Formulae in elastic range (shear stress,

angle of twist
r . » Hooke’s law,

/ ‘IHJ\
Gp¢ G107/max_£z-max
C

So shearing stress also varies linearly with
radial position in the section.

e Recall: sum of moments from internal
stress distribution equals internal torque at
the section,

T =jprdA=ijp—L¢dA=G%jp2 dA

T=CGy=

:GJﬁ:TE_
L

Jo,
* Thus, elastic torsion formulas are

J=%7Z(C§'—Cl4) Tp ¢__
J= Polar moment of inertia J
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Torsion formulae in Elastic Range

. a constant If T constant

o If torsional loading or shaft cross-section changes
(discretely) along length, the angle of rotation is
found as sum of segment rotations

Ti

=2
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Comparison of Axial and Torsion formulae.

AE =Axial rigidity GJ =Torsional rigidity
Axial Stiffness Torsional Stiffness

_AE NN

K, K,

L L
Axial Flexibilty: £, =k,' Torsional Flexibilty: f. =k

Axial displacement Torsional displacement

AL v TL
O=2AE, =275,

Axial stress Torsional stress

_1Ip
J

r
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Stressed on Inclined Plane

“+—
fAU tan ¢

(a) (b) (c)
(a) element in pure shear generated due to applied torque,

(b) stresses acting on inclined plane of a triangular stress element,
(c) forces acting on the triangular stress element (FBD).

AT Sign convention for stresses on inclined
plane (Normal stresses tensile positive,
shear stresses producing
counterclockwise rotation positive.)
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Stressed on Inclined Plane

Ao SEV Equilibrium normal to plane,
JQAG secd
oA secd = Ay sind+ A, tandcosd (1)

Equilibrium along plane,

7oA Sect = A, cosf—Ag tandsind  (2)




Maximum/minimum normal
stress occurs at 0=+45 or -45°

Maximum/Minimum shear plane oy = +7; oin = 7
stress occurs at © = 0°or 90°

plane 7. = +7; Tin = -7 \ /,
A4

o;

min =—7 O,

max = 7
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Failure of Brittle material

1 45° Crack 3.7"_ Try on a piece of chalk!

Omin=-7 Omax =T
max

Reason: Brittle materials are weak
IN tension and maximum normal
stress (tensile) plane in this case Is 45°

N\ Lo

i

TIII'I'\. =

Remember: Ductile materials are weak in shear and
brittle materials are weak in tension. Thus, for
ductile material failure occurs on maximum shear
stress plane, and for brittle material failure occurs on
maximum normal (tensile) stress plane.
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Example 3.1

Tp=6kN-m

Shaft BC hollow, inner dia. 90 mm, outer
dia. 120mm. Shafts AB and CD solid, dia.
d. For loading shown, find (a) min. and
max. shearing stress in BC, (b) required
dia. d of AB and CD if allowable shearing
stress in them is 65 MPa.
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Example 3.1

 Cut sections, use equilibrium to find
internal torque.

T, =6kN m

\TAB
X

> M, =0=(6kN-m)-Tpg > M, =0=(6kN-m)+(14kN-m)-Tgc
Tag =6kN-m=Tcp Tge = 20kN-m




\% 1A N
Example 3.1

« Apply elastic torsion formulae to

find min. and max. stress in BC « Given allowable shearing stress and
applied torque, find required dia. of AB
and CD

3 - %(Cg ~of')="|(0.060)" - (0.045)"]

Tmax = 1 <

~13.92x10 %m? J z¢
TecCy  (20kN-m)(0.060m)

T =79 =
max J 13.92x10 ®m?*

C= 38.9><10_3m

Tmin _ & Tmin _ 4omm

Trmax 86.2MPa  60mm  [r... =86.2MPa

Tmin = 64.7MPa Tmin = 64.7MPa
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Example 3.2

Two solid steel shafts
connected by gears. For each
shaft G = 77 GPa and
allowable shearing stress 55
Mpa. Find (a) largest torque T,
that can be applied to end of
AB, (b) corresponding angle
through which end A rotates.
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Example 3.2

« Equilibrium

TCD

> Mg =0=F(22mm)-T,
F(60mm)-T,,

 Kinematic constraint of no slipping
between gears (to relate rotations)
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Example 3.2

» Find T, for max allowable torque  Find the corresponding angle of twist for each
on each shaft — choose smallest shaft and the net angular rotation of end A

