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Pure Bending

R.=801b R, = 80 Ib

M =9601b - in. M’ =960 b - in.
b

ure Bending: Prismatic members
subjected to equal and opposite couples
acting in the same longitudinal plane
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Pure/Non-Pure Bending

Pure Bending

M,

A

P

T
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Other Loading Types

|*'—120 mm—= |<7120 mm 4—‘

Eccentric Loading: Axial loading which
T—— p=60N  does not pass through section centroid

- produces internal forces equivalent to an

\I— 72N -m

Jjg 800N h) o axial force and a couple

Transverse Loading: Concentrated or
distributed transverse load produces
Internal forces equivalent to a shear
force and a couple

Principle of Superposition: The normal
stress due to pure bending may be
combined with the normal stress due to
axial loading and shear stress due to
shear loading to find the complete state
of stress.




\ AN OF MATERIA
Symmetric Member in Pure Bending

M’

Internal forces in a cross section are equivalent
to a couple moment, i.e., the section bending
moment.

Couple moment is same about any axis
perpendicular to the plane of the couple.

Due to symmetry of loading and symmetry of

cross-section, beam bends uniformly into arc of
circle and plane sections remain plane.




MECHANICS OF MATERIALS
Terminologies/Assumptions

Longitudinal Plane of Symmetry (LPS) - Y axis

. Top surface under compression
Deflection curve

Bottom surface under tension

Neutral surface (NS) preserves original length
(no strain)

Beam rotates about the neutral axis (z axis)

Intersection of NS and LPS - Deflection Curve

Plane sections remain plane and perpendicular
to the deflection curve after deformation

Radius of curvature (p) or curvature (k) of the
deflection curve

Neutral

Bottom surface
surface
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Physical meaning of assumptions.

e Assumption that plane sections remain plane and
perpendicular to deflection curve after deformation implies
shear strain yy, = 0. Thus Hooke’s law gives shear stress

Txy = 0. This Is exactly true in pure bending (since no
Shear force).

If plane sections remain plane but not perpendicular to

deflection curve after deformation, vy, (hence 7y) IS
nonzero but constant through depth (y-direction).

If plane sections don’t remain plane or perpendicular to
deflection curve after deformation, yy, (hence ) IS

nonzero and varies through depth (y-direction). This is
what we will obtain later when we find shear stresses.
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Longitudinal Strain

Initial length of the line ef

=dx =p db

Detormed length of the line ef
=(p-y) d©

Longitudinal strain =

Deformed length —undeformed length
Undeformed length

Longitudinal strain
varies linearly with the
distance from the
neutral axis
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Normal Stress

Normal Stress-Strain relationship (Hooke’s law in tension/compression)

O'szgx:—EZ:—Elgz
fo,
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Resultant of Normal Stress Distribution

(1) The resultant force in the x-direction
is zero

Iadizo
4

(2) The resultant moment is equal to
the bending moment M induced at the
cross-section

—foydt=M
A
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Resultant Force

(1) The resultant force in the x-direction is zero — establishes location for Neutral
axis

dA=0={— ExydA Since o, =—FEky
R

—_— j.lwiA:O
A

This equation states that the first moment of the
area of the cross section evaluated with respect
to = axus 1s zero, 1.e z axis must pass through the
centroidal axis. Since z axis 1s also the neutral
axis we arrived at the conclusion that the neutral
axis passes through the centroid of the cross-
section
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Resultant Moment

(2) The resultant moment is equal to the bending moment M induced at
the cross-section- establishes moment curvature relationship

—IO'xydAzM
4

= IEkysz = EKIyZCM =M Since o_=—Fky
4 4

But I yZCM =] = Moment of Inertia (second moment) of the
cross-sectional area with respect to the z axis.
[Unit m# or in4]

Negative
bending
moment

Positive
bending
+A&' moment 5!\4
Positive Negative
curvature curvature
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Relationship between Bending Stress and Moment

1 M
K =—=

a\'

