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Pure Bending

Pure Bending:  Prismatic members 
subjected to equal and opposite couples 
acting in the same longitudinal plane
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Pure/Non-Pure Bending
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Other Loading Types

Principle of Superposition:  The normal 
stress due to pure bending may be 
combined with the normal stress due to 
axial loading and shear stress due to 
shear loading to find the complete state 
of stress.

Eccentric Loading:  Axial loading which 
does not pass through section centroid 
produces internal forces equivalent to an 
axial force and a couple

Transverse Loading:  Concentrated or 
distributed transverse load produces 
internal forces equivalent to a shear 
force and a couple



MECHANICS OF MATERIALS

4 - 64- 6

Symmetric Member in Pure Bending

Couple moment is same about any axis 
perpendicular to the plane of the couple.

Internal forces in a cross section are equivalent 
to a couple moment, i.e., the section bending 
moment.

Due to symmetry of loading and symmetry of 
cross-section, beam bends uniformly into arc of 
circle and plane sections remain plane.
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Physical meaning of assumptions.

• Assumption that plane sections remain plane and 
perpendicular to deflection curve after deformation implies 
shear strain γ୶୷ = 0. Thus Hooke’s law gives shear stress  
߬୶୷ = 0. This is exactly true in pure bending (since no 
Shear force).

• If plane sections remain plane but not perpendicular to 
deflection curve after deformation, γ୶୷ (hence  ߬୶୷) is 
nonzero but constant through depth (y-direction).

• If plane sections don’t remain plane or perpendicular to 
deflection curve after deformation, γ୶୷	(hence  ߬୶୷) is 
nonzero and varies through depth (y-direction). This is 
what we will obtain later when we find shear stresses.
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4 - 10



MECHANICS OF MATERIALS
Resultant of Normal Stress Distribution
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Resultant Moment

4 - 13



MECHANICS OF MATERIALS
Relationship between Bending Stress and Moment
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Area Moments of Inertia
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Area centroids and Area Moments of Inertia
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Area centroids and Area Moments of Inertia
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Deformations in a Transverse Cross Section
• Recall: deformation due to bending moment M is 

quantified by curvature of neutral surface

EI
M

Eyy
xx 



1

• Although cross sectional planes remain planar 
when subjected to bending moments, in-plane 
deformations are nonzero,





 yy

xzxy 

• So expansion occurs above neutral surface and 
contraction below it, causing in-plane curvature,

curvature canticlasti 1


 



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Doubly Symmetric Shape
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Review Calculations of 
Centroid & I for various 
cross-sections
Appendix A, Beer and 
Johnston

Larger the section modulus 
lower the max normal stress

66

2 AhbhS 

For two rectangular beams 
with same area, the one with 
larger depth is better

2
hc  2

dc 
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Square Vs. Circular Cross-Section
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Design of Beams for Bending

• Among beam section choices which have an acceptable 
section modulus, the one with smallest weight per unit 
length or cross sectional area will be least expensive and 
hence best choice. See Appendix C of BJ book.

• The largest normal stress is found at the surface where the 
maximum bending moment occurs.

S
M

I
cM

m
maxmax 

• Safe design requires that maximum normal stress be less 
than allowable stress for material used.  This leads to 
determination of minimum acceptable section modulus.

all

allm
M

S




max
min 


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Design of Beams in Bending
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Example 5.1

Cast-iron machine part, acted upon by 
3 kN-m couple.  E = 165 Gpa, neglect 
effects of fillets, determine (a) max 
tensile and compressive stresses, (b) 
radius of curvature.
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Example 5.1
SOLUTION:

Based on cross section geometry, calculate 
location of section centroid and moment of 
inertia.

mm 38
3000

10114 3








A
AyY

 




3

3

3

32

101143000
104220120030402
109050180090201

mm ,mm ,mm Area,

AyA

Ayy
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   
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23
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123

12
1

23
12
12

m10868  mm10868

18120040301218002090





  
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Example 5.1

• Apply the elastic flexural formula to find the 
maximum tensile and compressive stresses.

49

49

mm10868
m038.0mkN 3

mm10868
m022.0mkN 3

















I
cM

I
cM

I
Mc

B
B

A
A

m







MPa 0.76A

MPa 3.131B

• Calculate the curvature

  49- m10868GPa 165
mkN 3

1







EI
M



m 7.47

m1095.201 1-3



 



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Example 5.4

Simply supported steel beam is to 
carry loads as shown. Allowable 
normal stress for steel used is 160 
Mpa. Select the wide-flange shape that 
should be used (section properties of 
wide flange sections are given).
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Example 5.4
• Determine reactions at A and D.