T,z =T,

Tl (61.8Nm)(0.6m)
2" 3,6 2(0.0095m) (77x10°Pa)
=0.0376rad =2.15°
Tol  2.73(61.8Nm)0.6m)
3G 2(0.0125m)*(77x10°psi)
=0.0514rad = 2.95°
#s = 2.734; = 2.73(2.95°)=8.05°
G = g +Ppy5 =8.05° +2.15°

T,(9.5x10° m) b =
2 (9.5x10° m)'

55x10°Pa =

T, = 74.1Nm
_TeC 2.8T,(12.5x10° m)

55x10°Pa = 4
2 (12.5x10° m)

T

@, =10.2°

T, =61.8Nm

T, =61.8Nm
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Design of Transmission Shafts

Generator

Turbine

» Turbine exerts torque T on shaft
 Shaft transmits torque to generator

» Generator applies equal and opposite
torque T’ on shaft.
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Design of Transmission Shafts

» Transmission shaft performance ¢ Determine torque applied to shaft at

specifications are: specified power and speed,
- power P=Tw=2zNT P= Power (\Watt)
T=torque (N-m
- speed T-= E — L ®= angular( spee)d
@ 2zN (rad/s)

» Designer must select shaft N= revolution per sec
material and cross-section to
meet performance specs. without
exceeding allowable shearing

stress.

» Find cross-section so that max
allowable shearing stress not exceeded,

(solid shafts)

(hollow shafts)




\" A N U VIA adla
Statically Indeterminate Shafts

|\ 125 mm » Given applied torque, find torque reactions at A
and B.

o Equilibrium,
T,+T, =120 N.m
So problem is SID.

o Compatibility,

120 N - m TALl _TBL2 _O

“) ¢:¢1+¢2:JG 1G
1 2

(
T,
C\%\ « Solve equil. and compat,
T s 4
) T( \
()

TA£1+ I‘1J2]:120 N-m

2‘]1
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Thin-Walled Hollow Shafts

e Since wall is thin, assume shear stress
constant thru wall thickness. For AB,
tg  summing forces in x(shaft-axis)-direction,

> F, =0=1,(t,A)—75(t;AX)
7,t,=75tg=rt = g =shear flow

So shear flow constant and shear stress at
section varies inversely with thickness
» Compute shaft torque from integral of the
moments due to shear stress
dM, = pdF = p(ztds)=q(pds)
=q(rsin@ds) =g(rxds) =2gdA
T =§o||v|0 =§2q dA = 2gA
T T

T=—=0Qq=—"
2tA 2A

T » Angle of twist (from Chapt 11)

rt=qg=constant; q=— TL d
i 1=9A p=—m§
4A°G" t
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Example 3.3

100 mm — 5|

B

Extruded aluminum tubing with
rectangular cross-section has torque
loading 2.7 KNm. Find shearing stress
" in each of four walls considering (a)

— _uniform wall thickness of 4 mm and

(a) (b) wall thicknesses of 3 mm on AB
and AC and 5 mm on CD and BD.

l—— 100 mm —
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Example 3.3

Find shear flow @.

D

A = (96 mm)(56 mm)= 5376 mm*

T 2700Nm
2A  2(5376x107° mm?)

q

= 251.12><103E
m

Find corresponding shearing stress
for each wall thickness.

With uniform wall thickness,

. _q_ 251.12x10° N/m
0.004m

7 =62.8MPa

With variable wall thickness

~ 251.12x10° N/m

Tas = Tac 0.003m
Tpg = T =83.7 MPa

~ 251.12x10*N/m
0.005m

Tge = Tep = 90.2MPa
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Stress Concentrations

* The derivation of the torsion formula,

Tc
Tmax = T

assumed a circular shaft with uniform
cross-section loaded through rigid end
plates.