Compressive stresses Tensile stresses
0,
, O 7 7

=

Positive bending ~ Negative bending
moment F 4 moment

.O"

s Compressive stresses
Tensile stresses
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Area Moments of Inertia

l,, =jy2dA; L, :jzsz; L, =1, :jyz dA:; C=centroid
A A A U‘ ¢

Here y, z, are centroidal axes, so jydAzjszzo

Translation of axes: 0
., :jy’ZdA:j(y—dy)sz, expand, use jydAzo o R

Ay
sy =1, +Ad; . K
ly = [(y=d,)z-d,)dA=1,, +d,d,A =

2 - -
l,, =1,+Ad;. Similarly, I

Rotation of axes: Translation .
7' =7c0560+ysin®; y' =-zsin6+ ycoso; i

lye = [yZdA=(1,, - |W)Si”229 +1,,c0520

sin 20

2
sin 20

a2 2
l,,, =1,,sin"0+1,cos"0-1,,

77

_ 2 - 2
l,, =1,c08°0+1,sIn“0+1,,

For 1, =0, i.e., principal axes, tan 260 = I
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Area centroids and Area Moments of Inertia

Centroids of Common Shapes of Areas and Lines

Shape

Triangular area

Quarter-circular area

Semicircular area

Semiparabolic area

Parabolic area

Parabolic spandrel

o
3 2r sina
Circular sector -

2

Quarter-circular arc

Semicircular arc

_ rsina
Arc of circle
(4
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Area centroids and Area Moments of Inertia

Moments of Inertia of Common Geometric Shapes

sbh?

= 5b°h

s
I

. ]
Rectangle ! 1. = 3bh

I = 3b°h
Jo = sbh(b* + H?)

Triangle

Circle

Semicircle

=1, =iwr
Quarter circle % 5
=L

1 3
= gmab’

e 3
Ellipse = yma’h

= lzab(a® + b?)
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Deformations in a Transverse Cross Section

» Recall: deformation due to bending moment M is
quantified by curvature of neutral surface

o M

X

"By EI

Although cross sectional planes remain planar
when subjected to bending moments, in-plane
deformations are nonzero,

Neutral axis (?f P Jo,
transverse section

* S0 expansion occurs above neutral surface and
contraction below it, causing in-plane curvature,

i’ _ Y anticlastic curvature
p P
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Section Modulii

)

Compressive stresses
|

j—ry Positive bending

moment
+M
X

J

el
-
=

-

e

\ O

Tensile stresses

Mc, _+£

o, =+
? I S

Sy, S, section modulii
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Doubly Symmetric Shape

c,=C,=c (say) therefore S,=S,=S (say) )

-‘.
b

0,=0,=0—=—
1 2
S

Larger the section modulus
lower the max normal stress

Review Calculations of
Centroid & | for various
cross-sections
Appendix A, Beer and
Johnston

For two rectangular beams
with same area, the one with
larger depth is better

bh?  Ah
6 6

S =
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Square Vs. Circular Cross-Section

Let us assume you have a beam of square cross-section (side /1) and a beam
of circular cross-section (diameter d) of the same area. Which one is efficient
in resisting bending?

MZ
:T

==

h2

=0.116d°

B alzd®
48

3
™ _ 0098243
32

Square section is more efficient
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Design of Beams for Bending

* The largest normal stress is found at the surface where the
maximum bending moment occurs.

_ ‘M ‘maxC _ ‘M ‘max
I S

Om

 Safe design requires that maximum normal stress be less
than allowable stress for material used. This leads to
determination of minimum acceptable section modulus.

Om <Oyl

Y
min =
Oall

« Among beam section choices which have an acceptable
section modulus, the one with smallest weight per unit
length or cross sectional area will be least expensive and
hence best choice. See Appendix C of BJ book.
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Design of Beams in Bending

Appendix C. Properties of Rolled-Steel Shapes
(SI Units)

S Shapes

(American Standard Shapes)