       

kN0.52

kN50kN60kN0.580
kN0.58

m4kN50m5.1kN60m50








y

yy

A

A

AF
D

DM

• Develop shear force diagram and determine 
maximum bending moment.

 
kN8

kN60

kN0.52






B

AB

yA

V
curveloadunderareaVV

AV

• Maximum bending moment occurs at 
V = 0 or x = 2.6 m.

 
kN6.67

,max


 EtoAcurveshearunderareaM
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Example 5.4

• Determine minimum acceptable section 
modulus.  

3336

max
min

mm105.422m105.422

MPa160
mkN6.67







all

M
S



• Choose best standard section which meets this 
criteria.

5880  451,1.46W200
5700 531,8.44W250
4940 547,7.38W310
4190 475,9.32W360
4950 629,38.8W410

A,103







SShape 9.32360W
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Bending of Members Made of Several Materials
• Consider a composite beam formed from 

two materials with E1 and E2.

• Normal strain (still) varies linearly 
(cannot violate kinematics).


 y

x 

• Piecewise linear normal stress variation.





 yEEyEE xx

2
22

1
11 

Neutral axis does not pass through 
section centroid of composite section.

• Elemental forces on the section are

dAyEdAdFdAyEdAdF





 2
22

1
11 

   
1

211
2 E

EndAnyEdAynEdF 


• Define a transformed section such that
xx

x

n
I

My









21
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1
1
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221121






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A
x
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x

A
x

A
x

dAy

dAyEdAyE

dAyE
E
EdAyE

dAEdAEdAdAF







So neutral axis is centroid of 21 nAA 

Note: widening (             ) or narrowing (             ) done 
parallel to neutral axis, so that y and hence      remain unaltered.

1n 1n
x
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Example 5.5
SOLUTION:

Transform to an equivalent cross section 
made entirely of (say) brass

Evaluate cross sectional properties of 
transformed section

Calculate maximum stress in transformed 
section.  This is the correct maximum 
stress for brass portion of the bar.

Determine the maximum stress in steel 
portion of by multiplying maximum 
stress for transformed section by the 
modular ratio. Don’t forget this 
important step!!

Bar made from bonded pieces of 
steel (Es = 200 GPa) and brass (Eb
= 100 GPa).  Determine maximum 
stress in steel and in brass when a 
moment of 4.5 KNm is applied.
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Example 5.5

Evaluate transformed cross sectional properties

  
46

3
12
13

12
1

mm 1096875.1

mm 75mm 56



 hbI T

SOLUTION:
Transform to equivalent brass section.

mm 56mm 10mm 182mm 10

0.2
GPa100
GPa200





T

b

s

b
E
En

Calculate maximum stresses

   MPa 7.85
m 101.96875

m .03750Nm 4500
46- 




I
Mc

m

 
  MPa 7.852max

max





ms

mb

n
  

  MPa .4711
MPa 7.85

max

max





s

b



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Reinforced Concrete Beams
• Concrete beams subjected to bending moments are 

reinforced by steel rods.

• In the transformed section, cross sectional area of 
steel, As, replaced by equivalent area
nAs where  n = Es/Ec.

• To determine the location of the neutral axis,
   

0

0
2
2

2
1 



dAnxAnxb

xdAnxbx

ss

s

• The normal stress in the concrete and steel

xsxc

x

n
I

My









• The steel rods assumed to carry the entire tensile 
load below neutral axis (since concrete is weak 
in tension).  Upper part of the concrete beam 
carries the compressive load.
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Example 5.6

Concrete floor slab reinforced with 16-
mm-diameter steel rods.  Modulus of 
elasticity is 200 GPa for steel and 25 GPa
for concrete.  Applied bending moment is  
4.5 kNm per 0.3 m width of slab. Find 
maximum stress in concrete and in steel.
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Example 5.6

Evaluate geometric properties of transformed 
section.

 

      46223
3
1 mm1083.17mm2.63mm3216mm8.36mm300

mm8.3601003216
2

300











I

xxxx

SOLUTION:
Transform to section made entirely of concrete.

   22
4 mm3216mm1620.8

0.8
GPa 52
GPa 002






s

c

s

nA

E
En

Calculate maximum stresses.

46-
2

46-
1

m1083.71
m0632.0Nm45000.8

m1083.71
m0368.0Nm4500











I
Mcn

I
Mc

s

c



 MPa29.9c

MPa61.127s

Check: Fs = Fc
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Unsymmetric Bending
• Thus far analysis of pure bending limited to 

members subjected to bending couples 
acting in a plane of symmetry.

• Now consider situations in which bending 
couple does not act in a plane of symmetry.

• In general, neutral axis of section will not 
coincide with axis of couple.