» The use of flange couplings, gears and
pulleys attached to shafts by keys in
keyways, and cross-section discontinuities

e 3 . can cause stress concentrations

1.2

Experimental or numerically determined

L1 concentration factors are applied as

1.0 . Tc
0 005 010 0.15 020 025 0.30 Tmax = K—

rid J

Fig. 3.32 Stress-concentration factors for
fillets in circular shafts.t
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Torsion of Noncircular Members

Previous torsion formulas are valid for
axisymmetric or circular shafts

Planar cross-sections of noncircular
aBLE 3.1. Coefficients for  SNAfts do not remain planar and stress
Reciangular Bars e, and strain distribution do not vary

a/b C,

0 | o 0.1406 linearly
12 | o 0.1661

1.5 ; 0.1958

il 030 For uniform rectangular cross-sections,

3.0 . 0.263
40 . 0.281 T TL

5.0 : 0.291 Tmax = o =
100 | 0.3 0312 Clab2 czab3G
0 k: 0.333

At large values of a/b, the maximum
shear stress and angle of twist for other
open sections are the same as a
rectangular bar.
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Example 3.4

The preliminary design of a large shaft connecting a motor to a generator
calls for the use of a hollow shaft with inner and outer diameters of 4 in.
and 6 in., respectively. Knowing that the allowable shearing stress is 12 ki,
determine the maximum torque that can be transmitted (a) by the shatt as
designed, (b) by a solid shaft of the same weight, (c) by a hollow shaft of

the same weight and of 8-in. outer diameter.
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Example 3.4




\" 1A N

The horizontal shaft AD is attached to a fixed base at D and is subjected to
the torques shown. A 44-mm-diameter hole has been drilled into portion
CD of the shaft. Knowing that the entire shaft is made of steel for which

9)

», 200N m G = 77 GPa, determine the angle of twist at end A.
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Example 3.5
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Example 3.6

ol T A teel shoft and an ahuminum tube are comnected o fived support and
i - toarigiddiskas shown in the cross section. Knowing that the inital stresses
L ——— YN O the maximum torque Ty that can be applied to the disk

i the allowable stresses are 120 MPa in the steel shaft and 70 MPa in
the aluminum tube. Use G = 77 GPa for steel and G = 27 GPa for

aluminum.
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Example 3.6

£x 16 T
Epilibrvum, 0= AT s —O
Competioilitys Us =

Arsk.. TAS) =1 (5>

A
B e T ) - K [0
(23E9) 3&7—_-(5&_61-—_;69‘9 FRENE(Z)

000

= (T Yo = '5 (29 <%/2) = 053 (G )
5(\ ﬁ,\]% S Ao AC—&&” L—@S \\ ard (TMOA e e P

\

N (2St) = 2965739 Nopa™

—
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Example 3.6

fom O —2 1A=33H: 2 )

P (O = Ty = 664 Nom, |
Nole : W& C(’)’\C/QAJ\M qﬁﬁnfuj n yGJJ 1

m\f&/( @m%}ﬁc = C_(q}i)pi

(T (Tau)s
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Example 3.7

A hole is punched at A in a plastic sheet by applying a 600-N force
P to end D of lever CD, which is rigidly attached to the solid
cylindrical shaft BC. Design specifications require that the dis-
placement of D should not exceed 15 mm from the time the punch
first touches the plastic sheet to the time it actually penetrates it.
Determine the required diameter of shaft BC if the shaft is made
of a steel with G = 77 GPa and 7, = 80 MPa.
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Example 3.7

x e
go/ Fov pafh BC GBS (f’WZ@P

. - Q. b OL‘V‘M
C e, = %&T & i (et ot

‘ (i gtace,
s Voxclodes rigid Lﬁj )

= (Go0)(300/1 %) (05 y .= 2209 mm.
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Example 3.8

A torque of magnitude T = 4 kN « m is applied at end A of the com-
posite shaft shown. Knowing that the modulus of rigidity is 77 GPa
for the steel and 27 GPa for the aluminum, determine (z) the maxi-
mum shearing stress in the steel core, (b) the maximum shearing
stress in the aluminum jacket, (¢) the angle of twist at A.

54 mm —
A

Steel core

Aluminum jacket
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Example 3.8

63y -

e Tlovg= aﬁx'ﬁr\w-@ (f% Ao et
?ﬁz w & PG//_H:’ I~ RN T

EC}"“\«(X/\MW-——% [-fC‘OO'— ‘5 ‘_— "'_"®
Lol v Ge=0, >'r@s> -G8
s *] Gm g_:rﬁ‘he

O @ ot S:— ZZ:FS-C?NM :}L%,Sv}
Ta= 171y IVM.0n o= 2_-7 ); @ o5

(TMQA«)S QZ L35:9) (5 . 48 =)

JGlG>

[
(G Jp = (19214 D (5 mm) < 2y mbe |
- (P(F) |

= F34[ M{=
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Example 3.8

= - E
{ G — %(%ﬁ%j'é : %(%>

(T ar)s

- (T =
=22 ZECran) = 0- 468 (Caar)s

stied U veah

Fost
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Example 3.9

Ends A and D of the two solid steel shafts AB and CD are fixed,
while ends B and C are connected to gears as shown. Knowing that
a 4-kIN - m torque T is applied to gear B, determine the maximum
shearing stress (a) in shaft AB, (b) in shaft CD.