Axis X-X

Axis Y-Y

Area Iy
Designationt A, mm? 10° mm*

S,
10° mm®

1

y
10° mm*

SY
10° mm?®

S610 X 180 22900 1320
158 20100 1230
149 19000 995
134 17100 938
119 15200 878

S510 X 143 18200 700
128 16400 658
112 14200 530
98.3 12500 495

S460 X 104 13300 385
81.4 10400 333

S380 X 74 9500 201
64 8150 185

4240
3950
3260
3080
2880

2710
2550
2090
1950

1685
1460

1060
971

34.9
32.3
20.2
19.0
179

213
19.7
12.6
11.8

10.4
8.83

6.65
0:15

341
321
215
206
198

228
216
152
145

127
113

90.8
85.7
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Example 5.1

M=3kN: -m

Cast-iron machine part, acted upon by
3 kN-m couple. E =165 Gpa, neglect
effects of fillets, determine (a) max
tensile and compressive stresses, (b)
radius of curvature.
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Example 5.1

i

SOLUTION:

Based on cross section geometry, calculate

location of section centroid and moment of
inertia.

Area, mm2 Y} YA, mm3
20x90 =1800 90x103
40x 30 =1200 24x103

Y A = 3000 Y yA =114x10°

. 3
Y—:ZyA:114><10 _38mm
A 3000

I = 2T+ Ad?)= 5 (L bh® + Ad?)
= (ﬁgox 20° +1800x12 )+ (ﬁsox 40° +1200x18)

| =868x10°mm =868x10"m?
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» Apply the elastic flexural formula to find the
= O i maximum tensile and compressive stresses.
Ch — V. m

cg = 0.038 m Om = #
~ Mcp  3kN-mx0.022m

| 868x10"2mm?
~Mcg _ 3kN-mx0.038m

| 868x10 2 mm?

\
[
\
/

op =+/76.0MPa

OA

GBZ

og =—131.3MPa

/— Center of curvature

e Calculate the curvature

i_M
p El

3kN-m

1 2095x103m?
(165GPa)868x10°m*)  |p
P

=47.7m
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The compound beam ABCDE shown in the figure consists of two beams (AD and DE) jomned by a
hinged connection at . The hinge can transmit a shear force but not a bending moment. The loads

on the beam consist of a 4-kIJ force at the end of a bracket attached at point B and 2kIJ force at the
midpoint of bearm DE.

1. Draw the shear-force and bending-moment diagram for the compound beam

2. Calculate the maximum compressive and maximum tensile bending stress in the beamn for
the cross-section shown.

B I
“

b

b= 60 mm, h= 7Smm, t=10 mm
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Example 5.2

2-5 T:[(ﬁ)(?—) +HRF)-4
kn -0 [L
le) Ma=0 T
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Example 5.2

10

L

[5= 060+ ~295n
I0>(60) + (10 (65)

- (6@(/0) + (Eo)(10)(2Y s‘-—sj ('0)(65) 1_(10)(5)@5 -Ho—zssj

= 6°rZ_ 509 pam T e
- . -HES g) ~3%5. ‘rMPa 0y, = ~He2+3)
AR

5 |
= 1501 MPa Gy =72 81,/4
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Example 5.3

e A 0-amm st of stel is bent nto a full il by bwo couples
r_'! 4 appled as shown. Detemnine ) the mavimum thickness  of the
P st i the allowable stres ofthe stel i 420 MPa, () the com

| sponcing moment } of the couples, Use E = 200 GPa

3
. : =0
e e gewy oy
3% pe
= bon
gk M= 202+ Nt

60[6
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Simply supported steel beam is to
carry loads as shown. Allowable
normal stress for steel used is 160
Mpa. Select the wide-flange shape that
should be used (section properties of
wide flange sections are given).
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Example 5.4

e Determine reactions at A and D.

>Ma =0=D(5m)-(60kN)1.5m)—(50kN)4m)
D =58.0kN
> Fy =0=A, +58.0kN—-60kN-50kN

Ay =52.0kN

» Develop shear force diagram and determine
maximum bending moment.
Va = A, =52.0kN
Vg -V = —(area under load curve) = —60kN
Vg =-8kN

« Maximum bending moment occurs at
V=0orx=2.6m.

M|

max = (area under shear curve, Ato E)

=67.6kN
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Example 5.4

Shape

Sx10% A

W410x38.8
W360x32.9
W310x 38.7
W250x44.8
W200x46.1

629, 4950
475,4190
547,4940
531,5700
451, 5880

» Determine minimum acceptable section
modulus.