• Cannot assume that member will bend in 
the plane of the couples.

• Neutral axis of cross section 
coincides/parallel with axis of couple

• Members remain symmetric and bend in 
the plane of symmetry.
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Unsymmetric Bending

Wish to determine conditions under 
which neutral axis of section of 
arbitrary shape coincides with axis of 
couple, as shown above.

•

So couple vector must be directed 
along a principal centroidal axis.

inertiaofproduct0or

0















yz

xy

IdAyz

dAy
I

MzdAzM • Resultant force and moment from 
the stress distribution in the 
section must satisfy:

coupleapplied0  MMMF zyx

•

neutral axis passes through centroid















dAy

dAyEdAF xx

0or  

0




•

defines stress distribution

inertiaofmoment,or  









 

z
x

z

II
y
IEIM

dAyEyMM





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Unsymmetric Bending
Superposition applied to determine stresses in the 
most general case of unsymmetric bending.

• Resolve couple vector into components along 
principle centroidal axes.

 sincos MMMM yz 

• Superpose stresses due to My and Mz

yz
x

z y

M zM y
I I

   

• Along neutral axis we have,
   cos sin

0

tan tan

yz
x

z y z y

z

y

M z M y M zM y
I I I I
Iy

z I

 


 

      

 
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Example 5.7

180 Nm couple applied to rectangular 
wooden beam in a plane at 30 deg. to 
vertical.  Find (a) maximum stress in 
beam, (b) angle that neutral axis makes 
with horizontal plane.
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Example 5.7
Resolve couple vector along principal axes and calculate 

corresponding maximum stresses.

 
 
  
  

  

   MPa75.3
m1048.0

m02.0Nm90
 along occurs   todue stress nsilelargest te The

MPa89.2
m1043.2

m045.0Nm9.155
 along occurs   todue stress nsilelargest te The

m1048.0m04.0m09.0

m1043.2m09.0m04.0

Nm9030sinNm180
Nm9.15530cosNm180

46-2

46-1

46-3
12
1

46-3
12
1


















y

y

z

z

z

z

y

z

y

z

I
zM

ADM
I

yM
ABM

I

I

M
M





Largest tensile stress due to combined My and Mz occurs at A.

75.389.221max   MPa64.6max 
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Example 5.7

Determine angle of neutral axis.

9.2

30tan
m1048.0
m1043.2tantan 46-

4-6






 
y

z

I
I

o71
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General Case of Eccentric Axial Loading
• Consider straight member subject to equal and 

opposite eccentric forces.

• Eccentric force equivalent to system 
comprising centric force and two couples.

PbMPaM
P

zy 
 force centric 

• By principle of superposition, combined 
stress distribution is

y

y

z

z
x I

zM
I

yM
A
P 

• If neutral axis lies on section, it is found 
from

y

y

z

z

I
zM

I
yM

A
P

0
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Example 5.9

Open-link chain obtained by bending 
low-carbon steel rods into shape shown.  
For 700 N load, find (a) maximum 
tensile and compressive stresses, (b) 
distance between section centroid and 
neutral axis
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Example 5.9

Equivalent centric load and 
bending moment

  
Nm2.11

m016.0N700
N700





PdM

P

 

MPa2.6
m101.113

N700
mm1.113

mm6

260

2

22










A
P

cA





Normal stress due to a 
centric load

 

  

MPa66
m109.1017

m006.0Nm2.11
mm9.1017

mm6

412-

4

4
4
14

4
1










I
Mc

cI

m



Normal stress due to 
bending moment
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Example 5.9

Maximum tensile and compressive 
stresses

662.6

662.6

0

0






mc

mt




MPa2.72t

MPa8.59c

Neutral axis location

 
Nm.211

m109.1017Pa102.6

0

412
6

0

0






M
I

A
Py

I
My

A
P

mm56.00 y
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Sample Problem 5.10
Largest allowable stresses for cast iron link 
are 30 MPa in tension and 120 MPa in 
compression.  Determine largest force P
which can be applied.

49

23

m10868

m038.0
m103











I

Y
A
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Sample Problem 5.10
Determine equivalent centric load & bending moment.

moment bending 028.0
load centric

m028.0010.0038.0






PPdM
P
d

Evaluate critical loads for allowable stresses.

kN0.77MPa1201559
kN6.79MPa30377




PP
PP

B

A



kN 0.77PLargest allowable load is

Superpose stresses due to P and M,
  

   PPP
I

Mc
A
P

PPP
I

Mc
A
P

A
B

A
A

1559
10868

022.0028.0
103

377
10868

022.0028.0
103

93

93
























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Also locate N.A.
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