60 mm

300 mm

500 mm

Ends A and D of the two solid steel shafts AB and CD are fixed,
while ends B and C are connected to gears as shown. Knowing that
the allowable shearing stress is 50 MPa in each shaft, determine
the largest torque T that can be applied to gear B.
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Example 3.9
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Example 3.9

Nete 2y Assvpe L ctins 7f  wdanad

frrpes i, Top , ad eman crosisle -

AN cm/wt(la WLFEH\‘M @Mﬂ/ﬁw )

NACB) s Gp B shadd be comstat wh
Lo ol e a,J AL 7&8/ Ven .

ﬁ‘/’\_/\_,‘/c\\c.)—ﬁw‘ B 7,;(&—4- F f/g
O = F‘Q“*’ TCD

Mq/f& V‘/&ff'j - && —:_rCCSLL
@B = TA& L AB
‘ k
g
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Example 3.9

y &(M 6CV\AM d(’b‘:_ Cijhmn,\/
'P—“ L(m/\/wx
0,8, — _7_’___# T,% v be - Tag[ L+ Lag (Ac)) LB
| rC/TC

g I o g L AN

=>T-Il . -(> 86825 Juea
N.oa~ ﬂ -~ F ’C OL/)‘?»K

/

E L ek,
TAB (1829 39 ) (30/,@ 4313 MPa Pm«/t\vf St

£ (60 T, - (86825)( 252 )_ 4853

cp"
e 3 (m = T Mpa.
J2- \_ oy
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Example 3.9

()
Fom previows ;?J’fb e froe T apfled

(Q@ i <T}D)M%x
= Teo= (). Too = QEQL(T)' <

(=2 (£
AgN fo @/ T,g= 188496 N.m
o (9, ) m(-;\a;tﬁj ok @(A@.H 1¢p ) 4121.50

‘e e Nopn

- - o~
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Example 3.10

A solid shaft and a hollow shaft are made of the same material and
are of the same weight and length. Denoting by n the ratio ¢,/cs,
show that the ratio T,/T), of the torque T, in the solid shaft to the

torque Tj, in the hollow shaft is () V/(1 — n%)/(1 + n?) if the
maximum shearing stress is the same in each shaft, (b) (1 — n®)/

(1 + n?) if the angle of twist is the same for each shaft.
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Example 3.10

6?( 210 —_ 7< BLEESE o

70 AP
Seticd %{Lv_(f/f- = C,(iuc{) o
Hr (e %\*% T PN e

(m&fz/) & e (W)

Moa 7 Longbhe & wrecgits ace soms,

=5 aka, saml = Fr=Ror

A
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Example 3.11

A torque T is applied as shown to a solid tapered shaft AB. Show
by integration that the angle of twist at A is
il

= Tonce
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Example 3.11

©

AD = —rzsx s fd@ f
G Joo G’J@)

4

(/VW --]’@g) - I r —.:_57[(20—-— _%)9

= B S Q_ | Ax = 27

T @2 l)
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Example 3.12

An annular plate of thickness ¢ and modulus G is used to connect
shaft AB of radius r; to tube CD of radius r,. Knowing that a
torque T is applied to end A of shaft AB and that end D of tube
CD is fixed, (a) determine the magnitude and location of the maxi-
mum shearing stress in the annular plate, (b) show that the angle
through which end B of the shaft rotates with respect to end C of
the tube is '

e T (1_L)
i R T T e
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Example 3.12

T

g Tov gt badanu. & wirpfcz?fﬂ s Shnaon,

@ ’ﬂ,\,QAQ ﬂ"ﬁ%@é QAR l’wfwﬁ c,g SM—Q_/
yeed A Cri b o vwe, & adoy
Fadac.

T= (Cdde= fodhe= TERH= TEMD
2 Tomn = T= T/EFY <:if)

&

Thoor v ane -

T—t((‘(‘cfﬁ)F —;_')(‘(?-WrL{') L) (m
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Example 3.12
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