_Mlax _ 67.6kN-m

S .
min Oall 160 MPa
= 4225x10"%m3 = 422.5x10° mm?3

» Choose best standard section which meets this
criteria.

W360x32.9
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Bending of Members Made of Several Materials

» Consider a composite beam formed from
two materials with E, and E,.

Normal strain (still) varies linearly
(cannot violate kinematics).
y

8X:__

Jo,

Piecewise linear normal stress variation.

01 = E18X = —@

Neutral axis does not pass through
section centroid of composite section.

Elemental forces on the section are
dF, = oydA= - dA  dF, = opdA =
Jo,

Define a transformed section such that

dF, __(nEy)y dA:—m(n dA) n _B
p P =
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Alternate derivation - neutral axis for composite beam

F=0=[0,dA+ [0,,0A= [Eg,dA+ [E,z,,dA
A Ay Ay Ao

E
:—jE%dA—JZEiEl%dA:

__ Y ga- Yy
| ElpdA Al&[nAzElpdA

E
A U2 A,
E,

= [ydA=0
A UNA,

So neutral axis is centroid of A UnA,

Note: widening ( n>1 )or narrowing ( n<1 )done
parallel to neutral axis, so that y and hence ¢, remain unaltered.
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Example 5.5

18 mm
10 mm — - >

) 4

/ Steel T

Brass Brass

Bar made from bonded pieces of
steel (E, = 200 GPa) and brass (E,
= 100 GPa). Determine maximum
stress in steel and in brass when a
moment of 4.5 KNm is applied.

SOLUTION:

Transform to an equivalent cross section
made entirely of (say) brass

Evaluate cross sectional properties of
transformed section

Calculate maximum stress in transformed
section. This Is the correct maximum
stress for brass portion of the bar.

Determine the maximum stress in steel
portion of by multiplying maximum
stress for transformed section by the
modular ratio. Don’t forget this
Important step!!
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Example 5.5

18 mm

10 mm 4>‘

|<—10 mm

Steel

Brass Brass

10 mm +‘

A

All brass

-~ 56 mm —>‘

SOLUTION:

Transform to equivalent brass section.

E, _200GPa _,

S

E, 100GPa

b, =10 mm +2x18 mm+10 mm =56 mm

Evaluate transformed cross sectional properties

| =Lb.h®=21(56mm)75mmy’

=1.96875x10° mm*

Calculate maximum stresses

Mc _ (4500 Nm)(0.0375m)

O. =

" 1.96875x10° m*

(Gb )max =On
(0,)... =no,, =2x85.7 MPa

=85.7 MPa

(0, )., =85.7 MPa
(0,).., =171.4 MPa
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Reinforced Concrete Beams

b

» Concrete beams subjected to bending moments are
reinforced by steel rods.

» The steel rods assumed to carry the entire tensile
load below neutral axis (since concrete is weak
In tension). Upper part of the concrete beam
carries the compressive load.

* In the transformed section, cross sectional area of
steel, A, replaced by equivalent area
nA, where n=EJE..

» To determine the location of the neutral axis,
(bx)g—nAS(d ~-x)=0

%bx2+nASx—nA5d =0

 The normal stress in the concrete and steel
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Example 5.6

Concrete floor slab reinforced with 16-
mm-diameter steel rods. Modulus of
elasticity is 200 GPa for steel and 25 GPa
for concrete. Applied bending moment is
4.5 KNm per 0.3 m width of slab. Find
maximum stress in concrete and in steel.
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SOLUTION:
Transform to section made entirely of concrete.

~— 300 mm —

T T - E. 200GPa
100 mm — -hLE L~ n=—= =8.0

100 * X EC 25GPa

= l nA, =8.0x 2]z (16mmY |=3216mm

nA, = 3216 mm?>

Evaluate geometric properties of transformed
section.

300x(§j ~3216(100-x)=0  x=36.8mm

. | =1(300mm)36.8mm)’ + (3216 mm?)63.2mm)* =17.83x10° mm*

S, g = 129 MPa

Calculate maximum stresses.

_ _Mc, _ 4500Nm>x0.0368m o. =929 MPa
\/"< o= IS MPa - Ze ™ 17.83%10° m*

5 =n MC2 ~80 4500Nmx0.0632m o, —127.61MPa
’ | 17.83x10° m*

Check: F, = F,
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Example 5.6

A[j}_,‘/\aj}, waj to If\,\o( Max cfesrey b b
ey L e
FC:F—E (m"v‘#d”&:w?’(ﬁ”&)-
g = Rk (e e

FC:J:):(G_C)M%’CU/ Fe= 05 M | b = )

E

i A Ueleer
'_?Qq—c)maux m FC%E{

P ] s SR
ASQBO’%

L LGN
Sulstitide. val-, W,@c)w'q i

2L g ' = \Q;-}‘é Ml
(s, b 2(E@) )
[—= 200

R
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Unsymmetric Bending

Thus far analysis of pure bending limited to
members subjected to bending couples
acting in a plane of symmetry.

Members remain symmetric and bend in
the plane of symmetry.

Neutral axis of cross section
coincides/parallel with axis of couple

Now consider situations in which bending
couple does not act in a plane of symmetry.

Cannot assume that member will bend in
the plane of the couples.

In general, neutral axis of section will not
coincide with axis of couple.
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Unsymmetric Bending

Wish to determine conditions under
which neutral axis of section of
arbitrary shape coincides with axis of
couple, as shown above.

» Resultant force and moment from
the stress distribution in the
section must satisfy:

F.=0=M, M,=M =appliedcouple

e 0=F, =jaXdA=j(—EljdA

Jo,
or 0= I y dA
neutral axis passes through centroid

M =M, :—jy[—EljdA
P
o m Bl ol
Py

defines stress distribution

| =1, = moment of inertig

0=M, :jZJXdA:jz(—¥y)dA

or O:jyz dA =1, = product of inertia

So couple vector must be directed
along a principal centroidal axis.
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Unsymmetric Bending

Superposition applied to determine stresses in the
most general case of unsymmetric bending.

» Resolve couple vector into components along
principle centroidal axes.
M, =M cosé My =Msind

* Superpose stresses due to M, and M,
sz Myz
=— +

X
I I

z y

* Along neutral axis we have,
M .
0X=0=—sz+ yZ=_(Mc036?)y+(Msm6?)z
,
tan¢=l=|_2tan9
z |,
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Example 5.7

18O N -m

K

o

) 40 mm

180 Nm couple applied to rectangular
wooden beam in a plane at 30 deg. to
vertical. Find (a) maximum stress in
beam, (b) angle that neutral axis makes
with horizontal plane.
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Example 5.7

Resolve couple vector along principal axes and calculate
corresponding maximum stresses.

M, = (180 Nm)cos 30 =155.9 Nm
M, = (180 Nm)sin30 =90 Nm

|, =21(0.04m)0.09m)’ = 2.43x10° m*

|, =4(0.09m)0.04m)’ =0.48x10° m*
5mm  Thelargest tensile stress due to M, occurs along AB

M,y (155.9Nm)0.045m)
1, 243x10°m*

z

=2.89MPa

0,

- e

20 mm The largest tensile stress due to M, occurs along AD

_Myz _(90Nm)0.02m) _ 375 MPa

%27 0.48x10° m"

y

Largest tensile stress due to combined M, and M, occurs at A.

O =0, +0,=2.89+3.75 O =0.64MPa
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Determine angle of neutral axis.

2.43x10°m"*

"048x106nﬁtan30

I
tan¢=|—ztan9
y

=29

$=T1°

6.64 MPa
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A couple of magnitude My = 1.5 KN m acting n 2 vertical plane is applied
to a beam having the Z-shaped cross section shown. Determine (a) the stress
at point A, (b) the angle that the neutral i forms with the horizontal plane.
The moments and product of inertia of the section with respect to the y
and z ases have been computed and are as follows:

=35 X107 m"
L=418X10"n'
e 287X 107" '

* |« 12mm T

2mm i
e {’___.1@ 100 mm

‘ i 12mm
M,=15kN.m |

]

+
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AW\WJ/L 3 qwee Wt webid to 04/'\0‘( L'ffl/
Tay= 2 (@307 Ho-0)] (-(g-l2 +0)] ) =2 Adyde

- Y
_2832320 mm' = 2-FTFEE M~
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Exam_pl_e 58

i s = &0 ’é) 9‘;“(,(10"1)
y'= 5Bty cos U +(§O ary 4 0-4)

HJ’ = 1-S ¢ GO-Y EN.m.
[OG [ r 90 x 864
C-L224 EIZ

y
s

: Nn.Qa.
() %‘M"’ T R b by %82 = [’q«\ﬁb

p = Y =My Lo _ ¢)-85 wrt ¥
¥ My :;)q’)“?) o 8 aKis
8185 —404)

= 4)1uS° wet Zaxs
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General Case of Eccentric Axial Loading

Consider straight member subject to equal and
opposite eccentric forces.

Eccentric force equivalent to system
comprising centric force and two couples.
P = centric force
My=Pa  M,=Pb

By principle of superposition, combined
stress distribution is
M
oy = P M,y n y?
A, ly

If neutral axis lies on section, it i1s found
from
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Example 5.9

700 N

Open-link chain obtained by bending
low-carbon steel rods into shape shown.
— 2mm For 700 N load, find (a) maximum
—16mm  tensile and compressive stresses, (b)
distance between section centroid and

neutral axis
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Example 5.9

d =16 mm P
|<3—>
|
i M

700 N

Equivalent centric load and 66 MPa
bending moment

P=700N

M =Pd =(700N)(0.016 m)
=11.2Nm

™
—66 MPa

Normal stress due to a
centric load

A=nc? = z(6mm)’
=113.1mm?
P 700N
GO = — = 5 >
A 113.1x107°m
= 6.2 MPa

Normal stress due to
bending moment

| =iac" =L z(6mm)’
=1017.9mm*
_ Mc _(11.2Nm)(0.006 m)

" 1017.9x10%2 m*
=66 MPa




V| AN

Example 5.9

66 MPa

NS

6.2 MPa |

/

A

i

_|_

Maximum tensile and compressive

stresses

o, =0,+0,
=6.2+66
O, =0,—0y

=6.2-66

o, =72.2MPa

|

o, =—-59.8 MPa

[
—66 MPa

-59.8 MPa

Neutral axis location

0="_My,
Al
P |

101
——— =(6.2x10° Pa\
Yo AM ( * /

Y, =0.56 mm

7.9x10%m?*
11.2Nm
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Sample Problem 5.10

l’)l

10 mm

—

e—— 90 mim ——

A
i )
| 20 mm

i Ce A
Y | D 40 mm
Y 10 mm B $

} B

_— -
-

30 mm

Section a—a

Largest allowable stresses for cast iron link
are 30 MPa in tension and 120 MPa in
compression. Determine largest force P
which can be applied.

A=3x10"3m?
Y =0.038m
| =868x10 9 m*
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Sample Problem 5.10

i~ 90 mm ——

Determine equivalent centric load & bending moment.
o d =0.038-0.010 =0.028m

-

‘ P =centric load

! |
‘f |_0,,,,,,j— . = f"“ M = Pd = 0.028 P =bending moment

}

- -

30 mm Superpose stresses due to P and M,
Section aa _P_Mcy__ P (0.028P)0.022)

Opr =
A 3x10°°  868x10°°

P (0.028P)0.022) _ . op

3x10°  868x107°

= +377P

—

>

T

|

|
——

l6’

|

|

1

=

0.010 m Me Evaluate critical loads for allowable stresses.

op=+377P =30MPa P=79.6kN
og =—1559P =-120MPa P =77.0kN

-
1T

Largest allowable load is P=77.0 kN

| )
LTINS

ol
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Example 5.11

A horizontal load P is applied as shown to a short section of an S10 X 25.4
tolled-steel member. Knowing that the compressive stress in the member
is not to exceed 12 ksi, determine the largest permissible load P

Also locate N.A.

Propertes of Cross Section. The following data are teken from
Appendix C.
Area: A = T46 i
Socton moduli: 5, = 7 ' §y =201 in
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